code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : int = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE : Union[str, Any] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : int ,lowercase__ : int=None ,lowercase__ : List[str]=None ,**lowercase__ : Tuple ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : List[str] ,lowercase__ : List[Any]=None ,lowercase__ : Tuple=None ,lowercase__ : List[str]=None ,**lowercase__ : Union[str, Any] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : Dict ,**lowercase__ : Optional[int] ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,*lowercase__ : List[str] ,**lowercase__ : Dict ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'data2vec-text' def __init__( self , SCREAMING_SNAKE_CASE_=30522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> str: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = classifier_dropout class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @property def UpperCamelCase( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
42
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
import collections import os import re from pathlib import Path lowerCAmelCase = 'src/transformers' # Matches is_xxx_available() lowerCAmelCase = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCAmelCase = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCAmelCase = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCAmelCase = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCAmelCase = re.compile(R'^\s*try:') # Catches a line with else: lowerCAmelCase = re.compile(R'^\s*else:') def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None lowercase__ = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase__ = f.readlines() lowercase__ = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowercase__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowercase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): lowercase__ = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] lowercase__ = re.findall(R'''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowercase__ = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowercase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowercase__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowercase__ = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: lowercase__ = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(''', ''' ) lowercase__ = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: lowercase__ = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(''', ''' ) lowercase__ = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowercase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase__ = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" def find_duplicates(SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase__ = [] for key in import_dict_objects.keys(): lowercase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) lowercase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase__ = '''base imports''' if key == '''none''' else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _a ( ): """simple docstring""" lowercase__ = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) lowercase__ = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: lowercase__ = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('''\n'''.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE ) ) def _a ( ): """simple docstring""" lowercase__ = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('''*.py''' ) ) ) == 0: continue lowercase__ = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) lowercase__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowercase__ = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) lowercase__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules lowerCAmelCase = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def _a ( ): """simple docstring""" from transformers.utils import direct_transformers_import lowercase__ = direct_transformers_import(SCREAMING_SNAKE_CASE ) lowercase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) , '''r''' ) as f: lowercase__ = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , SCREAMING_SNAKE_CASE ) ) ) lowercase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '''\n'''.join(f'- {module}' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f'{list_of_modules}\n' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
43
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase__ : def __init__( self : int,__A : List[str],__A : Tuple,__A : str,__A : str,__A : List[str],__A : int=0.2,__A : List[str]=0.2 ): _lowerCamelCase : int = bp_numa _lowerCamelCase : Optional[int] = bp_numa _lowerCamelCase : Optional[int] = bp_numa _lowerCamelCase : Union[str, Any] = conva_get[:2] _lowerCamelCase : Any = conva_get[2] _lowerCamelCase : int = size_pa _lowerCamelCase : Any = rate_w _lowerCamelCase : Any = rate_t _lowerCamelCase : str = [ np.mat(-1 * np.random.rand(self.conva[0],self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _lowerCamelCase : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 ) _lowerCamelCase : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 ) _lowerCamelCase : Any = -2 * np.random.rand(self.conva[1] ) + 1 _lowerCamelCase : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 _lowerCamelCase : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 def lowerCamelCase_ ( self : Tuple,__A : int ): # save model dict with pickle _lowerCamelCase : Any = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__A,"wb" ) as f: pickle.dump(__A,__A ) print(f'Model saved: {save_path}' ) @classmethod def lowerCamelCase_ ( cls : Any,__A : Dict ): # read saved model with open(__A,"rb" ) as f: _lowerCamelCase : List[str] = pickle.load(__A ) # noqa: S301 _lowerCamelCase : Tuple = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) _lowerCamelCase : List[str] = model_dic.get("size_pooling1" ) _lowerCamelCase : Dict = model_dic.get("num_bp1" ) _lowerCamelCase : List[str] = model_dic.get("num_bp2" ) _lowerCamelCase : Optional[Any] = model_dic.get("num_bp3" ) _lowerCamelCase : str = model_dic.get("rate_weight" ) _lowerCamelCase : Any = model_dic.get("rate_thre" ) # create model instance _lowerCamelCase : Union[str, Any] = CNN(__A,__A,__A,__A,__A,__A,__A ) # modify model parameter _lowerCamelCase : Dict = model_dic.get("w_conv1" ) _lowerCamelCase : Optional[int] = model_dic.get("wkj" ) _lowerCamelCase : Optional[Any] = model_dic.get("vji" ) _lowerCamelCase : Dict = model_dic.get("thre_conv1" ) _lowerCamelCase : Tuple = model_dic.get("thre_bp2" ) _lowerCamelCase : Optional[int] = model_dic.get("thre_bp3" ) return conv_ins def lowerCamelCase_ ( self : Optional[Any],__A : Optional[Any] ): return 1 / (1 + np.exp(-1 * x )) def lowerCamelCase_ ( self : Dict,__A : str ): return round(__A,3 ) def lowerCamelCase_ ( self : str,__A : int,__A : Any,__A : Union[str, Any],__A : Dict,__A : List[Any] ): # convolution process _lowerCamelCase : Optional[Any] = convs[0] _lowerCamelCase : List[Any] = convs[1] _lowerCamelCase : int = np.shape(__A )[0] # get the data slice of original image data, data_focus _lowerCamelCase : Tuple = [] for i_focus in range(0,size_data - size_conv + 1,__A ): for j_focus in range(0,size_data - size_conv + 1,__A ): _lowerCamelCase : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__A ) # calculate the feature map of every single kernel, and saved as list of matrix _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__A ): _lowerCamelCase : Optional[int] = [] for i_focus in range(len(__A ) ): _lowerCamelCase : List[Any] = ( np.sum(np.multiply(data_focus[i_focus],w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__A ) ) _lowerCamelCase : Union[str, Any] = np.asmatrix(__A ).reshape( __A,__A ) data_featuremap.append(__A ) # expanding the data slice to One dimenssion _lowerCamelCase : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__A ) ) _lowerCamelCase : Dict = np.asarray(__A ) return focus_list, data_featuremap def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[Any],__A : int="average_pool" ): # pooling process _lowerCamelCase : Tuple = len(featuremaps[0] ) _lowerCamelCase : Tuple = int(size_map / size_pooling ) _lowerCamelCase : int = [] for i_map in range(len(__A ) ): _lowerCamelCase : Optional[Any] = featuremaps[i_map] _lowerCamelCase : int = [] for i_focus in range(0,__A,__A ): for j_focus in range(0,__A,__A ): _lowerCamelCase : int = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__A ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__A ) ) _lowerCamelCase : Optional[Any] = np.asmatrix(__A ).reshape(__A,__A ) featuremap_pooled.append(__A ) return featuremap_pooled def lowerCamelCase_ ( self : Optional[Any],__A : List[str] ): # expanding three dimension data to one dimension list _lowerCamelCase : Union[str, Any] = [] for i in range(len(__A ) ): _lowerCamelCase : int = np.shape(data[i] ) _lowerCamelCase : List[str] = data[i].reshape(1,shapes[0] * shapes[1] ) _lowerCamelCase : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__A ) _lowerCamelCase : Tuple = np.asarray(__A ) return data_expanded def lowerCamelCase_ ( self : Tuple,__A : Optional[int] ): # expanding matrix to one dimension list _lowerCamelCase : int = np.asarray(__A ) _lowerCamelCase : List[str] = np.shape(__A ) _lowerCamelCase : Tuple = data_mat.reshape(1,shapes[0] * shapes[1] ) return data_expanded def lowerCamelCase_ ( self : List[str],__A : Any,__A : List[str],__A : List[Any],__A : Any,__A : Tuple ): _lowerCamelCase : Tuple = [] _lowerCamelCase : List[Any] = 0 for i_map in range(__A ): _lowerCamelCase : List[Any] = np.ones((size_map, size_map) ) for i in range(0,__A,__A ): for j in range(0,__A,__A ): _lowerCamelCase : int = pd_pool[ i_pool ] _lowerCamelCase : Dict = i_pool + 1 _lowerCamelCase : Any = np.multiply( __A,np.multiply(out_map[i_map],(1 - out_map[i_map]) ) ) pd_all.append(__A ) return pd_all def lowerCamelCase_ ( self : Union[str, Any],__A : Dict,__A : Optional[Any],__A : Union[str, Any],__A : Optional[Any],__A : Union[str, Any],__A : Tuple=bool ): # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(__A )) ) print((" - - Shape: Teach_Data ", np.shape(__A )) ) _lowerCamelCase : Tuple = 0 _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : List[str] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _lowerCamelCase : List[Any] = 0 print(f'-------------Learning Time {rp}--------------' ) for p in range(len(__A ) ): # print('------------Learning Image: %d--------------'%p) _lowerCamelCase : List[str] = np.asmatrix(datas_train[p] ) _lowerCamelCase : Dict = np.asarray(datas_teach[p] ) _lowerCamelCase , _lowerCamelCase : int = self.convolute( __A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) _lowerCamelCase : int = self.pooling(__A,self.size_poolinga ) _lowerCamelCase : List[str] = np.shape(__A ) _lowerCamelCase : Optional[Any] = self._expand(__A ) _lowerCamelCase : List[str] = data_bp_input _lowerCamelCase : Union[str, Any] = np.dot(__A,self.vji.T ) - self.thre_bpa _lowerCamelCase : Optional[int] = self.sig(__A ) _lowerCamelCase : Union[str, Any] = np.dot(__A,self.wkj.T ) - self.thre_bpa _lowerCamelCase : List[Any] = self.sig(__A ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _lowerCamelCase : Tuple = np.multiply( (data_teach - bp_outa),np.multiply(__A,(1 - bp_outa) ) ) _lowerCamelCase : List[str] = np.multiply( np.dot(__A,self.wkj ),np.multiply(__A,(1 - bp_outa) ) ) _lowerCamelCase : List[Any] = np.dot(__A,self.vji ) _lowerCamelCase : Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) _lowerCamelCase : int = pd_conva_pooled.T.getA().tolist() _lowerCamelCase : Optional[int] = self._calculate_gradient_from_pool( __A,__A,shape_featuremapa[0],shape_featuremapa[1],self.size_poolinga,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _lowerCamelCase : str = self._expand_mat(pd_conva_all[k_conv] ) _lowerCamelCase : Optional[int] = self.rate_weight * np.dot(__A,__A ) _lowerCamelCase : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _lowerCamelCase : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _lowerCamelCase : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _lowerCamelCase : Dict = self.vji + pd_j_all.T * bp_outa * self.rate_weight _lowerCamelCase : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre _lowerCamelCase : Optional[int] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _lowerCamelCase : List[str] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _lowerCamelCase : List[Any] = rp + 1 _lowerCamelCase : str = error_count / patterns all_mse.append(__A ) def draw_error(): _lowerCamelCase : List[str] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__A,"+-" ) plt.plot(__A,"r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(__A,alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def lowerCamelCase_ ( self : int,__A : List[Any] ): # model predict _lowerCamelCase : Any = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(__A )) ) for p in range(len(__A ) ): _lowerCamelCase : Optional[int] = np.asmatrix(datas_test[p] ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.convolute( __A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) _lowerCamelCase : Optional[int] = self.pooling(__A,self.size_poolinga ) _lowerCamelCase : int = self._expand(__A ) _lowerCamelCase : Any = data_bp_input _lowerCamelCase : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa _lowerCamelCase : Tuple = self.sig(__A ) _lowerCamelCase : Union[str, Any] = bp_outa * self.wkj.T - self.thre_bpa _lowerCamelCase : str = self.sig(__A ) produce_out.extend(bp_outa.getA().tolist() ) _lowerCamelCase : Union[str, Any] = [list(map(self.do_round,__A ) ) for each in produce_out] return np.asarray(__A ) def lowerCamelCase_ ( self : Any,__A : str ): # return the data of image after convoluting process so we can check it out _lowerCamelCase : Any = np.asmatrix(__A ) _lowerCamelCase , _lowerCamelCase : Optional[int] = self.convolute( __A,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,) _lowerCamelCase : Optional[int] = self.pooling(__A,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
44
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
import torch def A ( ) -> Optional[int]: if torch.cuda.is_available(): UpperCamelCase__ :int = torch.cuda.device_count() else: UpperCamelCase__ :List[str] = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
45
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : list[list[int]] = [[0 for _ in range(_lowerCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): _lowerCamelCase : Optional[int] = 1 for n in range(m + 1 ): for k in range(1 , _lowerCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCAmelCase : Optional[Any] = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: _lowerCAmelCase : Dict = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
46
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
47
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' for char in word: lowerCAmelCase__ = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def A ( UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = set() for token in tokens: lowerCAmelCase__ = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) lowerCAmelCase__ = list(UpperCamelCase_ ) return word_list def A ( UpperCamelCase_ : List[str] , UpperCamelCase_ : set() ) -> str: '''simple docstring''' if not chinese_word_set: return bert_tokens lowerCAmelCase__ = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) lowerCAmelCase__ = bert_tokens lowerCAmelCase__ ,lowerCAmelCase__ = 0, len(UpperCamelCase_ ) while start < end: lowerCAmelCase__ = True if is_chinese(bert_word[start] ): lowerCAmelCase__ = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): lowerCAmelCase__ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase__ = "##" + bert_word[j] lowerCAmelCase__ = start + i lowerCAmelCase__ = False break if single_word: start += 1 return bert_word def A ( UpperCamelCase_ : List[str] , UpperCamelCase_ : LTP , UpperCamelCase_ : BertTokenizer ) -> str: '''simple docstring''' lowerCAmelCase__ = [] for i in range(0 , len(UpperCamelCase_ ) , 1_00 ): lowerCAmelCase__ = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["cws"] ).cws lowerCAmelCase__ = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) lowerCAmelCase__ = [] for i in range(0 , len(UpperCamelCase_ ) , 1_00 ): lowerCAmelCase__ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) lowerCAmelCase__ = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = [] for id in input_ids: lowerCAmelCase__ = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) lowerCAmelCase__ = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": lowerCAmelCase__ = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def A ( UpperCamelCase_ : List[str] ) -> str: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase__ = LTP(args.ltp ) # faster in GPU device lowerCAmelCase__ = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase__ = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: lowerCAmelCase__ = [json.dumps(UpperCamelCase_ ) + "\n" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Any = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args() main(args)
48
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Any = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'blip_text_model' def __init__( self ,_lowerCAmelCase=3_05_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=8 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3_05_22 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0 ,_lowerCAmelCase=1_02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): super().__init__( pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,sep_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = encoder_hidden_size lowerCamelCase__ = intermediate_size lowerCamelCase__ = projection_dim lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = hidden_act lowerCamelCase__ = initializer_range lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = is_decoder lowerCamelCase__ = use_cache @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": lowerCamelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'blip_vision_model' def __init__( self ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=3_84 ,_lowerCAmelCase=16 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-10 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = hidden_size lowerCamelCase__ = intermediate_size lowerCamelCase__ = projection_dim lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = patch_size lowerCamelCase__ = image_size lowerCamelCase__ = initializer_range lowerCamelCase__ = attention_dropout lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = hidden_act @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": lowerCamelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'blip' _UpperCamelCase = True def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=2.6592 ,_lowerCAmelCase=2_56 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) if text_config is None: lowerCamelCase__ = {} logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" ) if vision_config is None: lowerCamelCase__ = {} logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" ) lowerCamelCase__ = BlipTextConfig(**_lowerCAmelCase ) lowerCamelCase__ = BlipVisionConfig(**_lowerCAmelCase ) lowerCamelCase__ = self.vision_config.hidden_size lowerCamelCase__ = projection_dim lowerCamelCase__ = logit_scale_init_value lowerCamelCase__ = 1.0 lowerCamelCase__ = 0.02 lowerCamelCase__ = image_text_hidden_size @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.text_config.to_dict() lowerCamelCase__ = self.vision_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output
50
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : str , a__ : Union[str, Any]=13 , a__ : Any=32 , a__ : int=2 , a__ : str=3 , a__ : List[Any]=16 , a__ : Tuple=[1, 2, 1] , a__ : Union[str, Any]=[2, 2, 4] , a__ : Optional[int]=2 , a__ : str=2.0 , a__ : int=True , a__ : Any=0.0 , a__ : Optional[Any]=0.0 , a__ : int=0.1 , a__ : List[str]="gelu" , a__ : Optional[Any]=False , a__ : Tuple=True , a__ : int=0.02 , a__ : Tuple=1e-5 , a__ : str=True , a__ : Optional[Any]=None , a__ : List[str]=True , a__ : Tuple=10 , a__ : int=8 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = num_heads UpperCAmelCase = window_size UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_absolute_embeddings UpperCAmelCase = patch_norm UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = is_training UpperCAmelCase = scope UpperCAmelCase = use_labels UpperCAmelCase = type_sequence_label_size UpperCAmelCase = encoder_stride def __snake_case ( self : Any ): UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def __snake_case ( self : str ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __snake_case ( self : str , a__ : str , a__ : List[str] , a__ : Dict ): UpperCAmelCase = SwinvaModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Union[str, Any] , a__ : int ): UpperCAmelCase = SwinvaForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = SwinvaForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __snake_case ( self : Tuple , a__ : Dict , a__ : Tuple , a__ : int ): UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = SwinvaForImageClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _lowerCamelCase =( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Dict ): UpperCAmelCase = SwinvaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , embed_dim=37 ) def __snake_case ( self : Union[str, Any] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Tuple ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def __snake_case ( self : Dict ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def __snake_case ( self : int ): pass def __snake_case ( self : Optional[Any] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __snake_case ( self : Any ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.attentions UpperCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(a__ ) , a__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = config.window_size**2 UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase = len(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): UpperCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(a__ ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __snake_case ( self : Tuple , a__ : Optional[Any] , a__ : List[str] , a__ : Any , a__ : Tuple ): UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # Swinv2 has a different seq_length UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(a__ ) , a__ ) UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = reshaped_hidden_states[0].shape UpperCAmelCase = ( reshaped_hidden_states[0].view(a__ , a__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def __snake_case ( self : Any ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def __snake_case ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __snake_case ( self : Optional[Any] ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SwinvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __snake_case ( self : str ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(a__ ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=a__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( a__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**a__ ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) UpperCAmelCase = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
51
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A = 16 A = 32 def __A ( a_ :Accelerator , a_ :int = 16) -> Any: __a : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''') __a : List[str] = load_dataset('''glue''' , '''mrpc''') def tokenize_function(a_ :List[str]): # max_length=None => use the model max length (it's actually the default) __a : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=a_ , max_length=a_) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : str = datasets.map( a_ , batched=a_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''') def collate_fn(a_ :Dict): # On TPU it's best to pad everything to the same length or training will be very slow. __a : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": __a : int = 8 else: __a : Tuple = None return tokenizer.pad( a_ , padding='''longest''' , max_length=a_ , pad_to_multiple_of=a_ , return_tensors='''pt''' , ) # Instantiate dataloaders. __a : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=a_ , collate_fn=a_ , batch_size=a_) __a : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=a_ , collate_fn=a_ , batch_size=a_) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A = mocked_dataloaders # noqa: F811 def __A ( a_ :Union[str, Any] , a_ :str) -> Union[str, Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , a_) == "1": __a : List[str] = 2 # Initialize accelerator __a : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Any = config['''lr'''] __a : Dict = int(config['''num_epochs''']) __a : List[str] = int(config['''seed''']) __a : Union[str, Any] = int(config['''batch_size''']) __a : Tuple = evaluate.load('''glue''' , '''mrpc''') # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=a_) def inner_training_loop(a_ :List[str]): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(a_) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=a_) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : str = model.to(accelerator.device) # Instantiate optimizer __a : int = AdamW(params=model.parameters() , lr=a_) __a , __a : int = get_dataloaders(a_ , a_) # Instantiate scheduler __a : Any = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=1_00 , num_training_steps=(len(a_) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_) # Now we train the model for epoch in range(a_): model.train() for step, batch in enumerate(a_): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) __a : str = model(**a_) __a : Optional[Any] = outputs.loss accelerator.backward(a_) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __a : List[str] = model(**a_) __a : List[str] = outputs.logits.argmax(dim=-1) __a , __a : List[str] = accelerator.gather_for_metrics((predictions, batch['''labels'''])) metric.add_batch( predictions=a_ , references=a_ , ) __a : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , a_) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __A ( ) -> str: __a : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''' , type=a_ , default=a_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''') __a : Optional[Any] = parser.parse_args() __a : int = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(a_ , a_) if __name__ == "__main__": main()
52
