code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Tuple ='linear' a_ :Optional[Any] ='cosine' a_ :Optional[int] ='cosine_with_restarts' a_ :Optional[Any] ='polynomial' a_ :Optional[int] ='constant' a_ :Dict ='constant_with_warmup' a_ :Optional[int] ='piecewise_constant' def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__A , lambda __SCREAMING_SNAKE_CASE : 1 , last_epoch=__A ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: """simple docstring""" def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__A ) / float(max(1.0 , __A ) ) return 1.0 return LambdaLR(__A , __A , last_epoch=__A ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 ) -> int: """simple docstring""" __a = {} __a = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __a , __a = rule_str.split(""":""" ) __a = int(__A ) __a = float(__A ) __a = value __a = float(rule_list[-1] ) def create_rules_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): def rule_func(__SCREAMING_SNAKE_CASE ) -> float: __a = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __a = create_rules_function(__A , __A ) return LambdaLR(__A , __A , last_epoch=__A ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=-1 ) -> str: """simple docstring""" def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__A , __A , __A ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.5 , __SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: """simple docstring""" def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) __a = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__A ) * 2.0 * progress )) ) return LambdaLR(__A , __A , __A ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = -1 ) -> Any: """simple docstring""" def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) __a = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__A ) * progress) % 1.0) )) ) return LambdaLR(__A , __A , __A ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1E-7 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=-1 ) -> Optional[int]: """simple docstring""" __a = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __a = lr_init - lr_end __a = num_training_steps - num_warmup_steps __a = 1 - (current_step - num_warmup_steps) / decay_steps __a = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__A , __A , __A ) SCREAMING_SNAKE_CASE_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: """simple docstring""" __a = SchedulerType(__A ) __a = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__A , last_epoch=__A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__A , step_rules=__A , last_epoch=__A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__A , num_warmup_steps=__A , last_epoch=__A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , num_cycles=__A , last_epoch=__A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , power=__A , last_epoch=__A , ) return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , last_epoch=__A )
582
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Tuple = False ) -> str: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis A__ = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] A__ = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__A , 1 ): if n < _p: # then we have our last prime to check A__ = primes[:idx] break A__ , A__ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: A__ = False for r in range(__A ): A__ = pow(__A , d * 2**r , __A ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): A__ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCAmelCase__ ( ) -> int: '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
514
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
0
import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : int ) -> str: """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCAmelCase_ , ) super().__init__(args=lowerCAmelCase_ , **lowerCAmelCase_ )
393
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _A = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a__ ( lowerCAmelCase ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Any: return max(metric_fn(__A , __A ) for gt in ground_truths ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: UpperCAmelCase__ : Union[str, Any] = [line.strip() for line in open(__A , """r""" ).readlines()] UpperCAmelCase__ : Tuple = [] if args.gold_data_mode == "qa": UpperCAmelCase__ : Optional[int] = pd.read_csv(__A , sep="""\t""" , header=__A ) for answer_list in data[1]: UpperCAmelCase__ : Union[str, Any] = ast.literal_eval(__A ) answers.append(__A ) else: UpperCAmelCase__ : Any = [line.strip() for line in open(__A , """r""" ).readlines()] UpperCAmelCase__ : str = [[reference] for reference in references] UpperCAmelCase__ : List[str] = 0 for prediction, ground_truths in zip(__A , __A ): total += 1 em += metric_max_over_ground_truths(__A , __A , __A ) fa += metric_max_over_ground_truths(__A , __A , __A ) UpperCAmelCase__ : List[str] = 1_00.0 * em / total UpperCAmelCase__ : Tuple = 1_00.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: UpperCAmelCase__ : List[Any] = args.k UpperCAmelCase__ : Union[str, Any] = [line.strip() for line in open(__A , """r""" ).readlines()] UpperCAmelCase__ : int = [line.strip() for line in open(__A , """r""" ).readlines()] UpperCAmelCase__ : Any = 0 for hypo, reference in zip(__A , __A ): UpperCAmelCase__ : Tuple = set(hypo.split("""\t""" )[:k] ) UpperCAmelCase__ : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase__ : Union[str, Any] = 1_00.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: def strip_title(lowerCAmelCase ): if title.startswith("""\"""" ): UpperCAmelCase__ : Dict = title[1:] if title.endswith("""\"""" ): UpperCAmelCase__ : List[Any] = title[:-1] return title UpperCAmelCase__ : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __A , return_tensors="""pt""" , padding=__A , truncation=__A , )["""input_ids"""].to(args.device ) UpperCAmelCase__ : Union[str, Any] = rag_model.rag.question_encoder(__A ) UpperCAmelCase__ : Union[str, Any] = question_enc_outputs[0] UpperCAmelCase__ : List[Any] = rag_model.retriever( __A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) UpperCAmelCase__ : str = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase__ : List[Any] = [] for docs in all_docs: UpperCAmelCase__ : Any = [strip_title(__A ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(__A ) ) return provenance_strings def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: with torch.no_grad(): UpperCAmelCase__ : str = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __A , return_tensors="""pt""" , padding=__A , truncation=__A ) UpperCAmelCase__ : List[str] = inputs_dict.input_ids.to(args.device ) UpperCAmelCase__ : str = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase__ : List[str] = rag_model.generate( # rag_model overwrites generate __A , attention_mask=__A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCAmelCase__ : Union[str, Any] = rag_model.retriever.generator_tokenizer.batch_decode(__A , skip_special_tokens=__A ) if args.print_predictions: for q, a in zip(__A , __A ): logger.info("""Q: {} - A: {}""".format(__A , __A ) ) return answers def a__ ( ) -> str: UpperCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=__A , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=__A , choices=["""exact""", """compressed""", """legacy"""] , type=__A , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=__A , type=__A , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=__A , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=__A , type=__A , required=__A , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=__A , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=__A , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=__A , type=__A , required=__A , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=__A , type=__A , required=__A , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=__A , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=__A , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=__A , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=__A , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=__A , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=__A , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def a__ ( lowerCAmelCase ) -> Optional[Any]: UpperCAmelCase__ : Optional[int] = {} if args.model_type is None: UpperCAmelCase__ : Union[str, Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): UpperCAmelCase__ : Optional[int] = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration UpperCAmelCase__ : Optional[Any] = args.n_docs if args.index_name is not None: UpperCAmelCase__ : Union[str, Any] = args.index_name if args.index_path is not None: UpperCAmelCase__ : List[str] = args.index_path else: UpperCAmelCase__ : str = BartForConditionalGeneration UpperCAmelCase__ : List[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , __A ) UpperCAmelCase__ : List[Any] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k UpperCAmelCase__ : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(__A , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(__A ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): UpperCAmelCase__ : Any = RagRetriever.from_pretrained(__A , **__A ) UpperCAmelCase__ : Any = model_class.from_pretrained(__A , retriever=__A , **__A ) model.retriever.init_retrieval() else: UpperCAmelCase__ : Dict = model_class.from_pretrained(__A , **__A ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: UpperCAmelCase__ : Any = [] for line in tqdm(__A ): questions.append(line.strip() ) if len(__A ) == args.eval_batch_size: UpperCAmelCase__ : Optional[Any] = evaluate_batch_fn(__A , __A , __A ) preds_file.write("""\n""".join(__A ) + """\n""" ) preds_file.flush() UpperCAmelCase__ : Any = [] if len(__A ) > 0: UpperCAmelCase__ : str = evaluate_batch_fn(__A , __A , __A ) preds_file.write("""\n""".join(__A ) ) preds_file.flush() score_fn(__A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _A = get_args() main(args)
182
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Any = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } _snake_case : List[Any] = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } _snake_case : Union[str, Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase = char __lowerCAmelCase = set(__A ) return pairs class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[int]="</s>" , lowerCAmelCase_ : Optional[int]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : int , ) -> Optional[Any]: super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = merges_file __lowerCAmelCase = {} __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 2 __lowerCAmelCase = 3 self.add_from_file(lowerCAmelCase_ ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: __lowerCAmelCase = merges_handle.read().split('\n' )[:-1] __lowerCAmelCase = [tuple(merge.split()[:-1] ) for merge in merges] __lowerCAmelCase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) __lowerCAmelCase = {} def lowercase ( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : Any = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self : Optional[int] ) -> Union[str, Any]: return len(self.encoder ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple ) -> Tuple: if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) __lowerCAmelCase = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: __lowerCAmelCase = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(lowerCAmelCase_ ): try: __lowerCAmelCase = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = new_word if len(lowerCAmelCase_ ) == 1: break else: __lowerCAmelCase = get_pairs(lowerCAmelCase_ ) __lowerCAmelCase = '@@ '.join(lowerCAmelCase_ ) __lowerCAmelCase = word[:-4] __lowerCAmelCase = word return word def lowercase ( self : str , lowerCAmelCase_ : Optional[int] ) -> str: __lowerCAmelCase = [] __lowerCAmelCase = re.findall(R'\S+\n?' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(' ' ) ) ) return split_tokens def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Dict: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase ( self : Any , lowerCAmelCase_ : int ) -> Any: return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Dict ) -> int: __lowerCAmelCase = ' '.join(lowerCAmelCase_ ).replace('@@ ' , '' ).strip() return out_string def lowercase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return __lowerCAmelCase = f.readlines() for lineTmp in lines: __lowerCAmelCase = lineTmp.strip() __lowerCAmelCase = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) __lowerCAmelCase = line[:idx] __lowerCAmelCase = len(self.encoder )