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Union[str, Any]=2_2_4 , lowerCAmelCase_ : List[str]=1_0_0_0 , lowerCAmelCase_ : Union[str, Any]=[3, 3, 6, 4] , lowerCAmelCase_ : List[str]=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Any: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = num_labels __lowerCAmelCase = image_size __lowerCAmelCase = layer_depths __lowerCAmelCase = embed_dims def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Optional[Any] ) -> Optional[int]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase_ , layer_scale_init_value=1e-5 , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = SwiftFormerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Optional[int]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = SwiftFormerForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __lowerCAmelCase = SwiftFormerForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : str ) -> Any: ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) = self.prepare_config_and_inputs() __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a_ = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = SwiftFormerModelTester(self ) __lowerCAmelCase = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def lowercase ( self : Optional[Any] ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def lowercase ( self : List[str] ) -> Tuple: pass def lowercase ( self : int ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase ( self : str ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Union[str, Any] ) -> int: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = SwiftFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def lowercase ( self : List[Any] ) -> Union[str, Any]: pass def lowercase ( self : Any ) -> int: def check_hidden_states_output(lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = 8 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> List[str]: def _config_zero_init(lowerCAmelCase_ : List[str] ): __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase_ , lowerCAmelCase_ , 1e-10 ) if isinstance(getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ): __lowerCAmelCase = _config_zero_init(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return configs_no_init __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Any ) -> List[str]: pass def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Dict ) -> Tuple: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def lowercase ( self : str ) -> List[str]: __lowerCAmelCase = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def a__ ( *lowercase__ ): '''simple docstring''' with open(lowercase__ , "r" ) as fh: fcntl.flock(lowercase__ , fcntl.LOCK_EX ) try: print(*lowercase__ ) finally: fcntl.flock(lowercase__ , fcntl.LOCK_UN ) __lowercase : str =int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) __lowercase : Any =torch.device("""cuda""", local_rank) __lowercase : Optional[Any] =socket.gethostname() __lowercase : Tuple =f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowercase : Optional[Any] =dist.get_rank() __lowercase : Any =dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
54
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) # TODO Update this SCREAMING_SNAKE_CASE :Dict = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "esm" def __init__( self : List[str] ,A : Dict=None ,A : Tuple=None ,A : Any=None ,A : Optional[Any]=7_68 ,A : Tuple=12 ,A : List[str]=12 ,A : Tuple=30_72 ,A : List[str]=0.1 ,A : List[Any]=0.1 ,A : int=10_26 ,A : List[str]=0.02 ,A : Union[str, Any]=1E-12 ,A : List[Any]="absolute" ,A : List[Any]=True ,A : Union[str, Any]=None ,A : Optional[int]=False ,A : Dict=False ,A : Tuple=None ,A : Optional[int]=None ,**A : List[Any] ,): super().__init__(pad_token_id=A ,mask_token_id=A ,**A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = use_cache __A = emb_layer_norm_before __A = token_dropout __A = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) __A = EsmFoldConfig() elif isinstance(A ,A ): __A = EsmFoldConfig(**A ) __A = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) __A = get_default_vocab_list() else: __A = vocab_list else: __A = None __A = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,A ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def UpperCamelCase_ ( self : Optional[int] ): __A = super().to_dict() if isinstance(self.esmfold_config ,A ): __A = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = None snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = 0 snake_case_ = True snake_case_ = False snake_case_ = 128 snake_case_ = None def UpperCamelCase_ ( self : List[Any] ): if self.trunk is None: __A = TrunkConfig() elif isinstance(self.trunk ,A ): __A = TrunkConfig(**self.trunk ) def UpperCamelCase_ ( self : Optional[Any] ): __A = asdict(self ) __A = self.trunk.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 48 snake_case_ = 1024 snake_case_ = 128 snake_case_ = 32 snake_case_ = 32 snake_case_ = 32 snake_case_ = 0 snake_case_ = 0 snake_case_ = False snake_case_ = 4 snake_case_ = 128 snake_case_ = None def UpperCamelCase_ ( self : List[Any] ): if self.structure_module is None: __A = StructureModuleConfig() elif isinstance(self.structure_module ,A ): __A = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) __A = self.sequence_state_dim // self.sequence_head_width __A = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCamelCase_ ( self : Tuple ): __A = asdict(self ) __A = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 384 snake_case_ = 128 snake_case_ = 16 snake_case_ = 128 snake_case_ = 12 snake_case_ = 4 snake_case_ = 8 snake_case_ = 0.1 snake_case_ = 8 snake_case_ = 1 snake_case_ = 2 snake_case_ = 7 snake_case_ = 10 snake_case_ = 1E-8 snake_case_ = 1E5 def UpperCamelCase_ ( self : Union[str, Any] ): return asdict(self ) def UpperCAmelCase ( ) -> int: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int] = False _a : Dict = False def _a (lowercase__ : Namespace ) -> int: """simple docstring""" return TrainCommand(lowercase__ ) class _lowercase ( __lowercase ): @staticmethod def a ( SCREAMING_SNAKE_CASE_ : ArgumentParser ) -> Any: __snake_case = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=SCREAMING_SNAKE_CASE_ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=SCREAMING_SNAKE_CASE_ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE_ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=SCREAMING_SNAKE_CASE_ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE_ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE_ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=SCREAMING_SNAKE_CASE_ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE_ , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__( self : str , SCREAMING_SNAKE_CASE_ : Namespace ) -> Optional[int]: __snake_case = logging.get_logger('transformers-cli/training' ) __snake_case = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE_ ) __snake_case = args.output __snake_case = args.column_label __snake_case = args.column_text __snake_case = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": __snake_case = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) __snake_case = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) __snake_case = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case = args.validation_split __snake_case = args.train_batch_size __snake_case = args.valid_batch_size __snake_case = args.learning_rate __snake_case = args.adam_epsilon def a ( self : Optional[int] ) -> int: if self.framework == "tf": return self.run_tf() return self.run_torch() def a ( self : Tuple ) -> List[str]: raise NotImplementedError def a ( self : Dict ) -> Optional[int]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
56
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. A_ : str = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Tuple = spec.loader.load_module() A_ : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Any = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') A_ : Optional[int] = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def snake_case () -> Optional[Any]: UpperCamelCase_: str = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCamelCase_: int = False # source code of `config_class` UpperCamelCase_: int = inspect.getsource(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = _re_checkpoint.findall(UpperCAmelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase_ ,UpperCamelCase_: int = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase_: List[str] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: UpperCamelCase_: Optional[Any] = True break UpperCamelCase_: Tuple = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: UpperCamelCase_: List[Any] = '\n'.join(sorted(UpperCAmelCase__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
57
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCAmelCase : Tuple = 25_6047 __lowerCAmelCase : int = 25_6145 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = NllbTokenizer _lowerCamelCase = NllbTokenizerFast _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = {} def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : str = NllbTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Tuple = NllbTokenizer(_lowercase , keep_accents=_lowercase ) snake_case_ : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case_ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) snake_case_ : List[Any] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case_ : Any = tempfile.mkdtemp() snake_case_ : Optional[int] = tokenizer_r.save_pretrained(_lowercase ) snake_case_ : Optional[int] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case_ : Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way snake_case_ : Optional[int] = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : str = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : Optional[Any] = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) snake_case_ : Optional[int] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way snake_case_ : Union[str, Any] = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : str = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False snake_case_ : str = tempfile.mkdtemp() snake_case_ : Any = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) snake_case_ : Optional[int] = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : List[str] = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : Optional[int] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' if not self.test_seqaseq: return snake_case_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. snake_case_ : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] snake_case_ : Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: snake_case_ : Any = tokenizer.prepare_seqaseq_batch( src_texts=_lowercase , tgt_texts=_lowercase , max_length=3 , max_target_length=1_0 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 1_0 ) # max_target_length will default to max_length if not specified snake_case_ : str = tokenizer.prepare_seqaseq_batch( _lowercase , tgt_texts=_lowercase , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) snake_case_ : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=_lowercase , max_length=3 , max_target_length=1_0 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , _lowercase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : List[str] = [AddedToken("""<special>""" , lstrip=_lowercase )] snake_case_ : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , **_lowercase ) snake_case_ : Dict = tokenizer_r.encode("""Hey this is a <special> token""" ) snake_case_ : int = tokenizer_r.encode("""<special>""" , add_special_tokens=_lowercase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: snake_case_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , **_lowercase , ) snake_case_ : List[Any] = self.tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , **_lowercase ) snake_case_ : Tuple = tokenizer_p.encode("""Hey this is a <special> token""" ) snake_case_ : int = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = '''facebook/nllb-200-distilled-600M''' _lowerCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowerCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowerCamelCase = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def UpperCAmelCase__ ( cls ) -> List[str]: '''simple docstring''' snake_case_ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) snake_case_ : Dict = 1 return cls def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 2_5_6_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 2_5_6_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 2_5_6_0_5_7 ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.assertIn(_lowercase , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : List[Any] = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7] # fmt: on snake_case_ : int = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) snake_case_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , _lowercase ) snake_case_ : Optional[int] = 1_0 snake_case_ : Optional[int] = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , _lowercase ) self.assertEqual(len(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_6_2_0_3, 3] ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = tempfile.mkdtemp() snake_case_ : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) snake_case_ : Union[str, Any] = NllbTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case_ : Optional[Any] = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 1_5) , batch.input_ids.shape ) self.assertEqual((2, 1_5) , batch.attention_mask.shape ) snake_case_ : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(_lowercase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Tuple = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors="""pt""" ) snake_case_ : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=1_0 , return_tensors="""pt""" ) snake_case_ : str = targets["""input_ids"""] snake_case_ : Optional[int] = shift_tokens_right( _lowercase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(_lowercase ) , { # A, test, EOS, en_XX """input_ids""": [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_6_0_5_7, } , ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = True snake_case_ : Optional[int] = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] ) snake_case_ : str = False snake_case_ : List[Any] = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
58
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" lowerCamelCase__: List[Any] =split_dict._to_yaml_list() assert len(__a ) == len(__a ) lowerCamelCase__: List[str] =SplitDict._from_yaml_list(__a ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCamelCase__: Any =None # the split name of split_dict takes over the name of the split info object lowerCamelCase__: str =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__a ), SplitInfo(dataset_name="my_dataset" )] ) def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
59
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase ) -> list[int]: """simple docstring""" return [ord(_UpperCamelCase ) - 96 for elem in plain] def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : List[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , _UpperCamelCase ) print('''Decoded:''' , decode(_UpperCamelCase ) ) if __name__ == "__main__": main()
60
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase = '\n{0} = None\n' UpperCamelCase = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _A ( lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = _re_backend.findall(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) == 0: return None return "_and_".join(lowerCAmelCase_ ) def _A ( ): """simple docstring""" with open(os.path.join(lowerCAmelCase_ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCAmelCase__ = 0 lowerCAmelCase__ = {} # Go through the end of the file while line_index < len(lowerCAmelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCAmelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCAmelCase_ ) and len(lines[line_index] ) > 1: lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_single_line_import.search(lowerCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCAmelCase_ ) > 0: lowerCAmelCase__ = objects else: line_index += 1 return backend_specific_objects def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(lowerCAmelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCAmelCase_ , lowerCAmelCase_ ) else: return DUMMY_CLASS.format(lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : Tuple=None ): """simple docstring""" if backend_specific_objects is None: lowerCAmelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCAmelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCAmelCase__ = "[" + ", ".join(F'"{b}"' for b in backend.split("_and_" ) ) + "]" lowerCAmelCase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCAmelCase_ , lowerCAmelCase_ ) for o in objects] ) lowerCAmelCase__ = dummy_file return dummy_files def _A ( lowerCAmelCase_ : Optional[int]=False ): """simple docstring""" lowerCAmelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCAmelCase__ = {"torch": "pt"} # Locate actual dummy modules and read their content. lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , "utils" ) lowerCAmelCase__ = { backend: os.path.join(lowerCAmelCase_ , F'dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py' ) for backend in dummy_files.keys() } lowerCAmelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.read() else: lowerCAmelCase__ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py as the main ' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'diffusers.utils.dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py. Run `make fix-copies` ' "to fix this." ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
61
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = AudioLDMPipeline UpperCamelCase_ : Dict = TEXT_TO_AUDIO_PARAMS UpperCamelCase_ : Dict = TEXT_TO_AUDIO_BATCH_PARAMS UpperCamelCase_ : Union[str, Any] = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _A ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) SCREAMING_SNAKE_CASE : Dict = ClapTextModelWithProjection(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : int = SpeechTaHifiGan(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def _A ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int]=0 ): if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE : str = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = AudioLDMPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = audioldm_pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase_ ) == 256 SCREAMING_SNAKE_CASE : str = audio[:10] SCREAMING_SNAKE_CASE : List[Any] = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = AudioLDMPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = audioldm_pipe.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = 3 * [inputs["prompt"]] # forward SCREAMING_SNAKE_CASE : List[Any] = audioldm_pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = output.audios[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = 3 * [inputs.pop("prompt" )] SCREAMING_SNAKE_CASE : List[str] = audioldm_pipe.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_inputs["input_ids"].to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = audioldm_pipe.text_encoder( UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE : List[Any] = F.normalize(UpperCAmelCase_ , dim=-1 ) SCREAMING_SNAKE_CASE : Optional[Any] = prompt_embeds # forward SCREAMING_SNAKE_CASE : Any = audioldm_pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = AudioLDMPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = audioldm_pipe.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = 3 * ["this is a negative prompt"] SCREAMING_SNAKE_CASE : Optional[Any] = negative_prompt SCREAMING_SNAKE_CASE : str = 3 * [inputs["prompt"]] # forward SCREAMING_SNAKE_CASE : Dict = audioldm_pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = output.audios[0] SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = 3 * [inputs.pop("prompt" )] SCREAMING_SNAKE_CASE : Any = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE : Any = audioldm_pipe.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : Dict = text_inputs["input_ids"].to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = audioldm_pipe.text_encoder( UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE : Optional[int] = F.normalize(UpperCAmelCase_ , dim=-1 ) embeds.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = embeds # forward SCREAMING_SNAKE_CASE : Dict = audioldm_pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = AudioLDMPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = "egg cracking" SCREAMING_SNAKE_CASE : int = audioldm_pipe(**UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase_ ) == 256 SCREAMING_SNAKE_CASE : Union[str, Any] = audio[:10] SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : int = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = AudioLDMPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE : str = audioldm_pipe(UpperCAmelCase_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE : Any = 2 SCREAMING_SNAKE_CASE : Optional[Any] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE : Dict = 2 SCREAMING_SNAKE_CASE : Any = audioldm_pipe(UpperCAmelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Tuple = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = AudioLDMPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = audioldm_pipe(audio_length_in_s=0.016 , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase_ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE : Optional[int] = audioldm_pipe(audio_length_in_s=0.032 , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase_ ) / vocoder_sampling_rate == 0.032 def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = AudioLDMPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = ["hey"] SCREAMING_SNAKE_CASE : Optional[Any] = audioldm_pipe(UpperCAmelCase_ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE : Optional[int] = output.audios.shape assert audio_shape == (1, 256) SCREAMING_SNAKE_CASE : Tuple = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGan(UpperCAmelCase_ ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = audioldm_pipe(UpperCAmelCase_ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE : List[Any] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def _A ( self : Union[str, Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ ) def _A ( self : Any ): self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCAmelCase_ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _A ( self : int ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Union[str, Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int="cpu" , UpperCAmelCase_ : Optional[int]=torch.floataa , UpperCAmelCase_ : Optional[Any]=0 ): SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(UpperCAmelCase_ ).standard_normal((1, 8, 128, 16) ) SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def _A ( self : str ): SCREAMING_SNAKE_CASE : List[Any] = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) SCREAMING_SNAKE_CASE : Optional[int] = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.get_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = 25 SCREAMING_SNAKE_CASE : Dict = audioldm_pipe(**UpperCAmelCase_ ).audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase_ ) == 8_1920 SCREAMING_SNAKE_CASE : str = audio[7_7230:7_7240] SCREAMING_SNAKE_CASE : Dict = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE : int = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : str = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) SCREAMING_SNAKE_CASE : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE : Optional[int] = audioldm_pipe.to(UpperCAmelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.get_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = audioldm_pipe(**UpperCAmelCase_ ).audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase_ ) == 8_1920 SCREAMING_SNAKE_CASE : List[Any] = audio[2_7780:2_7790] SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
62
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor a : Any = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" def __init__( self : List[Any] , *__lowercase : Tuple , **__lowercase : Dict ) -> None: warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
63
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
def A__ ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : str=False ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__: int= len(set_a.intersection(snake_case_ ) ) if alternative_union: SCREAMING_SNAKE_CASE__: int= len(snake_case_ ) + len(snake_case_ ) else: SCREAMING_SNAKE_CASE__: str= len(set_a.union(snake_case_ ) ) return intersection / union if isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) ): SCREAMING_SNAKE_CASE__: Any= [element for element in set_a if element in set_b] if alternative_union: SCREAMING_SNAKE_CASE__: List[str]= len(snake_case_ ) + len(snake_case_ ) return len(snake_case_ ) / union else: SCREAMING_SNAKE_CASE__: Optional[int]= set_a + [element for element in set_b if element not in set_a] return len(snake_case_ ) / len(snake_case_ ) return len(snake_case_ ) / len(snake_case_ ) return None if __name__ == "__main__": lowercase_ : Any = {'a', 'b', 'c', 'd', 'e'} lowercase_ : Optional[Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
64
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 100 , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = x_start UpperCAmelCase__ : List[Any] = fnc(__UpperCamelCase ) UpperCAmelCase__ : Any = 0.0 for _ in range(__UpperCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCAmelCase__ : str = (x_end - x_start) / steps + xa UpperCAmelCase__ : Optional[int] = fnc(__UpperCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCAmelCase__ : int = xa UpperCAmelCase__ : Dict = fxa return area if __name__ == "__main__": def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __UpperCAmelCase = 10 while i <= 10_0000: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 10
65
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
import os import pytest from attr import dataclass UpperCamelCase = "us-east-1" # defaults region @dataclass class lowerCAmelCase_ : _UpperCamelCase : str _UpperCamelCase : int = "arn:aws:iam::558105141721:role/sagemaker_execution_role" _UpperCamelCase : Dict = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } _UpperCamelCase : int = {**hyperparameters, "max_steps": 1000} @property def __a ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __a ( self ): return F"""{self.framework}-transfromers-test""" @property def __a ( self ): return F"""./tests/sagemaker/scripts/{self.framework}""" @property def __a ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: _lowercase : List[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
66
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType snake_case = logging.get_logger(__name__) snake_case = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off snake_case = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] snake_case = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = '''whisper''' SCREAMING_SNAKE_CASE_ : str = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : Any = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int ,__A : Dict=5_1865 ,__A : List[str]=80 ,__A : str=6 ,__A : List[str]=4 ,__A : int=6 ,__A : Optional[Any]=4 ,__A : int=1536 ,__A : List[str]=1536 ,__A : Optional[Any]=0.0 ,__A : Union[str, Any]=0.0 ,__A : int=5_0257 ,__A : Dict=True ,__A : int=True ,__A : int="gelu" ,__A : Union[str, Any]=256 ,__A : Optional[int]=0.0 ,__A : Any=0.0 ,__A : Optional[int]=0.0 ,__A : List[Any]=0.02 ,__A : Optional[int]=False ,__A : int=1500 ,__A : Union[str, Any]=448 ,__A : Optional[Any]=5_0256 ,__A : List[str]=5_0256 ,__A : Dict=5_0256 ,__A : int=None ,__A : Optional[Any]=[220, 5_0256] ,__A : Optional[Any]=False ,__A : Dict=256 ,__A : Tuple=False ,__A : Union[str, Any]=0.05 ,__A : Optional[Any]=10 ,__A : int=2 ,__A : Optional[int]=0.0 ,__A : Optional[int]=10 ,__A : Any=0 ,__A : Optional[int]=7 ,**__A : str ,) -> List[Any]: _lowercase = vocab_size _lowercase = num_mel_bins _lowercase = d_model _lowercase = encoder_layers _lowercase = encoder_attention_heads _lowercase = decoder_layers _lowercase = decoder_attention_heads _lowercase = decoder_ffn_dim _lowercase = encoder_ffn_dim _lowercase = dropout _lowercase = attention_dropout _lowercase = activation_dropout _lowercase = activation_function _lowercase = init_std _lowercase = encoder_layerdrop _lowercase = decoder_layerdrop _lowercase = use_cache _lowercase = encoder_layers _lowercase = scale_embedding # scale factor will be sqrt(d_model) if True _lowercase = max_source_positions _lowercase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _lowercase = classifier_proj_size _lowercase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase = apply_spec_augment _lowercase = mask_time_prob _lowercase = mask_time_length _lowercase = mask_time_min_masks _lowercase = mask_feature_prob _lowercase = mask_feature_length _lowercase = mask_feature_min_masks _lowercase = median_filter_width super().__init__( pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,is_encoder_decoder=__A ,decoder_start_token_id=__A ,suppress_tokens=__A ,begin_suppress_tokens=__A ,**__A ,) class A_ ( UpperCAmelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: _lowercase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: _lowercase = {0: 'batch'} else: _lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__A ,direction='inputs' ) return common_inputs def __UpperCAmelCase ( self : Tuple ,__A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional["TensorType"] = None ,__A : int = 2_2050 ,__A : float = 5.0 ,__A : int = 220 ,) -> Mapping[str, Any]: _lowercase = OrderedDict() _lowercase = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=__A ,framework=__A ,sampling_rate=__A ,time_duration=__A ,frequency=__A ,) _lowercase = encoder_inputs['input_features'].shape[2] _lowercase = encoder_sequence_length // 2 if self.use_past else seq_length _lowercase = super().generate_dummy_inputs( preprocessor.tokenizer ,__A ,__A ,__A ,__A ) _lowercase = encoder_inputs.pop('input_features' ) _lowercase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: _lowercase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def __UpperCAmelCase ( self : Union[str, Any] ) -> float: return 1e-3
67
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __A = re.compile(r"\s+") def lowercase__ ( A_: int ) -> Any: """simple docstring""" return {"hash": hashlib.mda(re.sub(A_ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def lowercase__ ( A_: int ) -> Optional[int]: """simple docstring""" __UpperCAmelCase =[len(A_ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(A_ ), "line_max": max(A_ )} def lowercase__ ( A_: Any ) -> int: """simple docstring""" __UpperCAmelCase =np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def lowercase__ ( A_: List[Any] , A_: Tuple ) -> str: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def lowercase__ ( A_: List[str] , A_: Dict=5 ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase =["""auto-generated""", """autogenerated""", """automatically generated"""] __UpperCAmelCase =example["""content"""].splitlines() for _, line in zip(range(A_ ) , A_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowercase__ ( A_: str , A_: List[Any]=5 , A_: List[Any]=0.0_5 ) -> List[str]: """simple docstring""" __UpperCAmelCase =["""unit tests""", """test file""", """configuration file"""] __UpperCAmelCase =example["""content"""].splitlines() __UpperCAmelCase =0 __UpperCAmelCase =0 # first test for _, line in zip(range(A_ ) , A_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __UpperCAmelCase =example["""content"""].count("""\n""" ) __UpperCAmelCase =int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowercase__ ( A_: Any ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase =["""def """, """class """, """for """, """while """] __UpperCAmelCase =example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowercase__ ( A_: Optional[int] , A_: List[Any]=4 ) -> Any: """simple docstring""" __UpperCAmelCase =example["""content"""].splitlines() __UpperCAmelCase =0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowercase__ ( A_: List[Any] ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase =tokenizer(example["""content"""] , truncation=A_ )["""input_ids"""] __UpperCAmelCase =len(example["""content"""] ) / len(A_ ) return {"ratio": ratio} def lowercase__ ( A_: int ) -> str: """simple docstring""" __UpperCAmelCase ={} results.update(get_hash(A_ ) ) results.update(line_stats(A_ ) ) results.update(alpha_stats(A_ ) ) results.update(char_token_ratio(A_ ) ) results.update(is_autogenerated(A_ ) ) results.update(is_config_or_test(A_ ) ) results.update(has_no_keywords(A_ ) ) results.update(has_few_assignments(A_ ) ) return results def lowercase__ ( A_: Dict , A_: Any , A_: List[str] ) -> str: """simple docstring""" if not check_uniques(A_ , A_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowercase__ ( A_: List[Any] ) -> Tuple: """simple docstring""" with open(A_ , """rb""" ) as f_in: with gzip.open(str(A_ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(A_ , A_ ) os.unlink(A_ ) # Settings __A = HfArgumentParser(PreprocessingArguments) __A = parser.parse_args() if args.num_workers is None: __A = multiprocessing.cpu_count() __A = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __A = time.time() __A = load_dataset(args.dataset_name, split="train") print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing __A = time.time() __A = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes __A = set(ds.unique("hash")) __A = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics __A = time.time() __A = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __A = time.time() __A , __A = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file __A = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) __A = output_dir / "data" data_dir.mkdir(exist_ok=True) __A = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __A = str(data_dir / F"""file-{file_number+1:012}.json""") __A = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
68
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = BlipImageProcessor() __snake_case = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __snake_case = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) __snake_case = InstructBlipProcessor(a_ , a_ , a_ ) processor.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] , **a_ : List[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).tokenizer def A ( self : Any , **a_ : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def A ( self : Any , **a_ : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).qformer_tokenizer def A ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : List[Any] ): """simple docstring""" __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __snake_case = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) __snake_case = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) self.assertIsInstance(processor.qformer_tokenizer , a_ ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = self.get_qformer_tokenizer() __snake_case = InstructBlipProcessor( tokenizer=a_ , image_processor=a_ , qformer_tokenizer=a_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(a_ , return_tensors="np" ) __snake_case = processor(images=a_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : Any ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = self.get_qformer_tokenizer() __snake_case = InstructBlipProcessor( tokenizer=a_ , image_processor=a_ , qformer_tokenizer=a_ ) __snake_case = "lower newer" __snake_case = processor(text=a_ ) __snake_case = tokenizer(a_ , return_token_type_ids=a_ ) __snake_case = qformer_tokenizer(a_ , return_token_type_ids=a_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = self.get_qformer_tokenizer() __snake_case = InstructBlipProcessor( tokenizer=a_ , image_processor=a_ , qformer_tokenizer=a_ ) __snake_case = "lower newer" __snake_case = self.prepare_image_inputs() __snake_case = processor(text=a_ , images=a_ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def A ( self : Tuple ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = self.get_qformer_tokenizer() __snake_case = InstructBlipProcessor( tokenizer=a_ , image_processor=a_ , qformer_tokenizer=a_ ) __snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case = processor.batch_decode(a_ ) __snake_case = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = self.get_qformer_tokenizer() __snake_case = InstructBlipProcessor( tokenizer=a_ , image_processor=a_ , qformer_tokenizer=a_ ) __snake_case = "lower newer" __snake_case = self.prepare_image_inputs() __snake_case = processor(text=a_ , images=a_ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
69
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
import numpy as np from transformers import Pipeline def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = np.max(lowercase , axis=-1 , keepdims=lowercase ) lowerCamelCase_ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Tuple , **A_ : str ) -> str: """simple docstring""" lowerCamelCase_ = {} if "second_text" in kwargs: lowerCamelCase_ = kwargs['second_text'] return preprocess_kwargs, {}, {} def a__ ( self : Union[str, Any] , A_ : List[str] , A_ : int=None ) -> str: """simple docstring""" return self.tokenizer(A_ , text_pair=A_ , return_tensors=self.framework ) def a__ ( self : List[str] , A_ : int ) -> Optional[Any]: """simple docstring""" return self.model(**A_ ) def a__ ( self : Optional[Any] , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = model_outputs.logits[0].numpy() lowerCamelCase_ = softmax(A_ ) lowerCamelCase_ = np.argmax(A_ ) lowerCamelCase_ = self.model.config.idalabel[best_class] lowerCamelCase_ = probabilities[best_class].item() lowerCamelCase_ = logits.tolist() return {"label": label, "score": score, "logits": logits}
70
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : int = path_or_paths UpperCAmelCase_ : Optional[int] = split if split or isinstance(_snake_case ,_snake_case ) else "train" UpperCAmelCase_ : Tuple = features UpperCAmelCase_ : int = cache_dir UpperCAmelCase_ : Optional[Any] = keep_in_memory UpperCAmelCase_ : Any = streaming UpperCAmelCase_ : List[str] = num_proc UpperCAmelCase_ : int = kwargs @abstractmethod def UpperCamelCase__ ( self ): pass class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : Union[str, Any] = features UpperCAmelCase_ : Dict = cache_dir UpperCAmelCase_ : int = keep_in_memory UpperCAmelCase_ : int = streaming UpperCAmelCase_ : Tuple = num_proc UpperCAmelCase_ : Optional[Any] = kwargs @abstractmethod def UpperCamelCase__ ( self ): pass
71
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
0
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = BlenderbotSmallTokenizer UpperCamelCase__ = False def _A( self ): super().setUp() lowercase =['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] lowercase =dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) lowercase =['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] lowercase ={'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case_ ) ) def _A( self , **snake_case_ ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def _A( self , snake_case_ ): lowercase ='''adapt act apte''' lowercase ='''adapt act apte''' return input_text, output_text def _A( self ): lowercase =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase ='''adapt act apte''' lowercase =['''adapt''', '''act''', '''ap@@''', '''te'''] lowercase =tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) lowercase =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowercase =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def _A( self ): lowercase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [13_84] lowercase ='''I am a small frog.''' lowercase =tok([src_text] , padding=snake_case_ , truncation=snake_case_ )['''input_ids'''] lowercase =tok.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _A( self ): lowercase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) lowercase ='''I am a small frog .''' lowercase ='''.''' lowercase =tok(snake_case_ )['''input_ids'''] lowercase =tok(snake_case_ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
72
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ : List[str] = '▁' a_ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _snake_case ( A__ , unittest.TestCase ): _lowercase : str = BigBirdTokenizer _lowercase : Any = BigBirdTokenizerFast _lowercase : Tuple = True _lowercase : int = True def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE = self.tokenizer_class(a , keep_accents=a) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = '<s>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a) , a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a) , a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<unk>') self.assertEqual(vocab_keys[1] , '<s>') self.assertEqual(vocab_keys[-1] , '[MASK]') self.assertEqual(len(a) , 1004) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def SCREAMING_SNAKE_CASE__ ( self) -> str: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE = tokenizer.tokenize(a) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(a) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a) self.assertListEqual(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = BigBirdTokenizer(a , keep_accents=a) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test') self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(a) , [285, 46, 10, 170, 382] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(a) self.assertListEqual( a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(a) self.assertListEqual( a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') @slow def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 'Hello World!' SCREAMING_SNAKE_CASE = [65, 1_8536, 2260, 101, 66] self.assertListEqual(a , self.big_tokenizer.encode(a)) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off SCREAMING_SNAKE_CASE = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(a , self.big_tokenizer.encode(a)) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> Any: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence SCREAMING_SNAKE_CASE = list(self.big_tokenizer.get_vocab().keys())[:10] SCREAMING_SNAKE_CASE = ' '.join(a) SCREAMING_SNAKE_CASE = self.big_tokenizer.encode_plus(a , return_tensors='pt' , return_token_type_ids=a) SCREAMING_SNAKE_CASE = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=a) SCREAMING_SNAKE_CASE = BigBirdConfig(attention_type='original_full') SCREAMING_SNAKE_CASE = BigBirdModel(a) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a) model(**a) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') SCREAMING_SNAKE_CASE = tokenizer.decode(tokenizer('Paris is the [MASK].').input_ids) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]') @slow def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # fmt: off SCREAMING_SNAKE_CASE = {'input_ids': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
73
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowercase_ = yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) lowercase_ = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } lowercase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } lowercase_ = """\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = ( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) lowercase_ = """\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = ( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) lowercase_ = """\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" lowercase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" lowercase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset """ lowercase_ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'.""" lowercase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ lowercase_ = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" lowercase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ lowercase_ = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" lowercase_ = """\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" lowercase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ lowercase_ = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" lowercase_ = """\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" lowercase_ = """""" lowercase_ = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" lowercase_ = """\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowercase_ = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def a__ ( snake_case , snake_case ): """simple docstring""" assert ReadMe.from_string(snake_case , snake_case ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def a__ ( snake_case , snake_case ): """simple docstring""" with pytest.raises(snake_case , match=re.escape(expected_error.format(path='''root''' ) ) ): __SCREAMING_SNAKE_CASE : int = ReadMe.from_string(snake_case , snake_case ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def a__ ( snake_case , snake_case ): """simple docstring""" with pytest.raises(snake_case , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(snake_case , snake_case ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def a__ ( snake_case ): """simple docstring""" ReadMe.from_string(snake_case , snake_case , suppress_parsing_errors=snake_case ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def a__ ( snake_case , snake_case ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : Any = Path(snake_case ) / '''README.md''' with open(snake_case , '''w+''' ) as readme_file: readme_file.write(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = ReadMe.from_readme(snake_case , snake_case ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def a__ ( snake_case , snake_case ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : Optional[int] = Path(snake_case ) / '''README.md''' with open(snake_case , '''w+''' ) as readme_file: readme_file.write(snake_case ) __SCREAMING_SNAKE_CASE : str = expected_error.format(path=snake_case ) with pytest.raises(snake_case , match=re.escape(snake_case ) ): __SCREAMING_SNAKE_CASE : Dict = ReadMe.from_readme(snake_case , snake_case ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def a__ ( snake_case , snake_case ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : int = Path(snake_case ) / '''README.md''' with open(snake_case , '''w+''' ) as readme_file: readme_file.write(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = expected_error.format(path=snake_case ) with pytest.raises(snake_case , match=re.escape(snake_case ) ): ReadMe.from_readme(snake_case , snake_case ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def a__ ( snake_case ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : List[str] = Path(snake_case ) / '''README.md''' with open(snake_case , '''w+''' ) as readme_file: readme_file.write(snake_case ) ReadMe.from_readme(snake_case , snake_case , suppress_parsing_errors=snake_case )
74
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
0
'''simple docstring''' from math import pi def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> float: return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(9_0, 1_0))
75
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConvNextFeatureExtractor'] a_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
76
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A = logging.get_logger(__name__) A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } A = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } A = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = BertTokenizer def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Union[str, Any]="[UNK]" , UpperCamelCase_ : Union[str, Any]="[SEP]" , UpperCamelCase_ : List[Any]="[PAD]" , UpperCamelCase_ : List[Any]="[CLS]" , UpperCamelCase_ : Tuple="[MASK]" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCamelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase_) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(UpperCamelCase_ , normalizer_state.pop("type")) __UpperCAmelCase : Any = do_lower_case __UpperCAmelCase : List[str] = strip_accents __UpperCAmelCase : Any = tokenize_chinese_chars __UpperCAmelCase : Union[str, Any] = normalizer_class(**UpperCamelCase_) __UpperCAmelCase : List[Any] = do_lower_case def a_ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any]=None): """simple docstring""" __UpperCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a_ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_) return tuple(UpperCamelCase_)
77
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' from typing import Any def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : dict , snake_case_ : dict , snake_case_ : dict , ) -> list: '''simple docstring''' _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step UpperCAmelCase_ = {} UpperCAmelCase_ = {} for state in states_space: UpperCAmelCase_ = observations_space[0] UpperCAmelCase_ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCAmelCase_ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): UpperCAmelCase_ = observations_space[o] UpperCAmelCase_ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCAmelCase_ = "" UpperCAmelCase_ = -1 for k_state in states_space: UpperCAmelCase_ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCAmelCase_ = probability UpperCAmelCase_ = k_state # Update probabilities and pointers dicts UpperCAmelCase_ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCAmelCase_ = arg_max # The final observation UpperCAmelCase_ = observations_space[len(snake_case_ ) - 1] # argmax for given final observation UpperCAmelCase_ = "" UpperCAmelCase_ = -1 for k_state in states_space: UpperCAmelCase_ = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCAmelCase_ = probability UpperCAmelCase_ = k_state UpperCAmelCase_ = arg_max # Process pointers backwards UpperCAmelCase_ = last_state UpperCAmelCase_ = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) UpperCAmelCase_ = pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , ) -> None: '''simple docstring''' _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any ) -> None: '''simple docstring''' _validate_list(snake_case_ , "observations_space" ) _validate_list(snake_case_ , "states_space" ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : str ) -> None: '''simple docstring''' if not isinstance(_object , snake_case_ ): UpperCAmelCase_ = f"""{var_name} must be a list""" raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = f"""{var_name} must be a list of strings""" raise ValueError(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Any , ) -> None: '''simple docstring''' _validate_dict(snake_case_ , "initial_probabilities" , snake_case_ ) _validate_nested_dict(snake_case_ , "transition_probabilities" ) _validate_nested_dict(snake_case_ , "emission_probabilities" ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : str ) -> None: '''simple docstring''' _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : str , snake_case_ : type , snake_case_ : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , snake_case_ ): UpperCAmelCase_ = f"""{var_name} must be a dict""" raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): UpperCAmelCase_ = f"""{var_name} all keys must be strings""" raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): UpperCAmelCase_ = "nested dictionary " if nested else "" UpperCAmelCase_ = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
78
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
0
import math import qiskit def _lowerCamelCase ( __lowerCamelCase = 1 , __lowerCamelCase = 1 , __lowerCamelCase = 1 ) -> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(__lowerCamelCase , __lowerCamelCase ) or isinstance(__lowerCamelCase , __lowerCamelCase ) or isinstance(__lowerCamelCase , __lowerCamelCase ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(__lowerCamelCase ) != input_a) or (math.floor(__lowerCamelCase ) != input_a) or (math.floor(__lowerCamelCase ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers UpperCAmelCase__ : Optional[Any] = qiskit.QuantumRegister(4 , """qr""" ) UpperCAmelCase__ : Optional[Any] = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries UpperCAmelCase__ : List[str] = [input_a, input_a, carry_in] UpperCAmelCase__ : List[Any] = qiskit.QuantumCircuit(__lowerCamelCase , __lowerCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowerCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowerCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowerCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowerCamelCase ) # measure the last two qbits UpperCAmelCase__ : Tuple = qiskit.Aer.get_backend("""aer_simulator""" ) UpperCAmelCase__ : List[str] = qiskit.execute(__lowerCamelCase , __lowerCamelCase , shots=1000 ) return job.result().get_counts(__lowerCamelCase ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
79
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' for attribute in key.split(""".""" ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: __lowercase = getattr(lowerCamelCase , lowerCamelCase ).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __lowercase = True else: for key, mapped_key in MAPPING.items(): __lowercase = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(lowerCamelCase )[0].split(""".""" )[-2] __lowercase = mapped_key.replace("""*""" , lowerCamelCase ) if "weight_g" in name: __lowercase = """weight_g""" elif "weight_v" in name: __lowercase = """weight_v""" elif "weight" in name: __lowercase = """weight""" elif "bias" in name: __lowercase = """bias""" else: __lowercase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = full_name.split("""conv_layers.""" )[-1] __lowercase = name.split(""".""" ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = SEWConfig() if is_finetuned: __lowercase = model.wav_encoder.wav_model.cfg else: __lowercase = model.cfg __lowercase = fs_config.conv_bias __lowercase = eval(fs_config.conv_feature_layers ) __lowercase = [x[0] for x in conv_layers] __lowercase = [x[1] for x in conv_layers] __lowercase = [x[2] for x in conv_layers] __lowercase = """gelu""" __lowercase = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __lowercase = 0.0 __lowercase = fs_config.activation_fn.name __lowercase = fs_config.encoder_embed_dim __lowercase = 0.02 __lowercase = fs_config.encoder_ffn_embed_dim __lowercase = 1e-5 __lowercase = fs_config.encoder_layerdrop __lowercase = fs_config.encoder_attention_heads __lowercase = fs_config.conv_pos_groups __lowercase = fs_config.conv_pos __lowercase = len(lowerCamelCase ) __lowercase = fs_config.encoder_layers __lowercase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __lowercase = model.cfg __lowercase = fs_config.final_dropout __lowercase = fs_config.layerdrop __lowercase = fs_config.activation_dropout __lowercase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __lowercase = fs_config.attention_dropout __lowercase = fs_config.dropout_input __lowercase = fs_config.dropout __lowercase = fs_config.mask_channel_length __lowercase = fs_config.mask_channel_prob __lowercase = fs_config.mask_length __lowercase = fs_config.mask_prob __lowercase = """Wav2Vec2FeatureExtractor""" __lowercase = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True ): '''simple docstring''' if is_finetuned: __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __lowercase = SEWConfig.from_pretrained(lowerCamelCase ) else: __lowercase = convert_config(model[0] , lowerCamelCase ) __lowercase = model[0].eval() __lowercase = True if config.feat_extract_norm == """layer""" else False __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) if is_finetuned: if dict_path: __lowercase = Dictionary.load(lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase = target_dict.pad_index __lowercase = target_dict.bos_index __lowercase = target_dict.pad_index __lowercase = target_dict.bos_index __lowercase = target_dict.eos_index __lowercase = len(target_dict.symbols ) __lowercase = os.path.join(lowerCamelCase , """vocab.json""" ) if not os.path.isdir(lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase ) ) return os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , lowerCamelCase ) __lowercase = WavaVecaCTCTokenizer( lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase , ) __lowercase = WavaVecaProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) __lowercase = SEWForCTC(lowerCamelCase ) else: __lowercase = SEWModel(lowerCamelCase ) feature_extractor.save_pretrained(lowerCamelCase ) recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __UpperCamelCase : Union[str, Any] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