53
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase_ : Tuple = random.Random() if is_torch_available(): import torch def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Any=1.0 , __A : Optional[int]=None , __A : Optional[Any]=None ) -> List[Any]: """simple docstring""" if rng is None: a_ : List[Any] = global_rng a_ : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : Optional[int]=4_0_0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_0_0_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : int=1_6_0_0_0 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=True , ) -> Optional[Any]: a_ : str = parent a_ : Dict = batch_size a_ : List[Any] = min_seq_length a_ : int = max_seq_length a_ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a_ : Optional[int] = feature_size a_ : Any = padding_value a_ : Tuple = sampling_rate a_ : Any = return_attention_mask a_ : int = do_normalize def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> Optional[Any]: def _flatten(SCREAMING_SNAKE_CASE__ : List[str] ): return list(itertools.chain(*SCREAMING_SNAKE_CASE__ ) ) if equal_length: a_ : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a_ : Optional[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a_ : Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : int = ASTFeatureExtractor def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : str = ASTFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a_ : int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a_ : Any = [np.asarray(SCREAMING_SNAKE_CASE__ ) for speech_input in speech_inputs] # Test not batched input a_ : List[Any] = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values a_ : int = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # Test batched a_ : Optional[int] = feat_extract(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='np' ).input_values a_ : int = feat_extract(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a_ : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) a_ : str = feat_extract(SCREAMING_SNAKE_CASE__ , return_tensors='np' ).input_values a_ : Tuple = feat_extract(SCREAMING_SNAKE_CASE__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: import torch a_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a_ : Optional[Any] = np.random.rand(1_0_0 ).astype(np.floataa ) a_ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a_ : List[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a_ : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: from datasets import load_dataset a_ : Tuple = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech a_ : List[Any] = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ : Optional[int] = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on a_ : int = self._load_datasamples(1 ) a_ : List[Any] = ASTFeatureExtractor() a_ : str = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
570
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = DebertaTokenizer lowerCamelCase__ = True lowerCamelCase__ = DebertaTokenizerFast def snake_case__ ( self): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] _lowerCAmelCase : Tuple = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCAmelCase : Tuple = {"unk_token": "[UNK]"} _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = "lower newer" _lowerCAmelCase : Union[str, Any] = "lower newer" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = "lower newer" _lowerCAmelCase : Optional[int] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] _lowerCAmelCase : str = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : str = tokenizer("Hello", "World") _lowerCAmelCase : Dict = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"], __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained("microsoft/deberta-base") _lowerCAmelCase : int = tokenizer.encode("sequence builders", add_special_tokens=__a) _lowerCAmelCase : Any = tokenizer.encode("multi-sequence build", add_special_tokens=__a) _lowerCAmelCase : Tuple = tokenizer.encode( "sequence builders", add_special_tokens=__a, add_prefix_space=__a) _lowerCAmelCase : int = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=__a, add_prefix_space=__a) _lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(__a) _lowerCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__a, __a) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: _lowerCAmelCase : int = tokenizer_class.from_pretrained("microsoft/deberta-base") _lowerCAmelCase : Union[str, Any] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] _lowerCAmelCase : Optional[Any] = tokenizer(__a, padding=__a) _lowerCAmelCase : str = [tokenizer.decode(__a, skip_special_tokens=__a) for seq in encoding["input_ids"]] # fmt: off _lowerCAmelCase : Dict = { "input_ids": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowerCAmelCase : str = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data, __a) for expected, decoded in zip(__a, __a): self.assertEqual(__a, __a)
500
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def snake_case_ ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): snake_case : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: snake_case : Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = floats_tensor((1, 3, 16, 16) ,rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = floats_tensor((1, 3, 32, 32) ,rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) snake_case : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def snake_case_ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case_ ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" ,reason="""float16 requires CUDA""" ) def snake_case_ ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case_ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case_ ( self ): '''simple docstring''' self._test_save_load_local() def snake_case_ ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,)
36
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __A = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __A = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __A = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __A = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __A = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __A = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __a ( ) -> Any: '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_= randrange(len(__A ) ), randrange(len(__A ) ) UpperCAmelCase_= ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCAmelCase_, UpperCAmelCase_= SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __a ( lowerCAmelCase_ : Optional[int] = 1_00 ) -> Optional[int]: '''simple docstring''' return (generate_random_hand() for _ in range(__A )) @pytest.mark.parametrize("""hand, expected""" ,__A ) def __a ( lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : str ) -> int: '''simple docstring''' assert PokerHand(__A )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" ,__A ) def __a ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' assert PokerHand(__A )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" ,__A ) def __a ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : int ,lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_= PokerHand(__A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" ,__A ) def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' assert PokerHand(__A )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" ,__A ) def __a ( lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' assert PokerHand(__A )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" ,__A ) def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Dict ,lowerCAmelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' assert PokerHand(__A ).compare_with(PokerHand(__A ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" ,generate_random_hands() ) def __a ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : List[str] ) -> Any: '''simple docstring''' assert PokerHand(__A ).compare_with(PokerHand(__A ) ) == expected def __a ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_= [PokerHand(__A ) for hand in SORTED_HANDS] UpperCAmelCase_= poker_hands.copy() shuffle(__A ) UpperCAmelCase_= chain(sorted(__A ) ) for index, hand in enumerate(__A ): assert hand == poker_hands[index] def __a ( ) -> str: '''simple docstring''' UpperCAmelCase_= [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=__A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __a ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_= PokerHand("""2C 4S AS 3D 5C""" ) UpperCAmelCase_= True UpperCAmelCase_= [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __a ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_= 0 UpperCAmelCase_= os.path.abspath(os.path.dirname(__A ) ) UpperCAmelCase_= os.path.join(__A ,"""poker_hands.txt""" ) with open(__A ) as file_hand: for line in file_hand: UpperCAmelCase_= line[:14].strip() UpperCAmelCase_= line[15:].strip() UpperCAmelCase_, UpperCAmelCase_= PokerHand(__A ), PokerHand(__A ) UpperCAmelCase_= player.compare_with(__A ) if output == "Win": answer += 1 assert answer == 3_76
593
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE : str = ''' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n''' class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase = black.format_str(lowerCamelCase , mode=lowerCamelCase ) _lowerCAmelCase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(lowerCamelCase , """w""" , newline="""\n""" ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase ) with open(lowerCamelCase , """r""" ) as f: self.assertTrue(f.read() , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , lowerCamelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("""Bert""" , lowerCamelCase , lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , lowerCamelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , lowerCamelCase ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _lowerCAmelCase , _lowerCAmelCase = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["""format_model_list"""] ) self.assertFalse(lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _lowerCAmelCase , _lowerCAmelCase = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase , lowerCamelCase )
156
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Tuple = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ["YolosFeatureExtractor"] _lowerCAmelCase : List[str] = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
261
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
582
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> List[str]: '''simple docstring''' try: A__ = int(__A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
514
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' while b: SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = b, a % b return a def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase )-> Optional[int]: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(__A ,a % b ) def UpperCAmelCase ( )-> Optional[Any]: '''simple docstring''' print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 ,5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 ,3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 ,3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 ,6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 ,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 ,5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 ,3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 ,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 ,6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 ,3 )}''' ) if __name__ == "__main__": main()
393
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
"""simple docstring""" from math import loga def a__ ( lowerCAmelCase ) -> Tuple: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(__A , __A ): raise TypeError("""Input value must be a \'int\' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
182