80
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _snake_case : str = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = SpeechTaTokenizer __UpperCAmelCase : Any = False __UpperCAmelCase : str = True def __snake_case ( self : Optional[Any] ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing __snake_case : Tuple = SpeechTaTokenizer(lowerCamelCase ) __snake_case : Tuple = AddedToken("<mask>" , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) __snake_case : Optional[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Tuple , lowerCamelCase : Optional[int] ) -> Union[str, Any]: __snake_case : Any = "this is a test" __snake_case : Tuple = "this is a test" return input_text, output_text def __snake_case ( self : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any]=False , lowerCamelCase : List[Any]=20 , lowerCamelCase : List[Any]=5 ) -> Optional[int]: __snake_case , __snake_case : int = self.get_input_output_texts(lowerCamelCase ) __snake_case : str = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __snake_case : Optional[Any] = tokenizer.decode(lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) return text, ids def __snake_case ( self : Any ) -> List[str]: __snake_case : Tuple = "<pad>" __snake_case : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(lowerCamelCase ) , 81 ) def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __snake_case ( self : Union[str, Any] ) -> int: __snake_case : Optional[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __snake_case : Optional[Any] = tokenizer.vocab_size __snake_case : List[Any] = len(lowerCamelCase ) self.assertNotEqual(lowerCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __snake_case : List[Any] = ["aaaaa bbbbbb", "cccccccccdddddddd"] __snake_case : int = tokenizer.add_tokens(lowerCamelCase ) __snake_case : Optional[int] = tokenizer.vocab_size __snake_case : List[Any] = len(lowerCamelCase ) self.assertNotEqual(lowerCamelCase , 0 ) self.assertEqual(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , len(lowerCamelCase ) ) self.assertEqual(lowerCamelCase , all_size + len(lowerCamelCase ) ) __snake_case : Union[str, Any] = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=lowerCamelCase ) self.assertGreaterEqual(len(lowerCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __snake_case : Union[str, Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} __snake_case : Optional[int] = tokenizer.add_special_tokens(lowerCamelCase ) __snake_case : Dict = tokenizer.vocab_size __snake_case : Optional[int] = len(lowerCamelCase ) self.assertNotEqual(lowerCamelCase , 0 ) self.assertEqual(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , len(lowerCamelCase ) ) self.assertEqual(lowerCamelCase , all_size_a + len(lowerCamelCase ) ) __snake_case : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=lowerCamelCase ) self.assertGreaterEqual(len(lowerCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __snake_case ( self : Optional[int] ) -> Optional[int]: pass def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: pass def __snake_case ( self : List[Any] ) -> Optional[Any]: __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Union[str, Any] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(lowerCamelCase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) __snake_case : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) __snake_case : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase ) # fmt: off self.assertListEqual(lowerCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on __snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def __snake_case ( self : Dict ) -> Dict: # Use custom sequence because this tokenizer does not handle numbers. __snake_case : str = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off __snake_case : List[Any] = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=lowerCamelCase , )
81
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = int(number**0.5 ) return number == sq * sq def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ = x_den * y_den * z_den UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def a__ ( lowerCAmelCase__ = 35 ): UpperCAmelCase_ = set() UpperCAmelCase_ = 42 UpperCAmelCase_ = Fraction(0 ) UpperCAmelCase_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase_ = x_num * y_den + x_den * y_num UpperCAmelCase_ = x_den * y_den UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 UpperCAmelCase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): UpperCAmelCase_ = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase_ = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=-1 UpperCAmelCase_ = x_num * y_num UpperCAmelCase_ = x_den * y_num + x_num * y_den UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 UpperCAmelCase_ = x_num * x_num * y_num * y_num UpperCAmelCase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): UpperCAmelCase_ = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase_ = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase_ = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) for num, den in unique_s: total += Fraction(lowerCAmelCase__ , lowerCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
82
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
"""simple docstring""" def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = 0 _lowerCamelCase : Union[str, Any] = len(A_ ) for i in range(n - 1 ): for j in range(i + 1, A_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def snake_case_ ( A_ : List[str] ): '''simple docstring''' if len(A_ ) <= 1: return arr, 0 _lowerCamelCase : int = len(A_ ) // 2 _lowerCamelCase : int = arr[0:mid] _lowerCamelCase : int = arr[mid:] _lowerCamelCase , _lowerCamelCase : str = count_inversions_recursive(A_ ) _lowerCamelCase , _lowerCamelCase : int = count_inversions_recursive(A_ ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = _count_cross_inversions(A_, A_ ) _lowerCamelCase : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def snake_case_ ( A_ : int, A_ : Dict ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = 0 while i < len(A_ ) and j < len(A_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCamelCase : List[str] = count_inversions_bf(A_ ) _lowerCamelCase , _lowerCamelCase : List[str] = count_inversions_recursive(A_ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''', A_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCamelCase : List[Any] = count_inversions_bf(A_ ) _lowerCamelCase , _lowerCamelCase : List[Any] = count_inversions_recursive(A_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''', A_ ) # an empty list should also have zero inversions _lowerCamelCase : str = [] _lowerCamelCase : Optional[int] = count_inversions_bf(A_ ) _lowerCamelCase , _lowerCamelCase : Any = count_inversions_recursive(A_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''', A_ ) if __name__ == "__main__": main()
83
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError('only integers accepted as input' ) else: lowercase = str(abs(__SCREAMING_SNAKE_CASE ) ) lowercase = [list(__SCREAMING_SNAKE_CASE ) for char in range(len(__SCREAMING_SNAKE_CASE ) )] for index in range(len(__SCREAMING_SNAKE_CASE ) ): num_transpositions[index].pop(__SCREAMING_SNAKE_CASE ) return max( int(''.join(list(__SCREAMING_SNAKE_CASE ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
84
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class snake_case ( unittest.TestCase ): def __lowercase( self : Optional[Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ : Optional[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(zip(a_ , range(len(a_ ) ) ) ) SCREAMING_SNAKE_CASE__ : Dict = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] SCREAMING_SNAKE_CASE__ : str = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a_ ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , a_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(a_ , a_ ) def __lowercase( self : Any , **a_ : Any )-> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **a_ ) def __lowercase( self : Union[str, Any] , **a_ : Optional[int] )-> List[str]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def __lowercase( self : Any , **a_ : List[str] )-> int: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **a_ ) def __lowercase( self : Tuple )-> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowercase( self : Union[str, Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : Dict = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase( self : List[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Any = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPSegProcessor(tokenizer=a_ , image_processor=a_ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=a_ ) SCREAMING_SNAKE_CASE__ : Dict = CLIPSegProcessor(tokenizer=a_ , image_processor=a_ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , a_ ) self.assertIsInstance(processor_fast.tokenizer , a_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , a_ ) self.assertIsInstance(processor_fast.image_processor , a_ ) def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ : str = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def __lowercase( self : Union[str, Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = CLIPSegProcessor(tokenizer=a_ , image_processor=a_ ) SCREAMING_SNAKE_CASE__ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Dict = image_processor(a_ , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(images=a_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase( self : Tuple )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPSegProcessor(tokenizer=a_ , image_processor=a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE__ : List[str] = processor(text=a_ ) SCREAMING_SNAKE_CASE__ : str = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = CLIPSegProcessor(tokenizer=a_ , image_processor=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'lower newer' SCREAMING_SNAKE_CASE__ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : List[str] = processor(text=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def __lowercase( self : Any )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : List[Any] = CLIPSegProcessor(tokenizer=a_ , image_processor=a_ ) SCREAMING_SNAKE_CASE__ : int = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : int = processor(images=a_ , visual_prompt=a_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def __lowercase( self : List[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPSegProcessor(tokenizer=a_ , image_processor=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ : Dict = processor.batch_decode(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ , a_ )
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
86
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **UpperCAmelCase__ : Union[str, Any]) ->Any: '''simple docstring''' A__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase__) return config def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = len(UpperCAmelCase__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(UpperCAmelCase__)): # 1. predict noise residual A__ = model(UpperCAmelCase__ , UpperCAmelCase__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type='''v_prediction''') A__ = scheduler_class(**UpperCAmelCase__) A__ = len(UpperCAmelCase__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(UpperCAmelCase__)): # 1. predict noise residual A__ = model(UpperCAmelCase__ , UpperCAmelCase__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__) A__ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase__): if i == len(UpperCAmelCase__) - 1: A__ = -1 else: A__ = timesteps[i + 1] A__ = scheduler.previous_timestep(UpperCAmelCase__) A__ = prev_t.item() self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase__ , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 1, 0] A__ = len(UpperCAmelCase__) with self.assertRaises(UpperCAmelCase__ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__ , timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase__)
87
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
"""simple docstring""" def _snake_case ( __snake_case : list ): """simple docstring""" if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
88
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class _lowerCamelCase( _a ): lowercase_ : Dict = """blip_2_vision_model""" def __init__( self, lowerCamelCase=14_08, lowerCamelCase=61_44, lowerCamelCase=39, lowerCamelCase=16, lowerCamelCase=2_24, lowerCamelCase=14, lowerCamelCase="gelu", lowerCamelCase=0.0_0_0_0_1, lowerCamelCase=0.0, lowerCamelCase=1E-10, lowerCamelCase=True, **lowerCamelCase, ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase) _lowercase : Optional[int] = hidden_size _lowercase : Dict = intermediate_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : Tuple = patch_size _lowercase : str = image_size _lowercase : Optional[int] = initializer_range _lowercase : Any = attention_dropout _lowercase : List[str] = layer_norm_eps _lowercase : Dict = hidden_act _lowercase : Tuple = qkv_bias @classmethod def UpperCamelCase ( cls, lowerCamelCase, **lowerCamelCase) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase) _lowercase , _lowercase : str = cls.get_config_dict(lowerCamelCase, **lowerCamelCase) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type') == "blip-2": _lowercase : Tuple = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls, 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowerCamelCase, **lowerCamelCase) class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = """blip_2_qformer""" def __init__( self, lowerCamelCase=3_05_22, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=0, lowerCamelCase="absolute", lowerCamelCase=2, lowerCamelCase=14_08, **lowerCamelCase, ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase, **lowerCamelCase) _lowercase : Union[str, Any] = vocab_size _lowercase : Dict = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : str = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : int = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : List[str] = encoder_hidden_size @classmethod def UpperCamelCase ( cls, lowerCamelCase, **lowerCamelCase) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase) _lowercase , _lowercase : List[str] = cls.get_config_dict(lowerCamelCase, **lowerCamelCase) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type') == "blip-2": _lowercase : str = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls, 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowerCamelCase, **lowerCamelCase) class _lowerCamelCase( _a ): lowercase_ : Dict = """blip-2""" lowercase_ : Optional[int] = True def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=32, **lowerCamelCase) -> Optional[int]: """simple docstring""" super().__init__(**lowerCamelCase) if vision_config is None: _lowercase : int = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.') if qformer_config is None: _lowercase : Any = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.') if text_config is None: _lowercase : Tuple = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).') _lowercase : Dict = BlipaVisionConfig(**lowerCamelCase) _lowercase : List[Any] = BlipaQFormerConfig(**lowerCamelCase) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : List[Any] = CONFIG_MAPPING[text_model_type](**lowerCamelCase) _lowercase : Optional[int] = self.text_config.tie_word_embeddings _lowercase : Dict = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Optional[int] = 1.0 _lowercase : Union[str, Any] = 0.0_2 @classmethod def UpperCamelCase ( cls, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase, ) -> Union[str, Any]: """simple docstring""" return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **lowerCamelCase, ) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = copy.deepcopy(self.__dict__) _lowercase : int = self.vision_config.to_dict() _lowercase : Optional[int] = self.qformer_config.to_dict() _lowercase : Union[str, Any] = self.text_config.to_dict() _lowercase : List[str] = self.__class__.model_type return output
89
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class a__ ( a__ ): '''simple docstring''' def __lt__( self , lowerCamelCase_ ) -> List[Any]: return self[-1] < other[-1] def __eq__( self , lowerCamelCase_ ) -> str: return self[-1] == other[-1] def _snake_case ( A ) -> list: lowerCAmelCase__ = [] # sort into stacks for element in collection: lowerCAmelCase__ = Stack([element] ) lowerCAmelCase__ = bisect_left(A , A ) if i != len(A ): stacks[i].append(A ) else: stacks.append(A ) # use a heap-based merge to merge stack efficiently lowerCAmelCase__ = merge(*(reversed(A ) for stack in stacks) ) return collection if __name__ == "__main__": __UpperCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCAmelCase = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
90
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Optional[Any] ,**A_ : Union[str, Any] ) -> str: super().__init__(**A_ ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : Dict ,A_ : Union[np.ndarray, bytes, str] ,**A_ : List[Any] ) -> List[str]: return super().__call__(A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,**A_ : List[str] ) -> Any: A = {} if "candidate_labels" in kwargs: A = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: A = kwargs['hypothesis_template'] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[str] ,A_ : Tuple=None ,A_ : Tuple="This is a sound of {}." ) -> Union[str, Any]: if isinstance(A_ ,A_ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A = requests.get(A_ ).content else: with open(A_ ,'rb' ) as f: A = f.read() if isinstance(A_ ,A_ ): A = ffmpeg_read(A_ ,self.feature_extractor.sampling_rate ) if not isinstance(A_ ,np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) A = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors='pt' ) A = candidate_labels A = [hypothesis_template.format(A_ ) for x in candidate_labels] A = self.tokenizer(A_ ,return_tensors=self.framework ,padding=A_ ) A = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ) -> Tuple: A = model_inputs.pop('candidate_labels' ) A = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] ,A_ ): A = text_inputs[0] else: # Batching case. A = text_inputs[0][0] A = self.model(**A_ ,**A_ ) A = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ) -> int: A = model_outputs.pop('candidate_labels' ) A = model_outputs['logits'][0] if self.framework == "pt": A = logits.softmax(dim=0 ) A = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) A = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(A_ ,A_ ) ,key=lambda A_ : -x[0] ) ] return result
91
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'longformer' def __init__( self : List[str] , UpperCAmelCase__ : Union[List[int], int] = 512 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 30522 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 12 , UpperCAmelCase__ : int = 3072 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1E-12 , UpperCAmelCase__ : bool = False , **UpperCAmelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase : Dict =attention_window lowercase : Any =sep_token_id lowercase : List[Any] =bos_token_id lowercase : Optional[int] =eos_token_id lowercase : List[str] =vocab_size lowercase : Any =hidden_size lowercase : Optional[int] =num_hidden_layers lowercase : Optional[Any] =num_attention_heads lowercase : List[Any] =hidden_act lowercase : Optional[int] =intermediate_size lowercase : str =hidden_dropout_prob lowercase : str =attention_probs_dropout_prob lowercase : Tuple =max_position_embeddings lowercase : List[Any] =type_vocab_size lowercase : Optional[Any] =initializer_range lowercase : int =layer_norm_eps lowercase : List[Any] =onnx_export class __SCREAMING_SNAKE_CASE ( lowercase__ ): def __init__( self : Any , UpperCAmelCase__ : "PretrainedConfig" , UpperCAmelCase__ : str = "default" , UpperCAmelCase__ : "List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Tuple =True @property def lowerCamelCase_ ( self : int ): '''simple docstring''' if self.task == "multiple-choice": lowercase : Optional[Any] ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Union[str, Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Any =super().outputs if self.task == "default": lowercase : List[Any] ={0: '''batch'''} return outputs @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 1E-4 @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCamelCase_ ( self : str , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[TensorType] = None , ): '''simple docstring''' lowercase : Optional[int] =super().generate_dummy_inputs( preprocessor=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowercase : Any =torch.zeros_like(inputs['''input_ids'''] ) # make every second token global lowercase : List[str] =1 return inputs
92
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __A = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowerCAmelCase__ :Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase__ :Any = pipe( image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images lowerCAmelCase__ :Any = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase__ :List[str] = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
93
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ReformerTokenizer UpperCamelCase_ = ReformerTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = True def A__ ( self : Dict ) -> Tuple: '''simple docstring''' super().setUp() lowercase : Optional[Any] =ReformerTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] ='''<s>''' lowercase : List[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowercase : Any =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(UpperCAmelCase ) , 1000 ) def A__ ( self : Tuple ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' if not self.test_rust_tokenizer: return lowercase : List[str] =self.get_tokenizer() lowercase : int =self.get_rust_tokenizer() lowercase : Any ='''I was born in 92000, and this is falsé.''' lowercase : Optional[Any] =tokenizer.tokenize(UpperCAmelCase ) lowercase : List[Any] =rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : List[Any] =tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowercase : Optional[int] =rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[Any] =self.get_rust_tokenizer() lowercase : str =tokenizer.encode(UpperCAmelCase ) lowercase : Any =rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : int=15 ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase : Tuple =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # Simple input lowercase : List[str] ='''This is a simple input''' lowercase : List[Any] =['''This is a simple input 1''', '''This is a simple input 2'''] lowercase : Optional[int] =('''This is a simple input''', '''This is a pair''') lowercase : List[Any] =[ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) def A__ ( self : str ) -> int: '''simple docstring''' pass def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Any =ReformerTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowercase : str =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowercase : Any =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : Dict =tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase : str =tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A__ ( self : str ) -> Optional[int]: '''simple docstring''' return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : Tuple ='''Hello World!''' lowercase : Any =[126, 32, 262, 152, 38, 72, 287] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : str =( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowercase : Union[str, Any] =[ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase : List[Any] =list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase : Union[str, Any] =''' '''.join(UpperCAmelCase ) lowercase : int =self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='''pt''' ) lowercase : List[str] =self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) lowercase : Optional[Any] =ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase : str =encoded_sequence['''input_ids'''].shape lowercase : Any =ReformerModel(UpperCAmelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A__ ( self : int ) -> Dict: '''simple docstring''' lowercase : Optional[Any] ={'''input_ids''': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase : Optional[Any] =[ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=UpperCAmelCase , sequences=UpperCAmelCase , )
94
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = LongformerTokenizer __magic_name__ = True __magic_name__ = LongformerTokenizerFast __magic_name__ = True def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase_ : List[str] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) UpperCAmelCase_ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ : Optional[int] = {"unk_token": "<unk>"} UpperCAmelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any , **lowerCAmelCase_ : List[str] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Dict ) -> int: UpperCAmelCase_ : str = "lower newer" UpperCAmelCase_ : Tuple = "lower newer" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: UpperCAmelCase_ : List[str] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : int = "lower newer" UpperCAmelCase_ : Optional[int] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase_ : List[str] = tokenizer.tokenize(lowerCAmelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowerCAmelCase_ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowerCAmelCase_ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tokenizer.encode( "sequence builders" , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : int = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _SCREAMING_SNAKE_CASE ( self : str ) -> str: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = "Encode this sequence." UpperCAmelCase_ : Optional[Any] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments UpperCAmelCase_ : str = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing spaces after special tokens UpperCAmelCase_ : Dict = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ )} ) # mask token has a left space UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = "Encode <mask> sequence" UpperCAmelCase_ : int = "Encode <mask>sequence" UpperCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : int = encoded.index(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : Any = encoded.index(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: pass def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = "A, <mask> AllenNLP sentence." UpperCAmelCase_ : Any = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase_ : str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase_ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase_ : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowerCAmelCase_ ) self.assertEqual(post_processor_state["add_prefix_space"] , lowerCAmelCase_ ) self.assertEqual(post_processor_state["trim_offsets"] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Union[str, Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_ : Tuple = f"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ) + 1, len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) UpperCAmelCase_ : Dict = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ) + 1, len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) UpperCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) UpperCAmelCase_ : Any = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ) + 1, 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) UpperCAmelCase_ : int = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ), 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) UpperCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ), 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , )
95
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __A : def lowerCamelCase__ ( self : List[Any] , __snake_case : Tuple ) -> Tuple: raise NotImplementedError() def lowerCamelCase__ ( self : List[Any] ) -> Dict: raise NotImplementedError() class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[int] , __snake_case : "AutoTokenizer" , __snake_case : bool = False , **__snake_case : Union[str, Any] ) -> Dict: __magic_name__: Union[str, Any] = tokenizer __magic_name__: Optional[Any] = skip_prompt __magic_name__: Optional[int] = decode_kwargs # variables used in the streaming process __magic_name__: Dict = [] __magic_name__: List[Any] = 0 __magic_name__: Any = True def lowerCamelCase__ ( self : Dict , __snake_case : Any ) -> List[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: __magic_name__: Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __magic_name__: List[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __magic_name__: Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): __magic_name__: Dict = text[self.print_len :] __magic_name__: List[str] = [] __magic_name__: str = 0 # If the last token is a CJK character, we print the characters. elif len(__snake_case ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __magic_name__: Any = text[self.print_len :] self.print_len += len(__snake_case ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __magic_name__: Optional[int] = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__snake_case ) self.on_finalized_text(__snake_case ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: # Flush the cache, if it exists if len(self.token_cache ) > 0: __magic_name__: Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __magic_name__: str = text[self.print_len :] __magic_name__: List[Any] = [] __magic_name__: Optional[Any] = 0 else: __magic_name__: List[str] = """""" __magic_name__: List[Any] = True self.on_finalized_text(__snake_case , stream_end=__snake_case ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : str , __snake_case : bool = False ) -> str: print(__snake_case , flush=__snake_case , end="""""" if not stream_end else None ) def lowerCamelCase__ ( self : str , __snake_case : Optional[Any] ) -> List[str]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , __snake_case : "AutoTokenizer" , __snake_case : bool = False , __snake_case : Optional[float] = None , **__snake_case : Optional[Any] ) -> List[str]: super().__init__(__snake_case , __snake_case , **__snake_case ) __magic_name__: Tuple = Queue() __magic_name__: Any = None __magic_name__: Dict = timeout def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : str , __snake_case : bool = False ) -> Dict: self.text_queue.put(__snake_case , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Union[str, Any] ) -> Union[str, Any]: return self def lowerCamelCase__ ( self : Any ) -> Optional[int]: __magic_name__: Tuple = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
96
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowercase__: """simple docstring""" a :Optional[Union[str, Path]] = None a :bool = False a :bool = False a :bool = False a :Optional[Dict] = None a :Optional[str] = None a :bool = False a :bool = False a :bool = False a :bool = True a :Optional[int] = None a :int = 1 a :Optional[Union[str, bool]] = None a :bool = False a :Optional[Dict] = None a :Optional[str] = None def _lowercase ( self : List[Any] ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(SCREAMING_SNAKE_CASE_ ) for k, v in self.__dict__.items()} )
97
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase__ : Optional[int] = 50_00_00 lowercase__ , lowercase__ : List[str] = os.path.split(__file__) lowercase__ : str = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a__ ( lowercase : datasets.Dataset, **lowercase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = dataset.map(**lowercase ) @get_duration def a__ ( lowercase : datasets.Dataset, **lowercase : Optional[Any] ) -> str: """simple docstring""" _UpperCamelCase = dataset.filter(**lowercase ) def a__ ( ) -> Any: """simple docstring""" _UpperCamelCase = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) _UpperCamelCase = generate_example_dataset( os.path.join(lowercase, '''dataset.arrow''' ), lowercase, num_examples=lowercase ) _UpperCamelCase = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=lowercase ) def tokenize(lowercase : List[Any] ): return tokenizer(examples['''text'''] ) _UpperCamelCase = map(lowercase ) _UpperCamelCase = map(lowercase, batched=lowercase ) _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) with dataset.formatted_as(type='''numpy''' ): _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) with dataset.formatted_as(type='''pandas''' ): _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) _UpperCamelCase = map(lowercase, function=lowercase, batched=lowercase ) _UpperCamelCase = filter(lowercase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase, '''wb''' ) as f: f.write(json.dumps(lowercase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
98
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """vivit""" def __init__( self , __A=224 , __A=32 , __A=[2, 16, 16] , __A=3 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu_fast" , __A=0.0 , __A=0.0 , __A=0.02 , __A=1E-06 , __A=True , **__A , ): __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = num_frames __a = tubelet_size __a = num_channels __a = qkv_bias super().__init__(**__A )
99
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
def __snake_case ( ) -> int: return 1 def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ = 2_0_0 ) -> int: return two_pound(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
100
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=4 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_attention_mask SCREAMING_SNAKE_CASE_ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : List[Any] = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Dict = hidden_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_choices def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : str = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = config_and_inputs SCREAMING_SNAKE_CASE_ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = True _UpperCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = model_class_name.from_pretrained('roberta-base' , from_pt=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
101
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __magic_name__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name __magic_name__ : List[Any] = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=8 ): UpperCamelCase : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=512 ): UpperCamelCase : Optional[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCamelCase : Any = np.array(pil_image.convert("""RGB""" ) ) UpperCamelCase : List[Any] = arr.astype(np.floataa ) / 1_27.5 - 1 UpperCamelCase : Union[str, Any] = np.transpose(SCREAMING_SNAKE_CASE , [2, 0, 1] ) UpperCamelCase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) return image class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , ): '''simple docstring''' super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) UpperCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : str = min(int(num_inference_steps * strength ) , _A ) UpperCamelCase : List[str] = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _a ( self , _A , _A , _A , _A , _A , _A , _A=None ): '''simple docstring''' if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}""" ) UpperCamelCase : Optional[int] = image.to(device=_A , dtype=_A ) UpperCamelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCamelCase : List[str] = image else: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_A )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(_A , _A ): UpperCamelCase : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] UpperCamelCase : Union[str, Any] = torch.cat(_A , dim=0 ) else: UpperCamelCase : List[str] = self.movq.encode(_A ).latent_dist.sample(_A ) UpperCamelCase : Dict = self.movq.config.scaling_factor * init_latents UpperCamelCase : Tuple = torch.cat([init_latents] , dim=0 ) UpperCamelCase : List[str] = init_latents.shape UpperCamelCase : int = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents UpperCamelCase : int = self.scheduler.add_noise(_A , _A , _A ) UpperCamelCase : Optional[Any] = init_latents return latents def _a ( self , _A=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCamelCase : List[str] = torch.device(f"""cuda:{gpu_id}""" ) UpperCamelCase : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def _a ( self , _A=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCamelCase : List[str] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase , UpperCamelCase : Tuple = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. UpperCamelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a ( self ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self , _A , _A , _A , _A = 5_1_2 , _A = 5_1_2 , _A = 1_0_0 , _A = 4.0 , _A = 0.3 , _A = 1 , _A = None , _A = "pil" , _A = True , ): '''simple docstring''' UpperCamelCase : Optional[int] = self._execution_device UpperCamelCase : List[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): UpperCamelCase : Dict = torch.cat(_A , dim=0 ) UpperCamelCase : Tuple = image_embeds.shape[0] if isinstance(_A , _A ): UpperCamelCase : int = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: UpperCamelCase : str = image_embeds.repeat_interleave(_A , dim=0 ) UpperCamelCase : Optional[Any] = negative_image_embeds.repeat_interleave(_A , dim=0 ) UpperCamelCase : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) if not isinstance(_A , _A ): UpperCamelCase : Tuple = [image] if not all(isinstance(_A , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCamelCase : Any = torch.cat([prepare_image(_A , _A , _A ) for i in image] , dim=0 ) UpperCamelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=_A ) UpperCamelCase : str = self.movq.encode(_A )["""latents"""] UpperCamelCase : int = latents.repeat_interleave(_A , dim=0 ) self.scheduler.set_timesteps(_A , device=_A ) UpperCamelCase , UpperCamelCase : List[Any] = self.get_timesteps(_A , _A , _A ) UpperCamelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCamelCase , UpperCamelCase : Optional[int] = downscale_height_and_width(_A , _A , self.movq_scale_factor ) UpperCamelCase : Tuple = self.prepare_latents( _A , _A , _A , _A , image_embeds.dtype , _A , _A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : Dict = {"""image_embeds""": image_embeds} UpperCamelCase : int = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase , UpperCamelCase : List[Any] = noise_pred.chunk(2 ) UpperCamelCase , UpperCamelCase : Optional[Any] = variance_pred.chunk(2 ) UpperCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase , UpperCamelCase : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : List[Any] = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing UpperCamelCase : Union[str, Any] = self.movq.decode(_A , force_not_quantize=_A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCamelCase : Optional[int] = image * 0.5 + 0.5 UpperCamelCase : Optional[Any] = image.clamp(0 , 1 ) UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
102
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Any = (DDPMScheduler,) def __UpperCAmelCase ( self : Dict , **__lowerCamelCase : Any ): """simple docstring""" _snake_case = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__lowerCamelCase ) return config def __UpperCAmelCase ( self : Any ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def __UpperCAmelCase ( self : Any ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def __UpperCAmelCase ( self : str ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.0_2 ) ) < 1E-5 def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**__lowerCamelCase ) _snake_case = len(__lowerCamelCase ) _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter _snake_case = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual _snake_case = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 _snake_case = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _snake_case = pred_prev_sample _snake_case = torch.sum(torch.abs(__lowerCamelCase ) ) _snake_case = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(prediction_type='''v_prediction''' ) _snake_case = scheduler_class(**__lowerCamelCase ) _snake_case = len(__lowerCamelCase ) _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter _snake_case = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual _snake_case = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 _snake_case = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _snake_case = pred_prev_sample _snake_case = torch.sum(torch.abs(__lowerCamelCase ) ) _snake_case = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**__lowerCamelCase ) _snake_case = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=__lowerCamelCase ) _snake_case = scheduler.timesteps for i, timestep in enumerate(__lowerCamelCase ): if i == len(__lowerCamelCase ) - 1: _snake_case = -1 else: _snake_case = timesteps[i + 1] _snake_case = scheduler.previous_timestep(__lowerCamelCase ) _snake_case = prev_t.item() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**__lowerCamelCase ) _snake_case = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(__lowerCamelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**__lowerCamelCase ) _snake_case = [1_0_0, 8_7, 5_0, 1, 0] _snake_case = len(__lowerCamelCase ) with self.assertRaises(__lowerCamelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**__lowerCamelCase ) _snake_case = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__lowerCamelCase )
103
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCamelCase = get_logger(__name__) class UpperCamelCase__ ( enum.Enum ): """simple docstring""" A__ : Tuple = "all_checks" A__ : Optional[int] = "basic_checks" A__ : Any = "no_checks" class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : Optional[dict], UpperCAmelCase_ : dict, UpperCAmelCase_ : Optional[Any]=None ) -> str: """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(UpperCAmelCase_ ) - set(UpperCAmelCase_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCAmelCase_ ) - set(UpperCAmelCase_ ) ) ) if len(set(UpperCAmelCase_ ) - set(UpperCAmelCase_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCAmelCase_ ) - set(UpperCAmelCase_ ) ) ) A__ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] A__ = " for " + verification_name if verification_name is not None else "" if len(UpperCAmelCase_ ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : Optional[dict], UpperCAmelCase_ : dict ) -> Tuple: """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(UpperCAmelCase_ ) - set(UpperCAmelCase_ ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCAmelCase_ ) - set(UpperCAmelCase_ ) ) ) if len(set(UpperCAmelCase_ ) - set(UpperCAmelCase_ ) ) > 0: raise UnexpectedSplits(str(set(UpperCAmelCase_ ) - set(UpperCAmelCase_ ) ) ) A__ = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCAmelCase_ ) > 0: raise NonMatchingSplitsSizesError(str(UpperCAmelCase_ ) ) logger.info("All the splits matched successfully." ) def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : bool = True ) -> dict: """simple docstring""" if record_checksum: A__ = shaaaa() with open(UpperCAmelCase_, "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ), b"" ): m.update(UpperCAmelCase_ ) A__ = m.hexdigest() else: A__ = None return {"num_bytes": os.path.getsize(UpperCAmelCase_ ), "checksum": checksum} def _lowerCamelCase ( UpperCAmelCase_ : str ) -> int: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
104
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase__ : List[Any] = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __UpperCAmelCase ( lowerCamelCase_ : str ) -> str: """simple docstring""" if "://" in dataset_path: SCREAMING_SNAKE_CASE_ : Any = dataset_path.split('://' )[1] return dataset_path def __UpperCAmelCase ( lowerCamelCase_ : fsspec.AbstractFileSystem ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def __UpperCAmelCase ( lowerCamelCase_ : fsspec.AbstractFileSystem , lowerCamelCase_ : str , lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = not is_remote_filesystem(lowerCamelCase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase_ ) , fs._strip_protocol(lowerCamelCase_ ) ) else: fs.mv(lowerCamelCase_ , lowerCamelCase_ , recursive=lowerCamelCase_ ) def __UpperCAmelCase ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : List[str] = threading.Lock()
105
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __snake_case :Any =logging.get_logger(__name__) __snake_case :List[Any] ={ 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : int = 'bloom' A_ : Any = ['past_key_values'] A_ : Dict = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Any , __UpperCamelCase : Optional[int]=250_880 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : str=1e-5 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : int=0.0 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : List[Any]=False , **__UpperCamelCase : Dict , ) -> Any: A = vocab_size # Backward compatibility with n_embed kwarg A = kwargs.pop('n_embed' , __UpperCamelCase ) A = hidden_size if n_embed is None else n_embed A = n_layer A = n_head A = layer_norm_epsilon A = initializer_range A = use_cache A = pretraining_tp A = apply_residual_connection_post_layernorm A = hidden_dropout A = attention_dropout A = bos_token_id A = eos_token_id A = slow_but_exact super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) class lowerCAmelCase__ ( _lowerCamelCase ): A_ : str = version.parse('1.12' ) def __init__( self : Optional[int] , __UpperCamelCase : PretrainedConfig , __UpperCamelCase : str = "default" , __UpperCamelCase : List[PatchingSpec] = None , __UpperCamelCase : bool = False , ) -> Any: super().__init__(__UpperCamelCase , task=__UpperCamelCase , patching_specs=__UpperCamelCase , use_past=__UpperCamelCase ) if not getattr(self._config , 'pad_token_id' , __UpperCamelCase ): # TODO: how to do that better? A = 0 @property def __UpperCamelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: A = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCamelCase , direction='inputs' , inverted_values_shape=__UpperCamelCase ) A = {0: 'batch', 1: 'past_sequence + sequence'} else: A = {0: 'batch', 1: 'sequence'} return common_inputs @property def __UpperCamelCase ( self : int ) -> int: return self._config.n_layer @property def __UpperCamelCase ( self : Union[str, Any] ) -> int: return self._config.n_head @property def __UpperCamelCase ( self : str ) -> float: return 1e-3 def __UpperCamelCase ( self : List[str] , __UpperCamelCase : "PreTrainedTokenizer" , __UpperCamelCase : int = -1 , __UpperCamelCase : int = -1 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: A = super(__UpperCamelCase , self ).generate_dummy_inputs( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) # We need to order the input in the way they appears in the forward() A = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A = self._config.hidden_size // self.num_attention_heads A = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) A = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) A = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(self.num_layers ) ] A = common_inputs['attention_mask'] if self.use_past: A = ordered_inputs['attention_mask'].dtype A = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) return ordered_inputs @property def __UpperCamelCase ( self : Optional[Any] ) -> int: return 13
106
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : str ): _A = 0 # if input_string is "aba" than new_input_string become "a|b|a" _A = '' _A = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _A , _A = 0, 0 # length[i] shows the length of palindromic substring with center i _A = [1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _A = 0 for j in range(len(__snake_case ) ): _A = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _A = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _A = j - k + 1 # noqa: E741 _A = j + k - 1 # update max_length and start position if max_length < length[j]: _A = length[j] _A = j # create that string _A = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
107
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a: str = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = True , **lowerCamelCase : Optional[int] , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 224} _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase , param_name="""crop_size""" ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase = do_convert_rgb def lowerCamelCase ( self : List[str] , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase = get_resize_output_image_size(lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> Optional[int]: """simple docstring""" return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : List[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Any , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : List[str] , lowerCamelCase : ImageInput , lowerCamelCase : bool = None , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : bool = None , lowerCamelCase : int = None , lowerCamelCase : bool = None , lowerCamelCase : float = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase : Any , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(lowerCamelCase , param_name="""size""" , default_to_square=lowerCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(lowerCamelCase , param_name="""crop_size""" , default_to_square=lowerCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
108
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( _snake_case ): __UpperCamelCase : Dict = ['image_processor', 'tokenizer'] __UpperCamelCase : Any = 'ViltImageProcessor' __UpperCamelCase : List[str] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Dict ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : List[Any]=None ,**lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase ,) __SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor def __call__( self : int ,lowerCamelCase : Dict ,lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,lowerCamelCase : bool = True ,lowerCamelCase : Union[bool, str, PaddingStrategy] = False ,lowerCamelCase : Union[bool, str, TruncationStrategy] = None ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : int = 0 ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[Union[str, TensorType]] = None ,**lowerCamelCase : str ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCamelCase ,add_special_tokens=lowerCamelCase ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=lowerCamelCase ,stride=lowerCamelCase ,pad_to_multiple_of=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_attention_mask=lowerCamelCase ,return_overflowing_tokens=lowerCamelCase ,return_special_tokens_mask=lowerCamelCase ,return_offsets_mapping=lowerCamelCase ,return_length=lowerCamelCase ,verbose=lowerCamelCase ,return_tensors=lowerCamelCase ,**lowerCamelCase ,) # add pixel_values + pixel_mask __SCREAMING_SNAKE_CASE = self.image_processor(lowerCamelCase ,return_tensors=lowerCamelCase ) encoding.update(lowerCamelCase ) return encoding def UpperCAmelCase__ ( self : Optional[int] ,*lowerCamelCase : Any ,**lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ,*lowerCamelCase : Union[str, Any] ,**lowerCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase ,) return self.image_processor_class @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase ,) return self.image_processor
109