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Dict = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 'wav2vec2' def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=3_2 , lowerCAmelCase_ : Dict=7_6_8 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : Optional[Any]=3_0_7_2 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : int=1e-5 , lowerCAmelCase_ : Dict="group" , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase_ : List[str]=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase_ : Tuple=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[Any]=1_2_8 , lowerCAmelCase_ : Any=1_6 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Any=0.05 , lowerCAmelCase_ : Optional[Any]=1_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : List[str]=1_0 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : List[str]=3_2_0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : int=1_0_0 , lowerCAmelCase_ : Tuple=2_5_6 , lowerCAmelCase_ : int=2_5_6 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : str="sum" , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Dict=2_5_6 , lowerCAmelCase_ : Union[str, Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCAmelCase_ : Tuple=(5, 3, 3, 1, 1) , lowerCAmelCase_ : Any=(1, 2, 3, 1, 1) , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : int , ) -> int: super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) __lowerCAmelCase = hidden_size __lowerCAmelCase = feat_extract_norm __lowerCAmelCase = feat_extract_activation __lowerCAmelCase = list(lowerCAmelCase_ ) __lowerCAmelCase = list(lowerCAmelCase_ ) __lowerCAmelCase = list(lowerCAmelCase_ ) __lowerCAmelCase = conv_bias __lowerCAmelCase = num_conv_pos_embeddings __lowerCAmelCase = num_conv_pos_embedding_groups __lowerCAmelCase = len(self.conv_dim ) __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = feat_proj_dropout __lowerCAmelCase = final_dropout __lowerCAmelCase = layerdrop __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = vocab_size __lowerCAmelCase = do_stable_layer_norm __lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase = apply_spec_augment __lowerCAmelCase = mask_time_prob __lowerCAmelCase = mask_time_length __lowerCAmelCase = mask_time_min_masks __lowerCAmelCase = mask_feature_prob __lowerCAmelCase = mask_feature_length __lowerCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCAmelCase = num_codevectors_per_group __lowerCAmelCase = num_codevector_groups __lowerCAmelCase = contrastive_logits_temperature __lowerCAmelCase = feat_quantizer_dropout __lowerCAmelCase = num_negatives __lowerCAmelCase = codevector_dim __lowerCAmelCase = proj_codevector_dim __lowerCAmelCase = diversity_loss_weight # ctc loss __lowerCAmelCase = ctc_loss_reduction __lowerCAmelCase = ctc_zero_infinity # adapter __lowerCAmelCase = add_adapter __lowerCAmelCase = adapter_kernel_size __lowerCAmelCase = adapter_stride __lowerCAmelCase = num_adapter_layers __lowerCAmelCase = output_hidden_size or hidden_size __lowerCAmelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase = list(lowerCAmelCase_ ) __lowerCAmelCase = list(lowerCAmelCase_ ) __lowerCAmelCase = list(lowerCAmelCase_ ) __lowerCAmelCase = xvector_output_dim @property def lowercase ( self : List[str] ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
53
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : int = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : str = { 'facebook/blenderbot_small-90M': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Dict = VOCAB_FILES_NAMES snake_case__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : int = BlenderbotSmallTokenizer def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__( ByteLevelBPETokenizer( vocab=SCREAMING_SNAKE_CASE__ , merges=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , ) , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Dict = add_prefix_space def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> List[Any]: a_ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] = None ) -> List[int]: a_ : Dict = [self.sep_token_id] a_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
570
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): '''simple docstring''' if start is None: _lowerCAmelCase : int = 0 if end is None: _lowerCAmelCase : List[str] = len(__A ) - 1 if start >= end: return _lowerCAmelCase : Optional[Any] = (start + end) // 2 slowsort(__A , __A , __A ) slowsort(__A , mid + 1 , __A ) if sequence[end] < sequence[mid]: _lowerCAmelCase , _lowerCAmelCase : int = sequence[mid], sequence[end] slowsort(__A , __A , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
500
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
0
from ...configuration_utils import PretrainedConfig class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Any = 'bert-generation' def __init__( self ,SCREAMING_SNAKE_CASE_=50358 ,SCREAMING_SNAKE_CASE_=1024 ,SCREAMING_SNAKE_CASE_=24 ,SCREAMING_SNAKE_CASE_=16 ,SCREAMING_SNAKE_CASE_=4096 ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=1E-12 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_="absolute" ,SCREAMING_SNAKE_CASE_=True ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = vocab_size snake_case : List[Any] = hidden_size snake_case : Tuple = num_hidden_layers snake_case : int = num_attention_heads snake_case : Union[str, Any] = hidden_act snake_case : Optional[int] = intermediate_size snake_case : List[Any] = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Dict = initializer_range snake_case : Dict = layer_norm_eps snake_case : str = position_embedding_type snake_case : Any = use_cache
36
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
0
import random def __a ( lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : str ,lowerCAmelCase_ : List[str] = False ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_= {i: [] for i in range(__A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__A ): for j in range(i + 1 ,__A ): if random.random() < probability: graph[i].append(__A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__A ) return graph def __a ( lowerCAmelCase_ : str ) -> str: '''simple docstring''' return { i: [j for j in range(__A ) if i != j] for i in range(__A ) } if __name__ == "__main__": import doctest doctest.testmod()
593
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
0
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : str ) -> Any: """simple docstring""" _lowerCAmelCase = [True] * n _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): _lowerCAmelCase = i * 2 while index < n: _lowerCAmelCase = False _lowerCAmelCase = index + i _lowerCAmelCase = [2] for i in range(3 , __A , 2 ): if is_prime[i]: primes.append(__A ) return primes def __UpperCAmelCase ( snake_case_ : List[Any] = 999966663333 ) -> Dict: """simple docstring""" _lowerCAmelCase = math.floor(math.sqrt(__A ) ) + 100 _lowerCAmelCase = prime_sieve(__A ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = primes[prime_index] while (last_prime**2) <= limit: _lowerCAmelCase = primes[prime_index + 1] _lowerCAmelCase = last_prime**2 _lowerCAmelCase = next_prime**2 # Get numbers divisible by lps(current) _lowerCAmelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _lowerCAmelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _lowerCAmelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _lowerCAmelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
156
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowerCAmelCase : Dict = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class snake_case : """simple docstring""" _lowerCAmelCase = PegasusConfig _lowerCAmelCase = {} _lowerCAmelCase = 'gelu' def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=20 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , ) -> Union[str, Any]: """simple docstring""" snake_case__ : Dict = parent snake_case__ : List[str] = batch_size snake_case__ : int = seq_length snake_case__ : List[Any] = is_training snake_case__ : List[Any] = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : Any = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Tuple = pad_token_id snake_case__ : int = bos_token_id def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) snake_case__ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ : Tuple = np.concatenate([input_ids, eos_tensor] , axis=1 ) snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ : Optional[int] = prepare_pegasus_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, inputs_dict def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = 20 snake_case__ : Dict = model_class_name(lowerCamelCase ) snake_case__ : Dict = model.encode(inputs_dict['''input_ids'''] ) snake_case__ ,snake_case__ : Dict = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) snake_case__ : int = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) snake_case__ : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) snake_case__ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case__ : List[Any] = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) snake_case__ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) snake_case__ : Dict = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase , ) snake_case__ : Union[str, Any] = model.decode(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = 20 snake_case__ : Dict = model_class_name(lowerCamelCase ) snake_case__ : Any = model.encode(inputs_dict['''input_ids'''] ) snake_case__ ,snake_case__ : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) snake_case__ : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) snake_case__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) snake_case__ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case__ : Tuple = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) snake_case__ : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) snake_case__ : Tuple = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) snake_case__ : List[str] = model.decode(lowerCamelCase , lowerCamelCase , decoder_attention_mask=lowerCamelCase ) snake_case__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _A ( snake_case__ : Dict , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : List[Any]=None , ): if attention_mask is None: snake_case__ : Tuple = np.not_equal(__A , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: snake_case__ : Any = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _lowerCAmelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Tuple = FlaxPegasusModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=lowerCamelCase ) def lowercase__ ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ ,snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ ,snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ ,snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) snake_case__ : Any = model_class(lowerCamelCase ) @jax.jit def encode_jitted(lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): return model.encode(input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) with self.subTest('''JIT Enabled''' ): snake_case__ : List[str] = encode_jitted(**lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): snake_case__ : int = encode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ ,snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ : List[Any] = model_class(lowerCamelCase ) snake_case__ : List[Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) snake_case__ : Union[str, Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase , lowerCamelCase , lowerCamelCase ): return model.decode( decoder_input_ids=lowerCamelCase , decoder_attention_mask=lowerCamelCase , encoder_outputs=lowerCamelCase , ) with self.subTest('''JIT Enabled''' ): snake_case__ : Tuple = decode_jitted(**lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): snake_case__ : List[Any] = decode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: snake_case__ : Optional[int] = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=lowerCamelCase ) snake_case__ : Tuple = np.ones((1, 1) ) snake_case__ : int = model(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @slow def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[Any] = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) snake_case__ : Union[str, Any] = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) snake_case__ : Dict = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] snake_case__ : str = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] snake_case__ : Optional[int] = tokenizer(lowerCamelCase , return_tensors='''np''' , truncation=lowerCamelCase , max_length=512 , padding=lowerCamelCase ) snake_case__ : Union[str, Any] = model.generate(**lowerCamelCase , num_beams=2 ).sequences snake_case__ : List[str] = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) assert tgt_text == decoded
261