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] UpperCamelCase__ = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def a__ ( lowerCAmelCase , lowerCAmelCase ) -> List[Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCAmelCase__ : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ : Union[str, Any] = torch.permute(__A , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__A ): # linear layer UpperCAmelCase__ : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase__ : Any = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: if "metadata" in layer: UpperCAmelCase__ : Optional[Any] = layer.split("""metadata""" ) UpperCAmelCase__ : str = """""".join(split_layer[0] )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: UpperCAmelCase__ : str = layer.split("""kvstore""" ) UpperCAmelCase__ : str = """""".join(split_layer[0] )[:-1] UpperCAmelCase__ : Tuple = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: UpperCAmelCase__ : Optional[int] = layer.split("""/""" ) UpperCAmelCase__ : List[str] = """/""".join(split_layer[:-1] ) UpperCAmelCase__ : List[Any] = (split_layer[-1],) if "kvstore/path" in layer: UpperCAmelCase__ : int = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: UpperCAmelCase__ : Tuple = """file""" else: UpperCAmelCase__ : Any = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def a__ ( lowerCAmelCase , lowerCAmelCase ) -> int: UpperCAmelCase__ : List[Any] = rename_keys(__A ) UpperCAmelCase__ : Tuple = {} for k, v in current_block.items(): UpperCAmelCase__ : Optional[Any] = v UpperCAmelCase__ : Tuple = new_current_block torch.save(__A , __A ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = WEIGHTS_NAME ) -> List[str]: UpperCAmelCase__ : Union[str, Any] = convert_file_size_to_int(__A ) UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : int = {} UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : List[Any] = 0 os.makedirs(__A , exist_ok=__A ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: UpperCAmelCase__ : str = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] UpperCAmelCase__ : Optional[Any] = flatten_dict(__A , sep="""/""" ) UpperCAmelCase__ : Optional[int] = {} for layer in checkpoint_info.keys(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = get_key_and_tensorstore_dict( __A , __A , __A ) if curr_real_layer_name in all_layers: UpperCAmelCase__ : Optional[Any] = content else: UpperCAmelCase__ : Dict = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCAmelCase__ : List[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCAmelCase__ : Optional[Any] = torch.tensor(__A ) UpperCAmelCase__ : int = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __A ) UpperCAmelCase__ : List[Any] = """/""".join(__A ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCAmelCase__ : List[str] = os.path.join( __A , weights_name.replace(""".bin""" , F"""-{len(__A )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__A , __A ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Dict = raw_weights.to(getattr(__A , __A ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCAmelCase__ : str = os.path.join(__A , weights_name.replace(""".bin""" , F"""-{len(__A )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__A , __A ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__A ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCAmelCase__ : Tuple = {} UpperCAmelCase__ : int = {} for idx, shard in enumerate(__A ): UpperCAmelCase__ : int = weights_name.replace( """.bin""" , F"""-{idx+1:05d}-of-{len(__A ):05d}.bin""" ) # len(sharded_state_dicts):05d} UpperCAmelCase__ : List[str] = os.path.join(__A , weights_name.replace(""".bin""" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__A , os.path.join(__A , __A ) ) UpperCAmelCase__ : List[str] = shard for key in shard: UpperCAmelCase__ : int = shard_file # Add the metadata UpperCAmelCase__ : Optional[int] = {"""total_size""": total_size} UpperCAmelCase__ : Tuple = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__A , __A ) , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase__ : Union[str, Any] = json.dumps(__A , indent=2 , sort_keys=__A ) + """\n""" f.write(__A ) return metadata, index if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _A = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def a__ ( ) -> Optional[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCAmelCase__ : Union[str, Any] = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) UpperCAmelCase__ : Union[str, Any] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) UpperCAmelCase__ : int = TaTokenizer.from_pretrained("""t5-small""" ) UpperCAmelCase__ : Optional[int] = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" UpperCAmelCase__ : Dict = tokenizer(__A , return_tensors="""pt""" ).input_ids UpperCAmelCase__ : Optional[int] = model.generate(__A , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
182
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _snake_case : Optional[int] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _snake_case : Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 'maskformer' a_ = {'hidden_size': 'mask_feature_size'} a_ = ['resnet', 'swin'] a_ = ['detr'] def __init__( self : Any , lowerCAmelCase_ : Optional[int] = 2_5_6 , lowerCAmelCase_ : Optional[Any] = 2_5_6 , lowerCAmelCase_ : Optional[Any] = 0.1 , lowerCAmelCase_ : Union[str, Any] = False , lowerCAmelCase_ : Union[str, Any] = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Union[str, Any] = 0.02 , lowerCAmelCase_ : Optional[int] = 1.0 , lowerCAmelCase_ : List[str] = 1.0 , lowerCAmelCase_ : List[Any] = 1.0 , lowerCAmelCase_ : Dict = 20.0 , lowerCAmelCase_ : Tuple = None , **lowerCAmelCase_ : List[Any] , ) -> List[Any]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __lowerCAmelCase = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = backbone_config.pop('model_type' ) __lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase = config_class.from_dict(lowerCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __lowerCAmelCase = DetrConfig() else: # verify that the decoder is supported __lowerCAmelCase = ( decoder_config.pop('model_type' ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = CONFIG_MAPPING[decoder_type] __lowerCAmelCase = config_class.from_dict(lowerCAmelCase_ ) __lowerCAmelCase = backbone_config __lowerCAmelCase = decoder_config # main feature dimension for the model __lowerCAmelCase = fpn_feature_size __lowerCAmelCase = mask_feature_size # initializer __lowerCAmelCase = init_std __lowerCAmelCase = init_xavier_std # Hungarian matcher && loss __lowerCAmelCase = cross_entropy_weight __lowerCAmelCase = dice_weight __lowerCAmelCase = mask_weight __lowerCAmelCase = use_auxiliary_loss __lowerCAmelCase = no_object_weight __lowerCAmelCase = output_auxiliary_logits __lowerCAmelCase = self.decoder_config.encoder_attention_heads __lowerCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**lowerCAmelCase_ ) @classmethod def lowercase ( cls : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: return cls( backbone_config=lowerCAmelCase_ , decoder_config=lowerCAmelCase_ , **lowerCAmelCase_ , ) def lowercase ( self : List[Any] ) -> Dict[str, any]: __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.backbone_config.to_dict() __lowerCAmelCase = self.decoder_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
53
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase_ : Tuple = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Tuple: """simple docstring""" a_ : List[str] = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(__A , __A ) UpperCAmelCase_ : Tuple = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> Optional[int]: """simple docstring""" a_ : Dict = list(s_dict.keys() ) for key in keys: a_ : Union[str, Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: a_ : List[str] = new_key.replace(__A , __A ) print(F"""{key} -> {new_key}""" ) a_ : Any = s_dict.pop(__A ) return s_dict def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> Union[str, Any]: """simple docstring""" a_ , a_ : List[Any] = emb.weight.shape a_ : int = nn.Linear(__A , __A , bias=__A ) a_ : Union[str, Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" os.makedirs(__A , exist_ok=__A ) a_ : Optional[int] = os.path.basename(__A ) a_ : List[str] = url.split('/' )[-2] a_ : Optional[int] = os.path.join(__A , __A ) if os.path.exists(__A ) and not os.path.isfile(__A ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(__A ): a_ : Optional[Any] = open(__A , 'rb' ).read() if hashlib.shaaaa(__A ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(__A ) as source, open(__A , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=__A , unit_divisor=10_24 ) as loop: while True: a_ : Union[str, Any] = source.read(81_92 ) if not buffer: break output.write(__A ) loop.update(len(__A ) ) a_ : str = open(__A , 'rb' ).read() if hashlib.shaaaa(__A ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Tuple ) -> List[str]: """simple docstring""" if ".pt" not in checkpoint_path: a_ : int = _download(_MODELS[checkpoint_path] ) else: a_ : Optional[Any] = torch.load(__A , map_location='cpu' ) a_ : Optional[int] = original_checkpoint['dims'] a_ : str = original_checkpoint['model_state_dict'] a_ : Union[str, Any] = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(__A ) rename_keys(__A ) a_ : int = True a_ : Tuple = state_dict['decoder.layers.0.fc1.weight'].shape[0] a_ : List[str] = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=__A , decoder_ffn_dim=__A , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) a_ : Dict = WhisperForConditionalGeneration(__A ) a_ , a_ : Union[str, Any] = model.model.load_state_dict(__A , strict=__A ) if len(__A ) > 0 and not set(__A ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: a_ : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a_ : Optional[int] = proj_out_weights model.save_pretrained(__A ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
570
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
def A ( _lowerCamelCase = 4_000_000 ): '''simple docstring''' _lowerCAmelCase : Tuple = [] _lowerCAmelCase , _lowerCAmelCase : int = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__A ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = b, a + b return sum(__A ) if __name__ == "__main__": print(f'''{solution() = }''')
500
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
0
import heapq as hq import math from collections.abc import Iterator class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = str(id_ ) snake_case : Optional[Any] = None snake_case : Tuple = None snake_case : Any = [] snake_case : List[str] = {} # {vertex:distance} def __lt__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return self.key < other.key def __repr__( self ): '''simple docstring''' return self.id def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' self.neighbors.append(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Optional[Any] = weight def lowercase ( __A : Dict , __A : Optional[int] , __A : Tuple , __A : List[Any] ) -> List[str]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __A ) graph[b - 1].add_edge(graph[a - 1] , __A ) def lowercase ( __A : Union[str, Any] , __A : str ) -> int: '''simple docstring''' snake_case : Optional[int] = [] for u in graph: snake_case : Tuple = math.inf snake_case : Dict = None snake_case : Union[str, Any] = 0 snake_case : str = graph[:] while q: snake_case : List[str] = min(__A ) q.remove(__A ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case : int = u snake_case : List[Any] = u.edges[v.id] for i in range(1 , len(__A ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase ( __A : Optional[Any] , __A : Optional[int] ) -> List[Any]: '''simple docstring''' for u in graph: snake_case : str = math.inf snake_case : Optional[Any] = None snake_case : int = 0 snake_case : List[Any] = list(__A ) hq.heapify(__A ) while h: snake_case : Optional[Any] = hq.heappop(__A ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case : Optional[Any] = u snake_case : Optional[Any] = u.edges[v.id] hq.heapify(__A ) for i in range(1 , len(__A ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase ( ) -> Optional[Any]: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
36
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase ( snake_case__): """simple docstring""" a__ : BigBirdConfig a__ : jnp.dtype = jnp.floataa a__ : bool = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: super().setup() UpperCAmelCase_= nn.Dense(5 , dtype=self.dtype ) def __call__( self : Dict , *__UpperCAmelCase : str , **__UpperCAmelCase : Dict ) -> Any: UpperCAmelCase_= super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase ( snake_case__): """simple docstring""" a__ : Any = FlaxBigBirdForNaturalQuestionsModule def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : Dict ,lowerCAmelCase_ : str ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : List[str] ) -> List[Any]: '''simple docstring''' def cross_entropy(lowerCAmelCase_ : int ,lowerCAmelCase_ : int ,lowerCAmelCase_ : Optional[int]=None ): UpperCAmelCase_= logits.shape[-1] UpperCAmelCase_= (labels[..., None] == jnp.arange(__A )[None]).astype("""f4""" ) UpperCAmelCase_= jax.nn.log_softmax(__A ,axis=-1 ) UpperCAmelCase_= -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: UpperCAmelCase_= reduction(__A ) return loss UpperCAmelCase_= partial(__A ,reduction=jnp.mean ) UpperCAmelCase_= cross_entropy(__A ,__A ) UpperCAmelCase_= cross_entropy(__A ,__A ) UpperCAmelCase_= cross_entropy(__A ,__A ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase : """simple docstring""" a__ : str = "google/bigbird-roberta-base" a__ : int = 3000 a__ : int = 1_0500 a__ : int = 128 a__ : int = 3 a__ : int = 1 a__ : int = 5 # tx_args a__ : float = 3e-5 a__ : float = 0.0 a__ : int = 2_0000 a__ : float = 0.0095 a__ : str = "bigbird-roberta-natural-questions" a__ : str = "training-expt" a__ : str = "data/nq-training.jsonl" a__ : str = "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: os.makedirs(self.base_dir , exist_ok=__UpperCAmelCase ) UpperCAmelCase_= os.path.join(self.base_dir , self.save_dir ) UpperCAmelCase_= self.batch_size_per_device * jax.device_count() @dataclass class lowercase : """simple docstring""" a__ : int a__ : int = 4096 # no dynamic padding on TPUs def __call__( self : Optional[int] , __UpperCAmelCase : str ) -> Tuple: UpperCAmelCase_= self.collate_fn(__UpperCAmelCase ) UpperCAmelCase_= jax.tree_util.tree_map(__UpperCAmelCase , __UpperCAmelCase ) return batch def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase_, UpperCAmelCase_= self.fetch_inputs(features["""input_ids"""] ) UpperCAmelCase_= { """input_ids""": jnp.array(__UpperCAmelCase , dtype=jnp.intaa ), """attention_mask""": jnp.array(__UpperCAmelCase , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str ) -> Tuple: UpperCAmelCase_= [self._fetch_inputs(__UpperCAmelCase ) for ids in input_ids] return zip(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : int ) -> Optional[Any]: UpperCAmelCase_= [1 for _ in range(len(__UpperCAmelCase ) )] while len(__UpperCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __a ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : Any=None ) -> Dict: '''simple docstring''' if seed is not None: UpperCAmelCase_= dataset.shuffle(seed=__A ) for i in range(len(__A ) // batch_size ): UpperCAmelCase_= dataset[i * batch_size : (i + 1) * batch_size] yield dict(__A ) @partial(jax.pmap ,axis_name="""batch""" ) def __a ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : List[Any] ,**lowerCAmelCase_ : List[Any] ) -> str: '''simple docstring''' def loss_fn(lowerCAmelCase_ : List[Any] ): UpperCAmelCase_= model_inputs.pop("""start_labels""" ) UpperCAmelCase_= model_inputs.pop("""end_labels""" ) UpperCAmelCase_= model_inputs.pop("""pooled_labels""" ) UpperCAmelCase_= state.apply_fn(**__A ,params=__A ,dropout_rng=__A ,train=__A ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= outputs return state.loss_fn( __A ,__A ,__A ,__A ,__A ,__A ,) UpperCAmelCase_, UpperCAmelCase_= jax.random.split(__A ) UpperCAmelCase_= jax.value_and_grad(__A ) UpperCAmelCase_, UpperCAmelCase_= grad_fn(state.params ) UpperCAmelCase_= jax.lax.pmean({"""loss""": loss} ,axis_name="""batch""" ) UpperCAmelCase_= jax.lax.pmean(__A ,"""batch""" ) UpperCAmelCase_= state.apply_gradients(grads=__A ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name="""batch""" ) def __a ( lowerCAmelCase_ : Any ,**lowerCAmelCase_ : int ) -> Any: '''simple docstring''' UpperCAmelCase_= model_inputs.pop("""start_labels""" ) UpperCAmelCase_= model_inputs.pop("""end_labels""" ) UpperCAmelCase_= model_inputs.pop("""pooled_labels""" ) UpperCAmelCase_= state.apply_fn(**__A ,params=state.params ,train=__A ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= outputs UpperCAmelCase_= state.loss_fn(__A ,__A ,__A ,__A ,__A ,__A ) UpperCAmelCase_= jax.lax.pmean({"""loss""": loss} ,axis_name="""batch""" ) return metrics class lowercase ( train_state.TrainState): """simple docstring""" a__ : Callable = struct.field(pytree_node=snake_case__) @dataclass class lowercase : """simple docstring""" a__ : Args a__ : Callable a__ : Callable a__ : Callable a__ : Callable a__ : wandb a__ : Callable = None def _SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=None ) -> Tuple: UpperCAmelCase_= model.params UpperCAmelCase_= TrainState.create( apply_fn=model.__call__ , params=__UpperCAmelCase , tx=__UpperCAmelCase , loss_fn=__UpperCAmelCase , ) if ckpt_dir is not None: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= restore_checkpoint(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } UpperCAmelCase_, UpperCAmelCase_= build_tx(**__UpperCAmelCase ) UpperCAmelCase_= train_state.TrainState( step=__UpperCAmelCase , apply_fn=model.__call__ , params=__UpperCAmelCase , tx=__UpperCAmelCase , opt_state=__UpperCAmelCase , ) UpperCAmelCase_= args UpperCAmelCase_= data_collator UpperCAmelCase_= lr UpperCAmelCase_= params UpperCAmelCase_= jax_utils.replicate(__UpperCAmelCase ) return state def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase_= self.args UpperCAmelCase_= len(__UpperCAmelCase ) // args.batch_size UpperCAmelCase_= jax.random.PRNGKey(0 ) UpperCAmelCase_= jax.random.split(__UpperCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): UpperCAmelCase_= jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase_= get_batched_dataset(__UpperCAmelCase , args.batch_size , seed=__UpperCAmelCase ) UpperCAmelCase_= 0 for batch in tqdm(__UpperCAmelCase , total=__UpperCAmelCase , desc=F"""Running EPOCH-{epoch}""" ): UpperCAmelCase_= self.data_collator(__UpperCAmelCase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.train_step_fn(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: UpperCAmelCase_= jax_utils.unreplicate(state.step ) UpperCAmelCase_= running_loss.item() / i UpperCAmelCase_= self.scheduler_fn(state_step - 1 ) UpperCAmelCase_= self.evaluate(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__UpperCAmelCase ) ) self.logger.log(__UpperCAmelCase , commit=__UpperCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int ) -> List[Any]: UpperCAmelCase_= get_batched_dataset(__UpperCAmelCase , self.args.batch_size ) UpperCAmelCase_= len(__UpperCAmelCase ) // self.args.batch_size UpperCAmelCase_= jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase_= 0 for batch in tqdm(__UpperCAmelCase , total=__UpperCAmelCase , desc="""Evaluating ... """ ): UpperCAmelCase_= self.data_collator(__UpperCAmelCase ) UpperCAmelCase_= self.val_step_fn(__UpperCAmelCase , **__UpperCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase_= jax_utils.unreplicate(__UpperCAmelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=""" ... """ ) self.model_save_fn(__UpperCAmelCase , params=state.params ) with open(os.path.join(__UpperCAmelCase , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__UpperCAmelCase , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__UpperCAmelCase , """data_collator.joblib""" ) ) with open(os.path.join(__UpperCAmelCase , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __UpperCAmelCase ) print("""DONE""" ) def __a ( lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' print(F"""RESTORING CHECKPOINT FROM {save_dir}""" ,end=""" ... """ ) with open(os.path.join(__A ,"""flax_model.msgpack""" ) ,"""rb""" ) as f: UpperCAmelCase_= from_bytes(state.params ,f.read() ) with open(os.path.join(__A ,"""opt_state.msgpack""" ) ,"""rb""" ) as f: UpperCAmelCase_= from_bytes(state.opt_state ,f.read() ) UpperCAmelCase_= joblib.load(os.path.join(__A ,"""args.joblib""" ) ) UpperCAmelCase_= joblib.load(os.path.join(__A ,"""data_collator.joblib""" ) ) with open(os.path.join(__A ,"""training_state.json""" ) ,"""r""" ) as f: UpperCAmelCase_= json.load(__A ) UpperCAmelCase_= training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def __a ( lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : Any ,lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_= num_train_steps - warmup_steps UpperCAmelCase_= optax.linear_schedule(init_value=__A ,end_value=__A ,transition_steps=__A ) UpperCAmelCase_= optax.linear_schedule(init_value=__A ,end_value=1E-7 ,transition_steps=__A ) UpperCAmelCase_= optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def __a ( lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : int ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : int ) -> List[Any]: '''simple docstring''' def weight_decay_mask(lowerCAmelCase_ : Optional[int] ): UpperCAmelCase_= traverse_util.flatten_dict(__A ) UpperCAmelCase_= {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(__A ) UpperCAmelCase_= scheduler_fn(__A ,__A ,__A ,__A ) UpperCAmelCase_= optax.adamw(learning_rate=__A ,weight_decay=__A ,mask=__A ) return tx, lr
593
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
0
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'detr' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__(self , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=3 , lowerCamelCase=100 , lowerCamelCase=6 , lowerCamelCase=2_048 , lowerCamelCase=8 , lowerCamelCase=6 , lowerCamelCase=2_048 , lowerCamelCase=8 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="relu" , lowerCamelCase=256 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1.0 , lowerCamelCase=False , lowerCamelCase="sine" , lowerCamelCase="resnet50" , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=1 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=1 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=0.1 , **lowerCamelCase , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = backbone_config.get("""model_type""" ) _lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase = config_class.from_dict(lowerCamelCase ) # set timm attributes to None _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None, None, None _lowerCAmelCase = use_timm_backbone _lowerCAmelCase = backbone_config _lowerCAmelCase = num_channels _lowerCAmelCase = num_queries _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = init_xavier_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = encoder_layers _lowerCAmelCase = auxiliary_loss _lowerCAmelCase = position_embedding_type _lowerCAmelCase = backbone _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = dilation # Hungarian matcher _lowerCAmelCase = class_cost _lowerCAmelCase = bbox_cost _lowerCAmelCase = giou_cost # Loss coefficients _lowerCAmelCase = mask_loss_coefficient _lowerCAmelCase = dice_loss_coefficient _lowerCAmelCase = bbox_loss_coefficient _lowerCAmelCase = giou_loss_coefficient _lowerCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' return self.encoder_attention_heads @property def A__ (self ): '''simple docstring''' return self.d_model @classmethod def A__ (cls , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return cls(backbone_config=lowerCamelCase , **lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCAmelCase = self.backbone_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output class __lowerCamelCase ( __lowercase ): __UpperCamelCase = version.parse('1.11' ) @property def A__ (self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def A__ (self ): '''simple docstring''' return 1e-5 @property def A__ (self ): '''simple docstring''' return 12
156
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCAmelCase : int = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 2048-bit 1_4: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 3072-bit 1_5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 4096-bit 1_6: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 6144-bit 1_7: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, # 8192-bit 1_8: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=1_6, ), "generator": 2, }, } class snake_case : """simple docstring""" def __init__( self , lowerCamelCase = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) snake_case__ : int = primes[group]['''prime'''] snake_case__ : Tuple = primes[group]['''generator'''] snake_case__ : str = int(hexlify(urandom(32 ) ) , base=16 ) def lowercase__ ( self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCamelCase )[2:] def lowercase__ ( self , lowerCamelCase ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : Optional[Any] = int(lowerCamelCase , base=16 ) if not self.is_valid_public_key(lowerCamelCase ): raise ValueError('''Invalid public key''' ) snake_case__ : str = pow(lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() @staticmethod def lowercase__ ( lowerCamelCase , lowerCamelCase ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase , (prime - 1) // 2 , lowerCamelCase ) == 1 ) @staticmethod def lowercase__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 14 ) -> str: """simple docstring""" snake_case__ : List[Any] = int(lowerCamelCase , base=16 ) snake_case__ : List[str] = int(lowerCamelCase , base=16 ) snake_case__ : Optional[int] = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase , lowerCamelCase ): raise ValueError('''Invalid public key''' ) snake_case__ : Union[str, Any] = pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
261
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } SCREAMING_SNAKE_CASE_ = '▁' class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :List[Any] =VOCAB_FILES_NAMES a_ :str =PRETRAINED_VOCAB_FILES_MAP a_ :List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : List[Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : Tuple="[SEP]" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : Tuple="[MASK]" , SCREAMING_SNAKE_CASE__ : Any = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' __a = ( AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ , normalized=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token ) __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __a ( self : List[str] ): '''simple docstring''' return len(self.sp_model ) def __a ( self : List[str] ): '''simple docstring''' __a = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if self.remove_space: __a = """ """.join(inputs.strip().split() ) else: __a = inputs __a = outputs.replace("""``""" , """\"""" ).replace("""\'\'""" , """\"""" ) if not self.keep_accents: __a = unicodedata.normalize("""NFKD""" , SCREAMING_SNAKE_CASE__ ) __a = """""".join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__ )] ) if self.do_lower_case: __a = outputs.lower() return outputs def __a ( self : str , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' __a = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) __a = self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) __a = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __a = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __a = cur_pieces[1:] else: __a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE__ ) else: new_pieces.append(SCREAMING_SNAKE_CASE__ ) return new_pieces def __a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a = [] __a = """""" __a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __a = True __a = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) __a = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __a ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : Union[str, Any] = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __a ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
582
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
0
import math def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> List[str]: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple = 0.1 ) -> Dict: '''simple docstring''' A__ = 3 A__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
514
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class snake_case ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : Optional[int] , **lowerCAmelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def _lowercase ( self : str , **lowerCAmelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def _lowercase ( self : int ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(lowerCAmelCase_ , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = processor(images=lowerCAmelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = processor(text=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def _lowercase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
393
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = (DDPMScheduler,) def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowerCamelCase ) return config def _a (self ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def _a (self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def _a (self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def _a (self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCamelCase ) def _a (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def _a (self ): """simple docstring""" self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def _a (self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def _a (self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : Dict = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase__ : int = self.get_scheduler_config() UpperCAmelCase__ : List[Any] = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = len(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter UpperCAmelCase__ : Dict = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual UpperCAmelCase__ : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase__ : int = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase__ : Optional[int] = pred_prev_sample UpperCAmelCase__ : Any = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase__ : Optional[Any] = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ : Dict = len(_lowerCamelCase ) UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : List[Any] = self.dummy_sample_deter UpperCAmelCase__ : Any = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase__ : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase__ : Dict = pred_prev_sample UpperCAmelCase__ : List[str] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = self.scheduler_classes[0] UpperCAmelCase__ : Tuple = self.get_scheduler_config() UpperCAmelCase__ : int = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ : Dict = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(_lowerCamelCase ): if i == len(_lowerCamelCase ) - 1: UpperCAmelCase__ : Dict = -1 else: UpperCAmelCase__ : Any = timesteps[i + 1] UpperCAmelCase__ : Tuple = scheduler.previous_timestep(_lowerCamelCase ) UpperCAmelCase__ : int = prev_t.item() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config() UpperCAmelCase__ : Any = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ : str = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCamelCase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase__ : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase__ : Any = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ : Dict = [100, 87, 50, 1, 0] UpperCAmelCase__ : Dict = len(_lowerCamelCase ) with self.assertRaises(_lowerCamelCase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.scheduler_classes[0] UpperCAmelCase__ : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase__ : Dict = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowerCamelCase )
182
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def a_ ( lowerCAmelCase_ : Union[str, Any] ): if isinstance(__A, collections.abc.Iterable ): return x return (x, x) @require_tf class _UpperCAmelCase : """simple docstring""" def lowercase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ) -> Dict: pass def lowercase ( self : Optional[Any] ) -> List[str]: pass def lowercase ( self : Tuple ) -> int: pass def lowercase ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Optional[int] ) -> Any: __lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : str ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : int ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = {'vision_model': vision_model, 'text_model': text_model} __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : List[str] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = after_output[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) def lowercase ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Dict ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) __lowerCAmelCase = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: __lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase_ , lowerCAmelCase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Any: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase_ ) @slow def lowercase ( self : Any ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.get_pretrained_model_and_inputs() __lowerCAmelCase = model_a(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = model_a(**lowerCAmelCase_ ) __lowerCAmelCase = after_outputs[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) @require_tf class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = TFViTModel(lowerCAmelCase_ , name='vision_model' ) __lowerCAmelCase = TFBertModel(lowerCAmelCase_ , name='text_model' ) return vision_model, text_model def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = TFViTModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> int: __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : int ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) __lowerCAmelCase = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCAmelCase = TFDeiTModel(lowerCAmelCase_ , name='vision_model' ) __lowerCAmelCase = TFRobertaModel(lowerCAmelCase_ , name='text_model' ) return vision_model, text_model def lowercase ( self : Tuple ) -> List[str]: __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = TFRobertaModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Union[str, Any]: __lowerCAmelCase = TFCLIPVisionModel(lowerCAmelCase_ , name='vision_model' ) __lowerCAmelCase = TFBertModel(lowerCAmelCase_ , name='text_model' ) return vision_model, text_model def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = TFCLIPVisionModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : List[Any] ) -> List[Any]: __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCAmelCase = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowerCAmelCase = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowerCAmelCase_ , atol=1e-3 ) )
53
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Tuple = 'umt5' snake_case__ : Optional[int] = ['past_key_values'] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=2_5_0_1_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=6 , SCREAMING_SNAKE_CASE__ : str=3_2 , SCREAMING_SNAKE_CASE__ : Dict=1_2_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=1E-6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1.0 , SCREAMING_SNAKE_CASE__ : Dict="gated-gelu" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Any="T5Tokenizer" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : int=0 , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any: super().__init__( is_encoder_decoder=SCREAMING_SNAKE_CASE__ , tokenizer_class=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Optional[Any] = vocab_size a_ : List[Any] = d_model a_ : Any = d_kv a_ : List[Any] = d_ff a_ : str = num_layers a_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a_ : Optional[int] = num_heads a_ : Union[str, Any] = relative_attention_num_buckets a_ : Dict = relative_attention_max_distance a_ : List[Any] = dropout_rate a_ : Any = layer_norm_epsilon a_ : List[str] = initializer_factor a_ : Any = feed_forward_proj a_ : Optional[int] = use_cache a_ : Union[str, Any] = self.feed_forward_proj.split('-' ) a_ : Any = act_info[-1] a_ : Union[str, Any] = act_info[0] == 'gated' if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": a_ : Optional[int] = 'gelu_new' @property def SCREAMING_SNAKE_CASE ( self : str ) -> Any: return self.d_model @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: return self.num_heads @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: return self.num_layers class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: a_ : Optional[int] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: a_ : str = 'past_encoder_sequence + sequence' a_ : List[Any] = {0: 'batch'} a_ : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: a_ : str = {0: 'batch', 1: 'decoder_sequence'} a_ : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 1_3 @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> float: return 5E-4
570
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=32, __a=3, __a=4, __a=[10, 20, 30, 40], __a=[2, 2, 3, 2], __a=True, __a=True, __a=37, __a="gelu", __a=10, __a=0.02, __a=["stage2", "stage3", "stage4"], __a=3, __a=None, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : Optional[int] = num_stages _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Dict = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Dict = out_features _lowerCAmelCase : Tuple = num_labels _lowerCAmelCase : Any = scope _lowerCAmelCase : List[str] = num_stages def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : str = None if self.use_labels: _lowerCAmelCase : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def snake_case__ ( self): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=__a, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=__a, loss_ignore_index=255, num_labels=self.num_labels, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[int] = model(__a) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = config_and_inputs _lowerCAmelCase : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = UperNetModelTester(self) _lowerCAmelCase : Tuple = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self): '''simple docstring''' return def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(__a) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason="UperNet does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model") def snake_case__ ( self): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' def check_hidden_states_output(__a, __a, __a): _lowerCAmelCase : List[Any] = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _lowerCAmelCase : Dict = model(**self._prepare_for_class(__a, __a)) _lowerCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : str = self.model_tester.num_stages self.assertEqual(len(__a), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = True check_hidden_states_output(__a, __a, __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(__a, __a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Dict = _config_zero_init(__a) _lowerCAmelCase : List[str] = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="UperNet does not have tied weights") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : int = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : int = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) _lowerCAmelCase : Optional[Any] = Image.open(__A ).convert("RGB" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny") _lowerCAmelCase : str = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny").to(__a) _lowerCAmelCase : Tuple = prepare_img() _lowerCAmelCase : List[str] = processor(images=__a, return_tensors="pt").to(__a) with torch.no_grad(): _lowerCAmelCase : List[str] = model(**__a) _lowerCAmelCase : Dict = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], __a, atol=1E-4)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny") _lowerCAmelCase : Dict = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny").to(__a) _lowerCAmelCase : Union[str, Any] = prepare_img() _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="pt").to(__a) with torch.no_grad(): _lowerCAmelCase : Dict = model(**__a) _lowerCAmelCase : Dict = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : List[str] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], __a, atol=1E-4))
500
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __lowercase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase : Tuple = '''\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n''' @dataclass class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Union[PIL.Image.Image, np.ndarray] class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__() self.register_modules( prior=SCREAMING_SNAKE_CASE_ ,image_encoder=SCREAMING_SNAKE_CASE_ ,image_processor=SCREAMING_SNAKE_CASE_ ,scheduler=SCREAMING_SNAKE_CASE_ ,renderer=SCREAMING_SNAKE_CASE_ ,) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if latents is None: snake_case : Optional[int] = randn_tensor(SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,device=SCREAMING_SNAKE_CASE_ ,dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) snake_case : Union[str, Any] = latents.to(SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = latents * scheduler.init_noise_sigma return latents def snake_case_ ( self ,SCREAMING_SNAKE_CASE_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case : Dict = torch.device(F"""cuda:{gpu_id}""" ) snake_case : Union[str, Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ): '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder ,"""_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ ,"""_hf_hook""" ) and hasattr(module._hf_hook ,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(image[0] ,torch.Tensor ): snake_case : Tuple = torch.cat(SCREAMING_SNAKE_CASE_ ,axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE_ ,axis=0 ) if not isinstance(SCREAMING_SNAKE_CASE_ ,torch.Tensor ): snake_case : Dict = self.image_processor(SCREAMING_SNAKE_CASE_ ,return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) snake_case : Optional[int] = image.to(dtype=self.image_encoder.dtype ,device=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = self.image_encoder(SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""] snake_case : Tuple = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 snake_case : Union[str, Any] = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ ,dim=0 ) if do_classifier_free_guidance: snake_case : int = torch.zeros_like(SCREAMING_SNAKE_CASE_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 1 ,SCREAMING_SNAKE_CASE_ = 25 ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 4.0 ,SCREAMING_SNAKE_CASE_ = 64 ,SCREAMING_SNAKE_CASE_ = "pil" ,SCREAMING_SNAKE_CASE_ = True ,): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ ,PIL.Image.Image ): snake_case : Union[str, Any] = 1 elif isinstance(SCREAMING_SNAKE_CASE_ ,torch.Tensor ): snake_case : List[str] = image.shape[0] elif isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(image[0] ,(torch.Tensor, PIL.Image.Image) ): snake_case : Any = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE_ )}""" ) snake_case : Tuple = self._execution_device snake_case : Optional[int] = batch_size * num_images_per_prompt snake_case : Tuple = guidance_scale > 1.0 snake_case : List[str] = self._encode_image(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # prior self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ,device=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = self.scheduler.timesteps snake_case : Optional[int] = self.prior.config.num_embeddings snake_case : int = self.prior.config.embedding_dim snake_case : Any = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) ,image_embeds.dtype ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,self.scheduler ,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim snake_case : Union[str, Any] = latents.reshape(latents.shape[0] ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : Optional[Any] = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = self.prior( SCREAMING_SNAKE_CASE_ ,timestep=SCREAMING_SNAKE_CASE_ ,proj_embedding=SCREAMING_SNAKE_CASE_ ,).predicted_image_embedding # remove the variance snake_case , snake_case : Union[str, Any] = noise_pred.split( scaled_model_input.shape[2] ,dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: snake_case , snake_case : List[Any] = noise_pred.chunk(2 ) snake_case : Dict = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) snake_case : Dict = self.scheduler.step( SCREAMING_SNAKE_CASE_ ,timestep=SCREAMING_SNAKE_CASE_ ,sample=SCREAMING_SNAKE_CASE_ ,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE_ ) snake_case : Any = [] for i, latent in enumerate(SCREAMING_SNAKE_CASE_ ): print() snake_case : int = self.renderer.decode( latent[None, :] ,SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,ray_batch_size=4096 ,n_coarse_samples=64 ,n_fine_samples=128 ,) images.append(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = torch.stack(SCREAMING_SNAKE_CASE_ ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) snake_case : Dict = images.cpu().numpy() if output_type == "pil": snake_case : Optional[Any] = [self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) for image in images] # Offload last model to CPU if hasattr(self ,"""final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE_ )
36
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
import copy import re class lowercase : """simple docstring""" a__ : List[Any] = 'hp' a__ : str = {} a__ : Tuple = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> int: UpperCAmelCase_= prefix UpperCAmelCase_= defaults cls.build_naming_info() @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) -> Union[str, Any]: if len(__UpperCAmelCase ) == 0: return "" UpperCAmelCase_= None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: \'{word}\' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__UpperCAmelCase ) + 1 ): UpperCAmelCase_= word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: UpperCAmelCase_= prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__UpperCAmelCase : str ): UpperCAmelCase_= """""" while integer != 0: UpperCAmelCase_= chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s UpperCAmelCase_= 0 while True: UpperCAmelCase_= word + """#""" + int_to_alphabetic(__UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: UpperCAmelCase_= sword break UpperCAmelCase_= short_word UpperCAmelCase_= word return short_word @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ) -> Optional[int]: UpperCAmelCase_= param_name.split("""_""" ) UpperCAmelCase_= [TrialShortNamer.shortname_for_word(__UpperCAmelCase , __UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name UpperCAmelCase_= ["""""", """_"""] for separator in separators: UpperCAmelCase_= separator.join(__UpperCAmelCase ) if shortname not in info["reverse_short_param"]: UpperCAmelCase_= shortname UpperCAmelCase_= param_name return shortname return param_name @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_= TrialShortNamer.shortname_for_key(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= short_name UpperCAmelCase_= param_name @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ) -> Dict: if cls.NAMING_INFO is not None: return UpperCAmelCase_= { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } UpperCAmelCase_= list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= info @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , __UpperCAmelCase : Any ) -> Tuple: cls.build_naming_info() assert cls.PREFIX is not None UpperCAmelCase_= [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue UpperCAmelCase_= cls.NAMING_INFO["""short_param"""][k] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= 1 if v else 0 UpperCAmelCase_= """""" if isinstance(__UpperCAmelCase , (int, float) ) else """-""" UpperCAmelCase_= F"""{key}{sep}{v}""" name.append(__UpperCAmelCase ) return "_".join(__UpperCAmelCase ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] , __UpperCAmelCase : Tuple ) -> List[Any]: UpperCAmelCase_= repr[len(cls.PREFIX ) + 1 :] if repr == "": UpperCAmelCase_= [] else: UpperCAmelCase_= repr.split("""_""" ) UpperCAmelCase_= {} for value in values: if "-" in value: UpperCAmelCase_, UpperCAmelCase_= value.split("""-""" ) else: UpperCAmelCase_= re.sub("""[0-9.]""" , """""" , __UpperCAmelCase ) UpperCAmelCase_= float(re.sub("""[^0-9.]""" , """""" , __UpperCAmelCase ) ) UpperCAmelCase_= cls.NAMING_INFO["""reverse_short_param"""][p_k] UpperCAmelCase_= p_v for k in cls.DEFAULTS: if k not in parameters: UpperCAmelCase_= cls.DEFAULTS[k] return parameters
593
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : str ) -> Optional[Any]: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCAmelCase , _lowerCAmelCase = array[indexa], array[indexa] def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Dict ) -> Any: """simple docstring""" if length > 1: _lowerCAmelCase = int(length / 2 ) for i in range(__A , low + middle ): comp_and_swap(__A , __A , i + middle , __A ) bitonic_merge(__A , __A , __A , __A ) bitonic_merge(__A , low + middle , __A , __A ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : List[str] ) -> Tuple: """simple docstring""" if length > 1: _lowerCAmelCase = int(length / 2 ) bitonic_sort(__A , __A , __A , 1 ) bitonic_sort(__A , low + middle , __A , 0 ) bitonic_merge(__A , __A , __A , __A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[Any] = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
156
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
0
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _lowerCAmelCase : List[str] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=16 , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=14 , lowerCamelCase=10 , lowerCamelCase=19 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=True , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=[1, 2, 3, 4, 5] , lowerCamelCase=25 , lowerCamelCase=5 , ) -> List[str]: """simple docstring""" snake_case__ : Any = d_model snake_case__ : Optional[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : Union[str, Any] = prediction_length snake_case__ : List[str] = context_length snake_case__ : Dict = cardinality snake_case__ : List[str] = num_time_features snake_case__ : int = lags_sequence snake_case__ : List[str] = embedding_dimension snake_case__ : List[Any] = is_training snake_case__ : List[str] = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Any = intermediate_size snake_case__ : Tuple = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Any = context_length snake_case__ : List[Any] = prediction_length + label_length snake_case__ : Optional[int] = label_length snake_case__ : Union[str, Any] = moving_average snake_case__ : Any = autocorrelation_factor def lowercase__ ( self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : int = config.context_length + max(config.lags_sequence ) snake_case__ : Dict = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) snake_case__ : Tuple = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) snake_case__ : Any = floats_tensor([self.batch_size, _past_length] ) snake_case__ : int = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs snake_case__ : str = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) snake_case__ : int = floats_tensor([self.batch_size, config.prediction_length] ) snake_case__ : List[str] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Any = self.get_config() snake_case__ : Tuple = self.prepare_autoformer_inputs_dict(lowerCamelCase ) return config, inputs_dict def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ ,snake_case__ : str = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : str = AutoformerModel(config=lowerCamelCase ).to(lowerCamelCase ).eval() snake_case__ : Tuple = model(**lowerCamelCase ) snake_case__ : Dict = outputs.encoder_last_hidden_state snake_case__ : Optional[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : int = model.get_encoder() encoder.save_pretrained(lowerCamelCase ) snake_case__ : Union[str, Any] = AutoformerEncoder.from_pretrained(lowerCamelCase ).to(lowerCamelCase ) snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : Dict = model.create_network_inputs(**lowerCamelCase ) snake_case__ ,snake_case__ : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) snake_case__ : Any = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) snake_case__ : Union[str, Any] = encoder(inputs_embeds=lowerCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) snake_case__ : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) snake_case__ : List[str] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) snake_case__ : Optional[int] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) snake_case__ : int = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Optional[int] = model.get_decoder() decoder.save_pretrained(lowerCamelCase ) snake_case__ : Dict = AutoformerDecoder.from_pretrained(lowerCamelCase ).to(lowerCamelCase ) snake_case__ : Optional[Any] = decoder( trend=lowerCamelCase , inputs_embeds=lowerCamelCase , encoder_hidden_states=lowerCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _lowerCAmelCase = (AutoformerForPrediction,) if is_torch_available() else () _lowerCAmelCase = {'feature-extraction': AutoformerModel} if is_torch_available() else {} _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Any = AutoformerModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def lowercase__ ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ ,snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) snake_case__ ,snake_case__ : List[Any] = model_class.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertEqual(info['''missing_keys'''] , [] ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def lowercase__ ( self ) -> Tuple: """simple docstring""" pass def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[Any] = inspect.signature(getattr(lowerCamelCase , '''forward''' ) ) # The main input is the name of the argument after `self` snake_case__ : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCamelCase ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ ,snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(lowerCamelCase ) snake_case__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Tuple = [*signature.parameters.keys()] snake_case__ : int = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(lowerCamelCase )] , lowerCamelCase ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ ,snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Any = True snake_case__ : Tuple = getattr(self.model_tester , '''seq_length''' , lowerCamelCase ) snake_case__ : str = getattr(self.model_tester , '''decoder_seq_length''' , lowerCamelCase ) snake_case__ : int = getattr(self.model_tester , '''encoder_seq_length''' , lowerCamelCase ) snake_case__ : Any = getattr(self.model_tester , '''d_model''' , lowerCamelCase ) snake_case__ : List[Any] = getattr(self.model_tester , '''num_attention_heads''' , lowerCamelCase ) snake_case__ : Tuple = d_model // num_attention_heads for model_class in self.all_model_classes: snake_case__ : str = True snake_case__ : int = False snake_case__ : Optional[Any] = True snake_case__ : Dict = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case__ : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ : str = True snake_case__ : List[str] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): snake_case__ : int = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case__ : Optional[Any] = outputs.encoder_attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) snake_case__ : int = len(lowerCamelCase ) snake_case__ : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCamelCase , lowerCamelCase ) # decoder attentions snake_case__ : List[Any] = outputs.decoder_attentions self.assertIsInstance(lowerCamelCase , (list, tuple) ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions snake_case__ : Optional[Any] = outputs.cross_attentions self.assertIsInstance(lowerCamelCase , (list, tuple) ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine snake_case__ : int = True snake_case__ : Tuple = True snake_case__ : Dict = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): snake_case__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + 2 , len(lowerCamelCase ) ) snake_case__ : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def _A ( snake_case__ : Tuple="train-batch.pt" ): snake_case__ : Any = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''' ) snake_case__ : Optional[Any] = torch.load(__A , map_location=__A ) return batch @require_torch @slow class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Dict = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCamelCase ) snake_case__ : Any = prepare_batch() with torch.no_grad(): snake_case__ : List[str] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] snake_case__ : List[Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCamelCase ) snake_case__ : Optional[int] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Union[str, Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCamelCase ) snake_case__ : List[str] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): snake_case__ : str = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state snake_case__ : Union[str, Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCamelCase ) snake_case__ : Tuple = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCamelCase ) snake_case__ : List[Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): snake_case__ : List[str] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) snake_case__ : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCamelCase ) snake_case__ : Union[str, Any] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=lowerCamelCase ) snake_case__ : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCamelCase , rtol=1E-1 ) )