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : str=1_8 , SCREAMING_SNAKE_CASE__ : int=3_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=4_0_0 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : int=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : List[str]=[0.5, 0.5, 0.5] , ): '''simple docstring''' __a = size if size is not None else {"""height""": 1_8, """width""": 1_8} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std def __a ( self : int ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): """simple docstring""" a_ :str =DPTImageProcessor if is_vision_available() else None def __a ( self : Union[str, Any] ): '''simple docstring''' __a = DPTImageProcessingTester(self ) @property def __a ( self : Tuple ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """image_mean""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """image_std""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """do_normalize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """size""" ) ) def __a ( self : Dict ): '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) __a = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __a ( self : Tuple ): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __a = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __a ( self : Union[str, Any] ): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __a = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __a ( self : str ): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __a = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
582
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: int ) -> List[str]: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(__A , int(b / 2 ) ) * actual_power(__A , int(b / 2 ) ) else: return a * actual_power(__A , int(b / 2 ) ) * actual_power(__A , int(b / 2 ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Dict: '''simple docstring''' if b < 0: return 1 / actual_power(__A , __A ) return actual_power(__A , __A ) if __name__ == "__main__": print(power(-2, -3))
514
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node A_ = 4 A_ = 3 class snake_case ( lowerCAmelCase__ ): '''simple docstring''' pass def UpperCAmelCase ( UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' for shard in shards: for i in range(__A ): yield {"i": i, "shard": shard} def UpperCAmelCase ( )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ = int(os.environ['''RANK'''] ) SCREAMING_SNAKE_CASE_ = int(os.environ['''WORLD_SIZE'''] ) SCREAMING_SNAKE_CASE_ = ArgumentParser() parser.add_argument('''--streaming''' ,type=__A ) parser.add_argument('''--local_rank''' ,type=__A ) parser.add_argument('''--num_workers''' ,type=__A ,default=0 ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = args.streaming SCREAMING_SNAKE_CASE_ = args.num_workers SCREAMING_SNAKE_CASE_ = {'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__A )]} SCREAMING_SNAKE_CASE_ = IterableDataset.from_generator(__A ,gen_kwargs=__A ) if not streaming: SCREAMING_SNAKE_CASE_ = Dataset.from_list(list(__A ) ) SCREAMING_SNAKE_CASE_ = split_dataset_by_node(__A ,rank=__A ,world_size=__A ) SCREAMING_SNAKE_CASE_ = torch.utils.data.DataLoader(__A ,num_workers=__A ) SCREAMING_SNAKE_CASE_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
393
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _A = logging.get_logger(__name__) _A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _A = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _A = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _A = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _A = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } _A = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } _A = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } _A = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _A = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _A = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = DPRContextEncoderTokenizer class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = DPRQuestionEncoderTokenizer _A = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _A = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _A = R"""\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n """ @add_start_docstrings(lowerCAmelCase__ ) class lowerCamelCase : '''simple docstring''' def __call__(self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: UpperCAmelCase__ : Dict = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase__ : int = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] UpperCAmelCase__ : int = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] UpperCAmelCase__ : int = len(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages assert len(_lowerCamelCase ) == len( _lowerCamelCase ), F"""There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.""" UpperCAmelCase__ : List[Any] = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )["""input_ids"""] UpperCAmelCase__ : Dict = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )["""input_ids"""] UpperCAmelCase__ : Any = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: UpperCAmelCase__ : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase__ : Tuple = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16 , _lowerCamelCase = 64 , _lowerCamelCase = 4 , ): """simple docstring""" UpperCAmelCase__ : List[Any] = reader_input["""input_ids"""] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = reader_output[:3] UpperCAmelCase__ : List[Any] = len(_lowerCamelCase ) UpperCAmelCase__ : Any = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) UpperCAmelCase__ : int = [] for doc_id in sorted_docs: UpperCAmelCase__ : Optional[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase__ : Any = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase__ : Dict = len(_lowerCamelCase ) UpperCAmelCase__ : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[Any] = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase__ : int = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" UpperCAmelCase__ : Optional[Any] = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCAmelCase__ ) class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = READER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = READER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE = DPRReaderTokenizer
182
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
0
def a_ ( lowerCAmelCase_ : List[str] ): for i in range(len(__A ) - 1, 0, -1 ): __lowerCAmelCase = False for j in range(__A, 0, -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCAmelCase , __lowerCAmelCase = unsorted[j - 1], unsorted[j] __lowerCAmelCase = True for j in range(__A ): if unsorted[j] > unsorted[j + 1]: __lowerCAmelCase , __lowerCAmelCase = unsorted[j + 1], unsorted[j] __lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _snake_case : str = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[int] = [int(item) for item in user_input.split(',')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
53
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : Any = KandinskyVaaPriorPipeline snake_case__ : Optional[Any] = ['prompt'] snake_case__ : Tuple = ['prompt', 'negative_prompt'] snake_case__ : Union[str, Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case__ : int = False @property def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: return 1_0_0 @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: a_ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: torch.manual_seed(0 ) a_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE__ ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: torch.manual_seed(0 ) a_ : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 1_2, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a_ : Optional[int] = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a_ : int = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: torch.manual_seed(0 ) a_ : List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) a_ : Optional[Any] = CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE__ ) return model @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : int = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_2_4 , ) return image_processor def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : List[str] = self.dummy_prior a_ : Dict = self.dummy_image_encoder a_ : str = self.dummy_text_encoder a_ : Any = self.dummy_tokenizer a_ : Optional[Any] = self.dummy_image_processor a_ : List[str] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=10.0 , ) a_ : Union[str, Any] = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): a_ : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: a_ : List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : Any = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : Union[str, Any] = 'cpu' a_ : Optional[Any] = self.get_dummy_components() a_ : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) a_ : Any = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) a_ : List[Any] = output.image_embeds a_ : List[Any] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ , )[0] a_ : Dict = image[0, -1_0:] a_ : int = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) a_ : Optional[Any] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : Union[str, Any] = torch_device == 'cpu' a_ : Any = True a_ : Union[str, Any] = False self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , ) @skip_mps def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: a_ : Tuple = torch_device == 'cpu' a_ : Dict = False self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE__ , test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , )
570
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if len(__A ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase : str = min(__A ), max(__A ) _lowerCAmelCase : List[str] = int(max_value - min_value ) + 1 _lowerCAmelCase : Union[str, Any] = [[] for _ in range(__A )] for i in my_list: buckets[int(i - min_value )].append(__A ) return [v for bucket in buckets for v in sorted(__A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
500
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=13 ,SCREAMING_SNAKE_CASE_=7 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=99 ,SCREAMING_SNAKE_CASE_=32 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=37 ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=16 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=None ,): '''simple docstring''' snake_case : str = parent snake_case : Union[str, Any] = batch_size snake_case : List[str] = seq_length snake_case : Optional[Any] = is_training snake_case : Optional[Any] = use_input_mask snake_case : Any = use_token_type_ids snake_case : Optional[Any] = use_labels snake_case : Tuple = vocab_size snake_case : List[str] = hidden_size snake_case : Dict = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : Tuple = hidden_act snake_case : int = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : List[str] = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : Optional[Any] = type_sequence_label_size snake_case : List[str] = initializer_range snake_case : Dict = num_labels snake_case : str = num_choices snake_case : Any = scope def snake_case_ ( self ): '''simple docstring''' snake_case : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case : Optional[int] = None if self.use_input_mask: snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Dict = None if self.use_token_type_ids: snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case : str = None snake_case : List[Any] = None snake_case : List[Any] = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=SCREAMING_SNAKE_CASE_ ,initializer_range=self.initializer_range ,use_stable_embedding=SCREAMING_SNAKE_CASE_ ,) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[str] = OpenLlamaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case : Dict = model(SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ) snake_case : int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Dict = True snake_case : Union[str, Any] = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case : int = model( SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ,encoder_attention_mask=SCREAMING_SNAKE_CASE_ ,) snake_case : List[str] = model( SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ,) snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Tuple = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case : Any = model(SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Dict = True snake_case : Union[str, Any] = True snake_case : Optional[int] = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # first forward pass snake_case : Any = model( SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ,encoder_attention_mask=SCREAMING_SNAKE_CASE_ ,use_cache=SCREAMING_SNAKE_CASE_ ,) snake_case : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case : Dict = ids_tensor((self.batch_size, 3) ,config.vocab_size ) snake_case : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and snake_case : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) snake_case : Dict = torch.cat([input_mask, next_mask] ,dim=-1 ) snake_case : Dict = model( SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ,encoder_attention_mask=SCREAMING_SNAKE_CASE_ ,output_hidden_states=SCREAMING_SNAKE_CASE_ ,)["""hidden_states"""][0] snake_case : List[str] = model( SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ,encoder_attention_mask=SCREAMING_SNAKE_CASE_ ,past_key_values=SCREAMING_SNAKE_CASE_ ,output_hidden_states=SCREAMING_SNAKE_CASE_ ,)["""hidden_states"""][0] # select random slice snake_case : Optional[int] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() snake_case : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,atol=1E-3 ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Union[str, Any] = config_and_inputs snake_case : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( snake_case , snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[Any] = OpenLlamaModelTester(self ) snake_case : Dict = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE_ ,hidden_size=37 ) def snake_case_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : Union[str, Any] = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Any = 3 snake_case : str = input_dict["""input_ids"""] snake_case : int = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) snake_case : int = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) snake_case : Dict = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case : int = model(SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Union[str, Any] = 3 snake_case : Tuple = """single_label_classification""" snake_case : Union[str, Any] = input_dict["""input_ids"""] snake_case : Any = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) snake_case : Tuple = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case : Dict = model(SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case : int = 3 snake_case : List[Any] = """multi_label_classification""" snake_case : Any = input_dict["""input_ids"""] snake_case : str = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case : Any = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case : List[str] = model(SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def snake_case_ ( self ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Any = ids_tensor([1, 10] ,config.vocab_size ) snake_case : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case : Optional[int] = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) original_model.to(SCREAMING_SNAKE_CASE_ ) original_model.eval() snake_case : Any = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state snake_case : Tuple = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case : Union[str, Any] = {"""type""": scaling_type, """factor""": 10.0} snake_case : Union[str, Any] = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) scaled_model.to(SCREAMING_SNAKE_CASE_ ) scaled_model.eval() snake_case : List[Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state snake_case : Dict = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,atol=1E-5 ) )
36
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
def __a ( lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') __A = int(input('''Enter number: ''').strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
593
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
0
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
156
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _lowerCAmelCase : Dict = "hf-internal-testing/tiny-random-bert" _lowerCAmelCase : str = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") _lowerCAmelCase : Dict = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : List[str] = cached_file(lowerCamelCase , lowerCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCamelCase , lowerCamelCase ) ) ) with open(os.path.join(lowerCamelCase , '''refs''' , '''main''' ) ) as f: snake_case__ : Dict = f.read() self.assertEqual(lowerCamelCase , os.path.join(lowerCamelCase , '''snapshots''' , lowerCamelCase , lowerCamelCase ) ) self.assertTrue(os.path.isfile(lowerCamelCase ) ) # File is cached at the same place the second time. snake_case__ : Optional[int] = cached_file(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) # Using a specific revision to test the full commit hash. snake_case__ : Optional[Any] = cached_file(lowerCamelCase , lowerCamelCase , revision='''9b8c223''' ) self.assertEqual(lowerCamelCase , os.path.join(lowerCamelCase , '''snapshots''' , lowerCamelCase , lowerCamelCase ) ) def lowercase__ ( self ) -> Dict: """simple docstring""" with self.assertRaisesRegex(lowerCamelCase , '''is not a valid model identifier''' ): snake_case__ : str = cached_file('''tiny-random-bert''' , lowerCamelCase ) with self.assertRaisesRegex(lowerCamelCase , '''is not a valid git identifier''' ): snake_case__ : str = cached_file(lowerCamelCase , lowerCamelCase , revision='''aaaa''' ) with self.assertRaisesRegex(lowerCamelCase , '''does not appear to have a file named''' ): snake_case__ : Union[str, Any] = cached_file(lowerCamelCase , '''conf''' ) def lowercase__ ( self ) -> int: """simple docstring""" with self.assertRaisesRegex(lowerCamelCase , '''does not appear to have a file named''' ): snake_case__ : List[Any] = cached_file(lowerCamelCase , '''conf''' ) with open(os.path.join(lowerCamelCase , '''refs''' , '''main''' ) ) as f: snake_case__ : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase , '''.no_exist''' , lowerCamelCase , '''conf''' ) ) ) snake_case__ : int = cached_file(lowerCamelCase , '''conf''' , _raise_exceptions_for_missing_entries=lowerCamelCase ) self.assertIsNone(lowerCamelCase ) snake_case__ : str = cached_file(lowerCamelCase , '''conf''' , local_files_only=lowerCamelCase , _raise_exceptions_for_missing_entries=lowerCamelCase ) self.assertIsNone(lowerCamelCase ) snake_case__ : Any = mock.Mock() snake_case__ : Optional[int] = 500 snake_case__ : str = {} snake_case__ : str = HTTPError snake_case__ : Optional[int] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCamelCase ) as mock_head: snake_case__ : str = cached_file(lowerCamelCase , '''conf''' , _raise_exceptions_for_connection_errors=lowerCamelCase ) self.assertIsNone(lowerCamelCase ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self ) -> int: """simple docstring""" self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowerCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowerCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowerCamelCase ) ) def lowercase__ ( self ) -> str: """simple docstring""" self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCamelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , lowerCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCamelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , lowerCamelCase , revision='''ahaha''' ) snake_case__ : Tuple = get_file_from_repo('''bert-base-cased''' , lowerCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case__ : Tuple = json.loads(open(lowerCamelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def lowercase__ ( self ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Optional[int] = Path(lowerCamelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(lowerCamelCase , '''a.txt''' ) , str(lowerCamelCase ) ) self.assertIsNone(get_file_from_repo(lowerCamelCase , '''b.txt''' ) )
261
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Union[str, Any] =[ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __a = deprecated_arg[3:] __a = not kwargs.pop(SCREAMING_SNAKE_CASE__ ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __a = kwargs.pop("""tpu_name""" , self.tpu_name ) __a = kwargs.pop("""device_idx""" , self.device_idx ) __a = kwargs.pop("""eager_mode""" , self.eager_mode ) __a = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ :str =field( default=snake_case__ , metadata={"""help""": """Name of TPU"""} , ) a_ :int =field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) a_ :bool =field(default=snake_case__ , metadata={"""help""": """Benchmark models in eager model."""} ) a_ :bool =field( default=snake_case__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __a ( self : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""tf"""] ) __a = None if self.tpu: try: if self.tpu_name: __a = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __a = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __a = None return tpu @cached_property def __a ( self : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __a = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) __a = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU __a = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def __a ( self : List[str] ): '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def __a ( self : Any ): '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def __a ( self : List[str] ): '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def __a ( self : Optional[int] ): '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __a ( self : Tuple ): '''simple docstring''' return self.n_gpu > 0
582
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase__ = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase__ = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class a__ : """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = 42 class a__ : """simple docstring""" def __init__( self , lowercase ) -> None: '''simple docstring''' A__ = None for i in sorted(lowercase , reverse=lowercase ): A__ = Node(lowercase , self.head ) def __iter__( self ) -> Iterator[int]: '''simple docstring''' A__ = self.head while node: yield node.data A__ = node.next_node def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self ) -> str: '''simple docstring''' return " -> ".join([str(lowercase ) for node in self] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Tuple: '''simple docstring''' return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
514
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = str(__A ) return len(__A ) == 9 and set(__A ) == set('''123456789''' ) def UpperCAmelCase ( )-> int: '''simple docstring''' for base_num in range(9999 ,4999 ,-1 ): SCREAMING_SNAKE_CASE_ = 100002 * base_num if is_9_pandigital(__A ): return candidate for base_num in range(333 ,99 ,-1 ): SCREAMING_SNAKE_CASE_ = 1002003 * base_num if is_9_pandigital(__A ): return candidate return None if __name__ == "__main__": print(F'{solution() = }')
393
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
"""simple docstring""" def a__ ( lowerCAmelCase = 1 , lowerCAmelCase = 10_00 ) -> Dict: UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : Any = 0 for divide_by_number in range(__A , digit + 1 ): UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : str = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__A ): UpperCAmelCase__ : Tuple = len(__A ) UpperCAmelCase__ : int = divide_by_number else: has_been_divided.append(__A ) UpperCAmelCase__ : str = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
182