261
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Dict =FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :List[Any] =FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :int =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Optional[Any] =FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Optional[Any] =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Any =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Optional[int] =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Optional[int] =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :str =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Tuple =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :str =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Optional[int] =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class lowerCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" a_ :Any =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
582
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> int: '''simple docstring''' return 1_0 - x * x def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int] ) -> List[str]: '''simple docstring''' if equation(__A ) * equation(__A ) >= 0: raise ValueError("Wrong space!" ) A__ = a while (b - a) >= 0.01: # Find middle point A__ = (a + b) / 2 # Check if middle point is root if equation(__A ) == 0.0: break # Decide the side to repeat the steps if equation(__A ) * equation(__A ) < 0: A__ = c else: A__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
514
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase )-> Dict: '''simple docstring''' return [ord(__A ) - 96 for elem in plain] def UpperCAmelCase ( UpperCAmelCase )-> Any: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCAmelCase ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' ,__A ) print('''Decoded:''' ,decode(__A ) ) if __name__ == "__main__": main()
393
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
"""simple docstring""" import os import string import sys _A = 1 << 8 _A = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } _A = KEYMAP["""up"""] _A = KEYMAP["""left"""] if sys.platform == "win32": _A = [] _A = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): _A = ord(str(i)) def a__ ( ) -> List[str]: if os.name == "nt": import msvcrt UpperCAmelCase__ : Optional[Any] = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__A ) == 0: # Read the keystroke UpperCAmelCase__ : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase__ : int = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase__ : List[str] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__A ) if ord(__A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) UpperCAmelCase__ : Tuple = chr(KEYMAP["""esc"""] ) except KeyError: UpperCAmelCase__ : Any = cha[1] else: UpperCAmelCase__ : int = ch.decode(__A ) else: UpperCAmelCase__ : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase__ : Dict = sys.stdin.fileno() UpperCAmelCase__ : Optional[Any] = termios.tcgetattr(__A ) try: tty.setraw(__A ) UpperCAmelCase__ : Tuple = sys.stdin.read(1 ) finally: termios.tcsetattr(__A , termios.TCSADRAIN , __A ) return ch def a__ ( ) -> Tuple: UpperCAmelCase__ : List[Any] = get_raw_chars() if ord(__A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__A ) == KEYMAP["esc"]: UpperCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(__A ) == KEYMAP["mod_int"]: UpperCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(__A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
182
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _snake_case : Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : str ) -> None: warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
53
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Dict = 'instructblip_vision_model' def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple=1_4_0_8 , SCREAMING_SNAKE_CASE__ : List[str]=6_1_4_4 , SCREAMING_SNAKE_CASE__ : str=3_9 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_2_4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_4 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=1E-6 , SCREAMING_SNAKE_CASE__ : List[str]=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-10 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : List[str] = hidden_size a_ : str = intermediate_size a_ : str = num_hidden_layers a_ : Dict = num_attention_heads a_ : Union[str, Any] = patch_size a_ : Union[str, Any] = image_size a_ : List[Any] = initializer_range a_ : int = attention_dropout a_ : Union[str, Any] = layer_norm_eps a_ : Tuple = hidden_act a_ : List[str] = qkv_bias @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : Union[str, Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Dict = 'instructblip_qformer' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : Any=7_6_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Dict=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=5_1_2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-12 , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : str="absolute" , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1_4_0_8 , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = vocab_size a_ : str = hidden_size a_ : Optional[int] = num_hidden_layers a_ : Optional[Any] = num_attention_heads a_ : int = hidden_act a_ : List[Any] = intermediate_size a_ : str = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : Optional[int] = initializer_range a_ : Optional[Any] = layer_norm_eps a_ : int = position_embedding_type a_ : Dict = cross_attention_frequency a_ : Optional[Any] = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Tuple = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : int = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = 'instructblip' snake_case__ : str = True def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=3_2 , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ ) if vision_config is None: a_ : List[Any] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: a_ : Optional[int] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: a_ : Tuple = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) a_ : List[Any] = InstructBlipVisionConfig(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = InstructBlipQFormerConfig(**SCREAMING_SNAKE_CASE__ ) a_ : Dict = text_config['model_type'] if 'model_type' in text_config else 'opt' a_ : List[Any] = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = self.text_config.tie_word_embeddings a_ : List[Any] = self.text_config.is_encoder_decoder a_ : str = num_query_tokens a_ : List[Any] = self.vision_config.hidden_size a_ : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a_ : Any = 1.0 a_ : Union[str, Any] = 0.02 @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> List[str]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : List[Any] = copy.deepcopy(self.__dict__ ) a_ : Optional[Any] = self.vision_config.to_dict() a_ : Union[str, Any] = self.qformer_config.to_dict() a_ : str = self.text_config.to_dict() a_ : Any = self.__class__.model_type return output
570
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _snake_case = logging.get_logger(__name__) _snake_case = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'Model type selected in the list: ' + ', '.join(a)}) lowerCamelCase__ = field( default=a , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'}) lowerCamelCase__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase__ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCamelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCamelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached training and evaluation sets'}) lowerCamelCase__ = field( default=a , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'}) lowerCamelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'}) lowerCamelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'}) lowerCamelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCamelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'}) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'train' lowerCamelCase__ = 'dev' class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a, __a, __a = None, __a = Split.train, __a = False, __a = None, __a = "pt", ): '''simple docstring''' _lowerCAmelCase : Any = args _lowerCAmelCase : Any = is_language_sensitive _lowerCAmelCase : List[str] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__a, __a): try: _lowerCAmelCase : str = Split[mode] except KeyError: raise KeyError("mode is not a valid split name") _lowerCAmelCase : Union[str, Any] = mode # Load data features from cache or dataset file _lowerCAmelCase : List[str] = "v2" if args.version_2_with_negative else "v1" _lowerCAmelCase : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir, f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}", ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : Dict = cached_features_file + ".lock" with FileLock(__a): if os.path.exists(__a) and not args.overwrite_cache: _lowerCAmelCase : str = time.time() _lowerCAmelCase : List[str] = torch.load(__a) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase : List[Any] = self.old_features["features"] _lowerCAmelCase : Tuple = self.old_features.get("dataset", __a) _lowerCAmelCase : Any = self.old_features.get("examples", __a) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run") else: if mode == Split.dev: _lowerCAmelCase : int = self.processor.get_dev_examples(args.data_dir) else: _lowerCAmelCase : Optional[Any] = self.processor.get_train_examples(args.data_dir) _lowerCAmelCase , _lowerCAmelCase : List[str] = squad_convert_examples_to_features( examples=self.examples, tokenizer=__a, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=__a, ) _lowerCAmelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples}, __a, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]") def __len__( self): '''simple docstring''' return len(self.features) def __getitem__( self, __a): '''simple docstring''' _lowerCAmelCase : int = self.features[i] _lowerCAmelCase : List[Any] = torch.tensor(feature.input_ids, dtype=torch.long) _lowerCAmelCase : Any = torch.tensor(feature.attention_mask, dtype=torch.long) _lowerCAmelCase : Tuple = torch.tensor(feature.token_type_ids, dtype=torch.long) _lowerCAmelCase : List[str] = torch.tensor(feature.cls_index, dtype=torch.long) _lowerCAmelCase : str = torch.tensor(feature.p_mask, dtype=torch.float) _lowerCAmelCase : Tuple = torch.tensor(feature.is_impossible, dtype=torch.float) _lowerCAmelCase : int = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask}) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible}) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.intaa) * self.args.lang_id)}) if self.mode == Split.train: _lowerCAmelCase : Any = torch.tensor(feature.start_position, dtype=torch.long) _lowerCAmelCase : Dict = torch.tensor(feature.end_position, dtype=torch.long) inputs.update({"start_positions": start_positions, "end_positions": end_positions}) return inputs
500
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : torch.FloatTensor __lowerCamelCase : Optional[torch.FloatTensor] = None def lowercase ( __A : Optional[Any] , __A : Optional[Any]=0.999 , __A : List[str]="cosine" , ) -> List[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__A : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__A : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) snake_case : Any = [] for i in range(__A ): snake_case : str = i / num_diffusion_timesteps snake_case : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__A ) / alpha_bar_fn(__A ) , __A ) ) return torch.tensor(__A , dtype=torch.floataa ) class _A ( snake_case , snake_case ): '''simple docstring''' @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE_ = 1000 ,SCREAMING_SNAKE_CASE_ = "fixed_small_log" ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = 1.0 ,SCREAMING_SNAKE_CASE_ = "epsilon" ,SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'""" ) snake_case : Optional[int] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = 1.0 - self.betas snake_case : Optional[Any] = torch.cumprod(self.alphas ,dim=0 ) snake_case : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution snake_case : Any = 1.0 # setable values snake_case : Dict = None snake_case : int = torch.from_numpy(np.arange(0 ,SCREAMING_SNAKE_CASE_ )[::-1].copy() ) snake_case : Any = variance_type def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' return sample def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : str = num_inference_steps snake_case : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) snake_case : Any = (np.arange(0 ,SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) snake_case : str = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' if prev_timestep is None: snake_case : Optional[int] = t - 1 snake_case : Any = self.alphas_cumprod[t] snake_case : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case : Dict = 1 - alpha_prod_t snake_case : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case : Dict = self.betas[t] else: snake_case : Any = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case : Union[str, Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: snake_case : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": snake_case : Tuple = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_ ,min=1E-20 ) ) snake_case : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler snake_case : Dict = variance.log() snake_case : int = beta.log() snake_case : Tuple = (predicted_variance + 1) / 2 snake_case : int = frac * max_log + (1 - frac) * min_log return variance def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_ = True ,): '''simple docstring''' snake_case : Optional[int] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": snake_case , snake_case : Union[str, Any] = torch.split(SCREAMING_SNAKE_CASE_ ,sample.shape[1] ,dim=1 ) else: snake_case : Optional[Any] = None # 1. compute alphas, betas if prev_timestep is None: snake_case : List[str] = t - 1 snake_case : List[str] = self.alphas_cumprod[t] snake_case : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case : int = 1 - alpha_prod_t snake_case : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case : str = self.betas[t] snake_case : int = self.alphas[t] else: snake_case : int = 1 - alpha_prod_t / alpha_prod_t_prev snake_case : str = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case : int = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case : Dict = torch.clamp( SCREAMING_SNAKE_CASE_ ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case : Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t snake_case : List[str] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case : List[Any] = 0 if t > 0: snake_case : Tuple = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=SCREAMING_SNAKE_CASE_ ,device=model_output.device ) snake_case : Union[str, Any] = self._get_variance( SCREAMING_SNAKE_CASE_ ,predicted_variance=SCREAMING_SNAKE_CASE_ ,prev_timestep=SCREAMING_SNAKE_CASE_ ,) if self.variance_type == "fixed_small_log": snake_case : int = variance elif self.variance_type == "learned_range": snake_case : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" """ for the UnCLIPScheduler.""" ) snake_case : int = variance * variance_noise snake_case : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ,pred_original_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : str = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) snake_case : Optional[int] = timesteps.to(original_samples.device ) snake_case : Any = alphas_cumprod[timesteps] ** 0.5 snake_case : int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): snake_case : Optional[int] = sqrt_alpha_prod.unsqueeze(-1 ) snake_case : Dict = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case : Any = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): snake_case : Dict = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) snake_case : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
36
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
0
import collections import os import re from pathlib import Path __A = '''src/transformers''' # Matches is_xxx_available() __A = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __A = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A = re.compile(r'''\s+\"\S*\":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __A = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __A = re.compile(r'''^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __A = re.compile(r'''^\s+\"([^\"]+)\",''') # Catches a line with objects between brackets only: ["foo", "bar"], __A = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __A = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __A = re.compile(r'''^\s*try:''') # Catches a line with else: __A = re.compile(r'''^\s*else:''') def __a ( lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' if _re_test_backend.search(__A ) is None: return None UpperCAmelCase_= [b[0] for b in _re_backend.findall(__A )] backends.sort() return "_and_".join(__A ) def __a ( lowerCAmelCase_ : Tuple ) -> str: '''simple docstring''' with open(__A ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: UpperCAmelCase_= f.readlines() UpperCAmelCase_= 0 while line_index < len(__A ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__A ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase_= [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: UpperCAmelCase_= lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__A ): UpperCAmelCase_= _re_one_line_import_struct.search(__A ).groups()[0] UpperCAmelCase_= re.findall(r"""\[([^\]]+)\]""" ,__A ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue UpperCAmelCase_= _re_import_struct_key_value.search(__A ) if single_line_import_search is not None: UpperCAmelCase_= [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__A ) > 0] objects.extend(__A ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase_= {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase_= find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_= None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_= [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): UpperCAmelCase_= lines[line_index] if _re_import_struct_add_one.search(__A ) is not None: objects.append(_re_import_struct_add_one.search(__A ).groups()[0] ) elif _re_import_struct_add_many.search(__A ) is not None: UpperCAmelCase_= _re_import_struct_add_many.search(__A ).groups()[0].split(""", """ ) UpperCAmelCase_= [obj[1:-1] for obj in imports if len(__A ) > 0] objects.extend(__A ) elif _re_between_brackets.search(__A ) is not None: UpperCAmelCase_= _re_between_brackets.search(__A ).groups()[0].split(""", """ ) UpperCAmelCase_= [obj[1:-1] for obj in imports if len(__A ) > 0] objects.extend(__A ) elif _re_quote_object.search(__A ) is not None: objects.append(_re_quote_object.search(__A ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase_= objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase_= [] while ( line_index < len(__A ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): UpperCAmelCase_= lines[line_index] UpperCAmelCase_= _re_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase_= {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(__A ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase_= find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_= None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_= [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): UpperCAmelCase_= lines[line_index] UpperCAmelCase_= _re_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase_= objects else: line_index += 1 return import_dict_objects, type_hint_objects def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' def find_duplicates(lowerCAmelCase_ : Tuple ): return [k for k, v in collections.Counter(__A ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase_= [] for key in import_dict_objects.keys(): UpperCAmelCase_= find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) UpperCAmelCase_= find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase_= """base imports""" if key == """none""" else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __a ( ) -> Dict: '''simple docstring''' UpperCAmelCase_= [] for root, _, files in os.walk(__A ): if "__init__.py" in files: UpperCAmelCase_= os.path.join(__A ,"""__init__.py""" ) UpperCAmelCase_= parse_init(__A ) if objects is not None: UpperCAmelCase_= analyze_results(*__A ) if len(__A ) > 0: UpperCAmelCase_= F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(__A ) ) if len(__A ) > 0: raise ValueError("""\n\n""".join(__A ) ) def __a ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_= [] for path, directories, files in os.walk(__A ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__A ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__A ) / folder).glob("""*.py""" ) ) ) == 0: continue UpperCAmelCase_= str((Path(__A ) / folder).relative_to(__A ) ) UpperCAmelCase_= short_path.replace(os.path.sep ,""".""" ) submodules.append(__A ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase_= str((Path(__A ) / fname).relative_to(__A ) ) UpperCAmelCase_= short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__A ) return submodules __A = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def __a ( ) -> int: '''simple docstring''' from transformers.utils import direct_transformers_import UpperCAmelCase_= direct_transformers_import(__A ) UpperCAmelCase_= set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__A ,"""__init__.py""" ) ,"""r""" ) as f: UpperCAmelCase_= f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" ,__A ) ) ) UpperCAmelCase_= [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__A ) > 0: UpperCAmelCase_= """\n""".join(F"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
593
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
0
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : List[Any] ) -> Any: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__A , __A ) ) ) def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Optional[int] ) -> Tuple: """simple docstring""" if dataset.ndim != value_array.ndim: _lowerCAmelCase = ( """Wrong input data\'s dimensions... """ F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__A ) try: if dataset.shape[1] != value_array.shape[1]: _lowerCAmelCase = ( """Wrong input data\'s shape... """ F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: _lowerCAmelCase = ( """Input data have different datatype... """ F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__A ) _lowerCAmelCase = [] for value in value_array: _lowerCAmelCase = euclidean(__A , dataset[0] ) _lowerCAmelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _lowerCAmelCase = euclidean(__A , __A ) if dist > temp_dist: _lowerCAmelCase = temp_dist _lowerCAmelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Optional[int] ) -> str: """simple docstring""" return np.dot(__A , __A ) / (norm(__A ) * norm(__A )) if __name__ == "__main__": import doctest doctest.testmod()
156
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _lowerCAmelCase : Tuple = True except (ImportError, AttributeError): _lowerCAmelCase : List[str] = object def _A ( *snake_case__ : int , **snake_case__ : Tuple ): pass _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[str] = logging.get_logger("transformers-cli/serving") def _A ( snake_case__ : int ): snake_case__ : List[str] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__A , args.host , args.port , args.workers ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase ): """simple docstring""" @staticmethod def lowercase__ ( lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : List[Any] = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Dict = pipeline snake_case__ : Union[str, Any] = host snake_case__ : Any = port snake_case__ : str = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f'''Serving model over {host}:{port}''' ) snake_case__ : Dict = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), ] , timeout=600 , ) def lowercase__ ( self ) -> List[str]: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase__ ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) ) -> str: """simple docstring""" try: snake_case__ : List[str] = self._pipeline.tokenizer.tokenize(lowerCamelCase ) if return_ids: snake_case__ : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase ) return ServeTokenizeResult(tokens=lowerCamelCase , tokens_ids=lowerCamelCase ) else: return ServeTokenizeResult(tokens=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) def lowercase__ ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , ) -> List[str]: """simple docstring""" try: snake_case__ : int = self._pipeline.tokenizer.decode(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) async def lowercase__ ( self , lowerCamelCase=Body(lowerCamelCase , embed=lowerCamelCase ) ) -> List[str]: """simple docstring""" if len(lowerCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model snake_case__ : Optional[Any] = self._pipeline(lowerCamelCase ) return ServeForwardResult(output=lowerCamelCase ) except Exception as e: raise HTTPException(500 , {'''error''': str(lowerCamelCase )} )
261
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
0