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=9_9 , lowerCAmelCase_ : Tuple=3_6 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[Any]=5_1_2 , lowerCAmelCase_ : str=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Optional[Any]=6 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str=1_0_0_0 , ) -> List[str]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = text_seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = coordinate_size __lowerCAmelCase = shape_size __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase = text_seq_length __lowerCAmelCase = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase = self.text_seq_length + self.image_seq_length def lowercase ( self : str ) -> Optional[int]: __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase = bbox[i, j, 3] __lowerCAmelCase = bbox[i, j, 1] __lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase = bbox[i, j, 2] __lowerCAmelCase = bbox[i, j, 0] __lowerCAmelCase = t __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> List[str]: __lowerCAmelCase = LayoutLMvaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # text + image __lowerCAmelCase = model(lowerCAmelCase_ , pixel_values=lowerCAmelCase_ ) __lowerCAmelCase = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase = model(pixel_values=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = LayoutLMvaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = LayoutLMvaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int ) -> Any: __lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = False a_ = False a_ = False a_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) a_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def lowercase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any ) -> Dict: return True def lowercase ( self : int ) -> Dict: __lowerCAmelCase = LayoutLMvaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str]=False ) -> List[str]: __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) if model_class in get_values(lowerCAmelCase_ ): __lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCAmelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase_ ): __lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in get_values(lowerCAmelCase_ ): __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in [ *get_values(lowerCAmelCase_ ), ]: __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in [ *get_values(lowerCAmelCase_ ), ]: __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) return inputs_dict def lowercase ( self : List[Any] ) -> Dict: self.config_tester.run_common_tests() def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) @slow def lowercase ( self : Union[str, Any] ) -> List[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = LayoutLMvaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : List[Any] ) -> Optional[int]: return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) if is_vision_available() else None @slow def lowercase ( self : List[Any] ) -> Any: __lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).pixel_values.to(lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([[1, 2]] ) __lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __lowerCAmelCase = model( input_ids=input_ids.to(lowerCAmelCase_ ) , bbox=bbox.to(lowerCAmelCase_ ) , pixel_values=pixel_values.to(lowerCAmelCase_ ) , ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
from __future__ import annotations import math def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> str: """simple docstring""" if num <= 0: a_ : Any = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(__A ) a_ : Dict = [True] * (num + 1) a_ : Union[str, Any] = [] a_ : Optional[int] = 2 a_ : Optional[int] = int(math.sqrt(__A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__A ) # Set multiples of start be False for i in range(start * start , num + 1 , __A ): if sieve[i] is True: a_ : Optional[int] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__A ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
570
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
from math import sqrt def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : str = 0 _lowerCAmelCase : Optional[int] = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
500
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
0
from sklearn.metrics import mean_squared_error import datasets __lowercase : List[Any] = '''\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n''' __lowercase : List[Any] = '''\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n''' __lowercase : List[Any] = '''\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] ,) def snake_case_ ( self ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_="uniform_average" ,SCREAMING_SNAKE_CASE_=True ): '''simple docstring''' snake_case : Optional[int] = mean_squared_error( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,sample_weight=SCREAMING_SNAKE_CASE_ ,multioutput=SCREAMING_SNAKE_CASE_ ,squared=SCREAMING_SNAKE_CASE_ ) return {"mse": mse}
36
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class lowercase ( snake_case__): """simple docstring""" a__ : str = 'owlvit_text_model' def __init__( self : int , __UpperCAmelCase : Any=49_408 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : Optional[Any]=2_048 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : Union[str, Any]=8 , __UpperCAmelCase : Optional[int]=16 , __UpperCAmelCase : Optional[Any]="quick_gelu" , __UpperCAmelCase : Optional[Any]=1E-5 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : List[Any]=49_406 , __UpperCAmelCase : Optional[Any]=49_407 , **__UpperCAmelCase : List[Any] , ) -> Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= vocab_size UpperCAmelCase_= hidden_size UpperCAmelCase_= intermediate_size UpperCAmelCase_= num_hidden_layers UpperCAmelCase_= num_attention_heads UpperCAmelCase_= max_position_embeddings UpperCAmelCase_= hidden_act UpperCAmelCase_= layer_norm_eps UpperCAmelCase_= attention_dropout UpperCAmelCase_= initializer_range UpperCAmelCase_= initializer_factor @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] , __UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) UpperCAmelCase_, UpperCAmelCase_= cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCAmelCase_= config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase ( snake_case__): """simple docstring""" a__ : Dict = 'owlvit_vision_model' def __init__( self : int , __UpperCAmelCase : Optional[Any]=768 , __UpperCAmelCase : Any=3_072 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Tuple=768 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : Union[str, Any]="quick_gelu" , __UpperCAmelCase : Tuple=1E-5 , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Optional[Any]=1.0 , **__UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) UpperCAmelCase_= hidden_size UpperCAmelCase_= intermediate_size UpperCAmelCase_= num_hidden_layers UpperCAmelCase_= num_attention_heads UpperCAmelCase_= num_channels UpperCAmelCase_= image_size UpperCAmelCase_= patch_size UpperCAmelCase_= hidden_act UpperCAmelCase_= layer_norm_eps UpperCAmelCase_= attention_dropout UpperCAmelCase_= initializer_range UpperCAmelCase_= initializer_factor @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) UpperCAmelCase_, UpperCAmelCase_= cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCAmelCase_= config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase ( snake_case__): """simple docstring""" a__ : Optional[int] = 'owlvit' a__ : List[str] = True def __init__( self : Tuple , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : List[str]=2.6_592 , __UpperCAmelCase : Dict=True , **__UpperCAmelCase : List[Any] , ) -> Optional[int]: super().__init__(**__UpperCAmelCase ) if text_config is None: UpperCAmelCase_= {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase_= {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) UpperCAmelCase_= OwlViTTextConfig(**__UpperCAmelCase ) UpperCAmelCase_= OwlViTVisionConfig(**__UpperCAmelCase ) UpperCAmelCase_= projection_dim UpperCAmelCase_= logit_scale_init_value UpperCAmelCase_= return_dict UpperCAmelCase_= 1.0 @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , __UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) UpperCAmelCase_, UpperCAmelCase_= cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase_= {} UpperCAmelCase_= text_config UpperCAmelCase_= vision_config return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: UpperCAmelCase_= copy.deepcopy(self.__dict__ ) UpperCAmelCase_= self.text_config.to_dict() UpperCAmelCase_= self.vision_config.to_dict() UpperCAmelCase_= self.__class__.model_type return output class lowercase ( snake_case__): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1E-4 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] = -1 , __UpperCAmelCase : Dict = -1 , __UpperCAmelCase : int = None , ) -> Mapping[str, Any]: UpperCAmelCase_= super().generate_dummy_inputs( processor.tokenizer , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , framework=__UpperCAmelCase ) UpperCAmelCase_= super().generate_dummy_inputs( processor.image_processor , batch_size=__UpperCAmelCase , framework=__UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 14
593
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Tuple: """simple docstring""" assert column_title.isupper() _lowerCAmelCase = 0 _lowerCAmelCase = len(__A ) - 1 _lowerCAmelCase = 0 while index >= 0: _lowerCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
156
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' from __future__ import annotations from typing import Any class snake_case : """simple docstring""" def __init__( self , lowerCamelCase ) -> None: """simple docstring""" snake_case__ : Any = num_of_nodes snake_case__ : Union[str, Any] = [] snake_case__ : List[Any] = {} def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: snake_case__ : int = self.find_component(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" if component_size[u_node] <= component_size[v_node]: snake_case__ : Union[str, Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: snake_case__ : str = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def lowercase__ ( self ) -> None: """simple docstring""" snake_case__ : Optional[int] = [] snake_case__ : Optional[int] = 0 snake_case__ : Any = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) snake_case__ : List[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: snake_case__ ,snake_case__ ,snake_case__ : Dict = edge snake_case__ : List[str] = self.m_component[u] snake_case__ : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): snake_case__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ ,snake_case__ ,snake_case__ : str = edge snake_case__ : int = self.m_component[u] snake_case__ : int = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 snake_case__ : Any = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def _A ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
261
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" if isinstance(__A , torch.Tensor ): return image elif isinstance(__A , PIL.Image.Image ): __a = [image] if isinstance(image[0] , PIL.Image.Image ): __a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] __a = np.concatenate(__A , axis=0 ) __a = np.array(__A ).astype(np.floataa ) / 255.0 __a = image.transpose(0 , 3 , 1 , 2 ) __a = 2.0 * image - 1.0 __a = torch.from_numpy(__A ) elif isinstance(image[0] , torch.Tensor ): __a = torch.cat(__A , dim=0 ) return image def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0.9_995 ) -> Union[str, Any]: """simple docstring""" if not isinstance(__A , np.ndarray ): __a = True __a = va.device __a = va.cpu().numpy() __a = va.cpu().numpy() __a = np.sum(va * va / (np.linalg.norm(__A ) * np.linalg.norm(__A )) ) if np.abs(__A ) > DOT_THRESHOLD: __a = (1 - t) * va + t * va else: __a = np.arccos(__A ) __a = np.sin(__A ) __a = theta_a * t __a = np.sin(__A ) __a = np.sin(theta_a - theta_t ) / sin_theta_a __a = sin_theta_t / sin_theta_a __a = sa * va + sa * va if inputs_are_torch: __a = torch.from_numpy(__A ).to(__A ) return va def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __a = F.normalize(__A , dim=-1 ) __a = F.normalize(__A , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for param in model.parameters(): __a = value class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Tuple=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , clip_model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , coca_model=SCREAMING_SNAKE_CASE__ , coca_tokenizer=SCREAMING_SNAKE_CASE__ , coca_transform=SCREAMING_SNAKE_CASE__ , ) __a = ( feature_extractor.size if isinstance(feature_extractor.size , SCREAMING_SNAKE_CASE__ ) else feature_extractor.size["""shortest_edge"""] ) __a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , SCREAMING_SNAKE_CASE__ ) set_requires_grad(self.clip_model , SCREAMING_SNAKE_CASE__ ) def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE__ ) def __a ( self : Any ): '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' set_requires_grad(self.vae , SCREAMING_SNAKE_CASE__ ) def __a ( self : List[Any] ): '''simple docstring''' set_requires_grad(self.vae , SCREAMING_SNAKE_CASE__ ) def __a ( self : str ): '''simple docstring''' set_requires_grad(self.unet , SCREAMING_SNAKE_CASE__ ) def __a ( self : str ): '''simple docstring''' set_requires_grad(self.unet , SCREAMING_SNAKE_CASE__ ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' __a = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE__ ) __a = max(num_inference_steps - init_timestep , 0 ) __a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=None ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE__ )}''' ) __a = image.to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE__ ) ] __a = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) else: __a = self.vae.encode(SCREAMING_SNAKE_CASE__ ).latent_dist.sample(SCREAMING_SNAKE_CASE__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __a = 0.1_8_2_1_5 * init_latents __a = init_latents.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) __a = randn_tensor(init_latents.shape , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) # get latents __a = self.scheduler.add_noise(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a = init_latents return latents def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' __a = self.coca_transform(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def __a ( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a = self.feature_extractor.preprocess(SCREAMING_SNAKE_CASE__ ) __a = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() __a = self.clip_model.get_image_features(SCREAMING_SNAKE_CASE__ ) __a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) __a = image_embeddings_clip.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , ): '''simple docstring''' __a = latents.detach().requires_grad_() __a = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # predict the noise residual __a = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __a = self.scheduler.alphas_cumprod[timestep] __a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __a = torch.sqrt(SCREAMING_SNAKE_CASE__ ) __a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , SCREAMING_SNAKE_CASE__ ): __a = self.scheduler.sigmas[index] __a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __a = 1 / 0.1_8_2_1_5 * sample __a = self.vae.decode(SCREAMING_SNAKE_CASE__ ).sample __a = (image / 2 + 0.5).clamp(0 , 1 ) __a = transforms.Resize(self.feature_extractor_size )(SCREAMING_SNAKE_CASE__ ) __a = self.normalize(SCREAMING_SNAKE_CASE__ ).to(latents.dtype ) __a = self.clip_model.get_image_features(SCREAMING_SNAKE_CASE__ ) __a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) __a = spherical_dist_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).mean() * clip_guidance_scale __a = -torch.autograd.grad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] if isinstance(self.scheduler , SCREAMING_SNAKE_CASE__ ): __a = latents.detach() + grads * (sigma**2) __a = noise_pred_original else: __a = noise_pred_original - torch.sqrt(SCREAMING_SNAKE_CASE__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] = None , SCREAMING_SNAKE_CASE__ : int = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any] = 5_1_2 , SCREAMING_SNAKE_CASE__ : List[str] = 0.6 , SCREAMING_SNAKE_CASE__ : Any = 5_0 , SCREAMING_SNAKE_CASE__ : Any = 7.5 , SCREAMING_SNAKE_CASE__ : Tuple = 1 , SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0.0 , SCREAMING_SNAKE_CASE__ : Dict = 1_0_0 , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : Optional[int] = "pil" , SCREAMING_SNAKE_CASE__ : Optional[Any] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.8 , SCREAMING_SNAKE_CASE__ : int = 0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.1 , ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(SCREAMING_SNAKE_CASE__ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(SCREAMING_SNAKE_CASE__ , torch.Generator ) and batch_size > 1: __a = [generator] + [None] * (batch_size - 1) __a = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] __a = [x[0] for x in coca_is_none if x[1]] __a = """, """.join(SCREAMING_SNAKE_CASE__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) __a = self.get_image_description(SCREAMING_SNAKE_CASE__ ) if style_prompt is None: if len(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) __a = self.get_image_description(SCREAMING_SNAKE_CASE__ ) # get prompt text embeddings for content and style __a = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" , ) __a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __a = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" , ) __a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __a = slerp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # duplicate text embeddings for each generation per prompt __a = text_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) # set timesteps __a = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __a = {} if accepts_offset: __a = 1 self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __a , __a = self.get_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.device ) __a = timesteps[:1].repeat(SCREAMING_SNAKE_CASE__ ) # Preprocess image __a = preprocess(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a = self.prepare_latents( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE__ ) __a = preprocess(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a = self.prepare_latents( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE__ ) __a = slerp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if clip_guidance_scale > 0: __a = self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a = self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a = slerp( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a = content_text_input.input_ids.shape[-1] __a = self.tokenizer([""""""] , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __a = uncond_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __a = torch.randn(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE__ ).to( self.device ) else: __a = torch.randn(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta # check if the scheduler accepts generator __a = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __a = generator with self.progress_bar(total=SCREAMING_SNAKE_CASE__ ): for i, t in enumerate(SCREAMING_SNAKE_CASE__ ): # expand the latents if we are doing classifier free guidance __a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # predict the noise residual __a = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __a , __a = noise_pred.chunk(2 ) __a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __a , __a = self.cond_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __a = 1 / 0.1_8_2_1_5 * latents __a = self.vae.decode(SCREAMING_SNAKE_CASE__ ).sample __a = (image / 2 + 0.5).clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE__ , nsfw_content_detected=SCREAMING_SNAKE_CASE__ )
582
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCAmelCase__ = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 2_5_6 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Tuple: '''simple docstring''' if len(__A ) < MIN_NUM_TOKENS: return None A__ = MinHash(num_perm=__A ) for token in set(__A ): min_hash.update(token.encode() ) return min_hash def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[Any]: '''simple docstring''' return {t for t in NON_ALPHA.split(__A ) if len(t.strip() ) > 0} class a__ : """simple docstring""" def __init__( self , *, lowercase = 0.85 , ) -> Optional[int]: '''simple docstring''' A__ = duplication_jaccard_threshold A__ = NUM_PERM A__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) A__ = defaultdict(lowercase ) def UpperCamelCase ( self , lowercase , lowercase ) -> None: '''simple docstring''' A__ = self._index.query(lowercase ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(lowercase , lowercase ) if len(lowercase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase ) def UpperCamelCase ( self ) -> List[List[Dict]]: '''simple docstring''' A__ = [] for base, duplicates in self._duplicate_clusters.items(): A__ = [base] + list(lowercase ) # reformat the cluster to be a list of dict A__ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(lowercase ) return duplicate_clusters def UpperCamelCase ( self , lowercase ) -> None: '''simple docstring''' A__ = self.get_duplicate_clusters() with open(lowercase , "w" ) as f: json.dump(lowercase , lowercase ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Tuple: '''simple docstring''' A__ , A__ = element A__ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[Any]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[Any]: '''simple docstring''' A__ = DuplicationIndex(duplication_jaccard_threshold=__A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A ) ) , max_queue_size=1_0_0 ) ): di.add(__A , __A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: List[str] ) -> str: '''simple docstring''' A__ = get_tokens(__A ) A__ = get_tokens(__A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCAmelCase__ = None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: List[Any] ) -> List[Any]: '''simple docstring''' A__ = [] for elementa in cluster: A__ = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: A__ = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(__A , __A ) >= jaccard_threshold: elementa["copies"] += 1 break else: A__ = 1 extremes.append(__A ) return extremes def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: int ) -> str: '''simple docstring''' global _shared_dataset A__ = dataset A__ = [] A__ = partial(_find_cluster_extremes_shared , jaccard_threshold=__A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A ) , ): extremes_list.append(__A ) return extremes_list def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: str = 0.85 ) -> Any: '''simple docstring''' A__ = make_duplicate_clusters(__A , __A ) A__ = {x["base_index"] for cluster in duplicate_clusters for x in cluster} A__ = {} A__ = find_extremes(__A , __A , __A ) for extremes in extremes_clusters: for element in extremes: A__ = element A__ = duplicate_indices - set(extreme_dict.keys() ) A__ = dataset.filter(lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : idx not in remove_indices , with_indices=__A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: A__ = element["base_index"] in extreme_dict if element["is_extreme"]: A__ = extreme_dict[element["base_index"]]["copies"] print(F'Original dataset size: {len(__A )}' ) print(F'Number of duplicate clusters: {len(__A )}' ) print(F'Files in duplicate cluster: {len(__A )}' ) print(F'Unique files in duplicate cluster: {len(__A )}' ) print(F'Filtered dataset size: {len(__A )}' ) return ds_filter, duplicate_clusters
514
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) , """Tatoeba directory does not exist.""" ) class snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCAmelCase_ ) @slow def _lowercase ( self : int ) -> Dict: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def _lowercase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=lowerCAmelCase_ ) assert mmeta["long_pair"] == "heb-eng"
393
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _A = logging.get_logger(__name__) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'upernet' def __init__(self , _lowerCamelCase=None , _lowerCamelCase=512 , _lowerCamelCase=0.02 , _lowerCamelCase=[1, 2, 3, 6] , _lowerCamelCase=True , _lowerCamelCase=0.4 , _lowerCamelCase=384 , _lowerCamelCase=256 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=255 , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase__ : Tuple = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : Any = backbone_config.get("""model_type""" ) UpperCAmelCase__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : List[Any] = config_class.from_dict(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = backbone_config UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : List[str] = pool_scales UpperCAmelCase__ : List[Any] = use_auxiliary_head UpperCAmelCase__ : Tuple = auxiliary_loss_weight UpperCAmelCase__ : Dict = auxiliary_in_channels UpperCAmelCase__ : Union[str, Any] = auxiliary_channels UpperCAmelCase__ : Optional[Any] = auxiliary_num_convs UpperCAmelCase__ : List[Any] = auxiliary_concat_input UpperCAmelCase__ : Any = loss_ignore_index def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : Optional[int] = self.backbone_config.to_dict() UpperCAmelCase__ : Optional[int] = self.__class__.model_type return output
182
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
0
def a_ ( lowerCAmelCase_ : Union[str, Any] ): if isinstance(__A, __A ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__A, __A ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" __lowerCAmelCase = False if num < 0: __lowerCAmelCase = True __lowerCAmelCase = -num __lowerCAmelCase = [] while num > 0: binary.insert(0, num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__A ) for e in binary ) return "0b" + "".join(str(__A ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
53
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = None snake_case__ : Optional[Any] = None @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: return self.feat_extract_tester.prepare_feat_extract_dict() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'feature_size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'sampling_rate' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'padding_value' ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: a_ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() a_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) a_ : int = feat_extract.model_input_names[0] a_ : str = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) for x, y in zip(SCREAMING_SNAKE_CASE__ , processed_features[input_name] ) ) ) a_ : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) a_ : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: a_ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) a_ : str = feat_extract.model_input_names[0] a_ : Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) a_ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: a_ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: a_ : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE__ ) a_ : str = self.feature_extraction_class(**self.feat_extract_dict ) a_ : Any = feat_extract.model_input_names[0] a_ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) a_ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: a_ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> Any: def _inputs_have_equal_length(SCREAMING_SNAKE_CASE__ : Optional[int] ): a_ : Dict = len(input[0] ) for input_slice in input[1:]: if len(SCREAMING_SNAKE_CASE__ ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): return False for input_slice_a, input_slice_a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not np.allclose(np.asarray(SCREAMING_SNAKE_CASE__ ) , np.asarray(SCREAMING_SNAKE_CASE__ ) , atol=1E-3 ): return False return True a_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) a_ : int = self.feat_extract_tester.prepare_inputs_for_common(numpify=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = feat_extract.model_input_names[0] a_ : List[Any] = BatchFeature({input_name: speech_inputs} ) a_ : Optional[Any] = self.feat_extract_tester.seq_length_diff a_ : Union[str, Any] = self.feat_extract_tester.max_seq_length + pad_diff a_ : List[str] = self.feat_extract_tester.min_seq_length a_ : Union[str, Any] = self.feat_extract_tester.batch_size a_ : Optional[int] = self.feat_extract_tester.feature_size # test padding for List[int] + numpy a_ : Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = input_a[input_name] a_ : int = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' ) a_ : str = input_a[input_name] a_ : Optional[int] = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[-1] ) ) a_ : List[Any] = input_a[input_name] a_ : Tuple = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='np' ) a_ : Union[str, Any] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(SCREAMING_SNAKE_CASE__ ): feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' )[input_name] a_ : List[str] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) a_ : Optional[Any] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy a_ : Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=1_0 ) a_ : int = input_a[input_name] a_ : Tuple = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , pad_to_multiple_of=1_0 ) a_ : Tuple = input_a[input_name] a_ : Optional[int] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , pad_to_multiple_of=1_0 , max_length=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = input_a[input_name] a_ : Union[str, Any] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , pad_to_multiple_of=1_0 , max_length=SCREAMING_SNAKE_CASE__ , return_tensors='np' , ) a_ : Any = input_a[input_name] self.assertTrue(all(len(SCREAMING_SNAKE_CASE__ ) % 1_0 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a_ : int = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(SCREAMING_SNAKE_CASE__ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct a_ : int = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : str=False ) -> List[Any]: def _inputs_have_equal_length(SCREAMING_SNAKE_CASE__ : List[Any] ): a_ : int = len(input[0] ) for input_slice in input[1:]: if len(SCREAMING_SNAKE_CASE__ ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): return False for input_slice_a, input_slice_a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not np.allclose(np.asarray(SCREAMING_SNAKE_CASE__ ) , np.asarray(SCREAMING_SNAKE_CASE__ ) , atol=1E-3 ): return False return True a_ : int = self.feature_extraction_class(**self.feat_extract_dict ) a_ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=SCREAMING_SNAKE_CASE__ ) a_ : Any = feat_extract.model_input_names[0] a_ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest a_ : Union[str, Any] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=SCREAMING_SNAKE_CASE__ ) a_ : int = input_a[input_name] a_ : Any = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[0] ) ) a_ : str = input_a[input_name] self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) # truncate to smallest with np a_ : Optional[Any] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=SCREAMING_SNAKE_CASE__ , ) a_ : Tuple = input_a[input_name] a_ : List[Any] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) a_ : Optional[Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) # truncate to middle a_ : List[Any] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='np' , ) a_ : Dict = input_a[input_name] a_ : List[Any] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=SCREAMING_SNAKE_CASE__ ) a_ : Any = input_a[input_name] a_ : Tuple = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) a_ : List[Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(SCREAMING_SNAKE_CASE__ ): feat_extract.pad(SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(SCREAMING_SNAKE_CASE__ ): feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , truncation=SCREAMING_SNAKE_CASE__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(SCREAMING_SNAKE_CASE__ ): feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , truncation=SCREAMING_SNAKE_CASE__ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy a_ : int = 1_2 a_ : str = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , ) a_ : Union[str, Any] = input_a[input_name] a_ : Optional[int] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , ) a_ : Any = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of a_ : Union[str, Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: a_ : Any = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: self._check_padding(numpify=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self._check_padding(numpify=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: self._check_truncation(numpify=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: self._check_truncation(numpify=SCREAMING_SNAKE_CASE__ ) @require_torch def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) a_ : str = self.feat_extract_tester.prepare_inputs_for_common() a_ : Optional[int] = feat_extract.model_input_names[0] a_ : Tuple = BatchFeature({input_name: speech_inputs} ) a_ : Tuple = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='np' )[input_name] a_ : List[str] = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) a_ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() a_ : Tuple = feat_extract.model_input_names[0] a_ : str = BatchFeature({input_name: speech_inputs} ) a_ : str = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='np' )[input_name] a_ : str = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : int = self.feat_extract_dict a_ : int = True a_ : List[Any] = self.feature_extraction_class(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() a_ : Optional[int] = [len(SCREAMING_SNAKE_CASE__ ) for x in speech_inputs] a_ : List[Any] = feat_extract.model_input_names[0] a_ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) a_ : Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : Optional[Any] = self.feat_extract_dict a_ : Dict = True a_ : Optional[int] = self.feature_extraction_class(**SCREAMING_SNAKE_CASE__ ) a_ : Dict = self.feat_extract_tester.prepare_inputs_for_common() a_ : int = [len(SCREAMING_SNAKE_CASE__ ) for x in speech_inputs] a_ : Union[str, Any] = feat_extract.model_input_names[0] a_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) a_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = feat_extract.pad( SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
570
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( a): def snake_case__ ( self, __a): '''simple docstring''' with open(__a, encoding="utf-8") as input_file: _lowerCAmelCase : Union[str, Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)") _lowerCAmelCase : Optional[Any] = input_file.read() _lowerCAmelCase : Union[str, Any] = regexp.search(__a) return match def snake_case__ ( self, __a): '''simple docstring''' with open(__a, encoding="utf-8") as input_file: _lowerCAmelCase : List[Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()", re.DOTALL) _lowerCAmelCase : Union[str, Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _lowerCAmelCase : Union[str, Any] = regexp.finditer(__a) _lowerCAmelCase : List[str] = [match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Path("./datasets") _lowerCAmelCase : Any = list(dataset_paths.absolute().glob("**/*.py")) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__a)): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = Path("./datasets") _lowerCAmelCase : Union[str, Any] = list(dataset_paths.absolute().glob("**/*.py")) for dataset in dataset_files: if self._no_print_statements(str(__a)): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead.")
500
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
from typing import TYPE_CHECKING from ...utils import _LazyModule __lowercase : int = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
from __future__ import annotations def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if len(__A ) < k or k < 0: raise ValueError("""Invalid Input""" ) UpperCAmelCase_= UpperCAmelCase_= sum(array[:k] ) for i in range(len(__A ) - k ): UpperCAmelCase_= current_sum - array[i] + array[i + k] UpperCAmelCase_= max(__A ,__A ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __A = [randint(-1000, 1000) for i in range(100)] __A = randint(0, 110) print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
593
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=4 , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def A__ (self ): '''simple docstring''' _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = FlaxAlbertModelTester(self ) @slow def A__ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase ) @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _lowerCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] _lowerCAmelCase = (1, 11, 768) self.assertEqual(output.shape , lowerCamelCase ) _lowerCAmelCase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase , atol=1e-4 ) )
156
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCAmelCase : List[Any] = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
261
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Dict =['image_processor', 'tokenizer'] a_ :Union[str, Any] ='OwlViTImageProcessor' a_ :Optional[int] =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , SCREAMING_SNAKE_CASE__ , ) __a = kwargs.pop("""feature_extractor""" ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : str , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : int="max_length" , SCREAMING_SNAKE_CASE__ : Optional[Any]="np" , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not isinstance(text[0] , SCREAMING_SNAKE_CASE__ )): __a = [self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(text[0] , SCREAMING_SNAKE_CASE__ ): __a = [] # Maximum number of queries across batch __a = max([len(SCREAMING_SNAKE_CASE__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(SCREAMING_SNAKE_CASE__ ) != max_num_queries: __a = t + [""" """] * (max_num_queries - len(SCREAMING_SNAKE_CASE__ )) __a = self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) encodings.append(SCREAMING_SNAKE_CASE__ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": __a = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __a = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __a = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __a = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __a = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) __a = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __a = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __a = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) __a = BatchEncoding() __a = input_ids __a = attention_mask if query_images is not None: __a = BatchEncoding() __a = self.image_processor( SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).pixel_values __a = query_pixel_values if images is not None: __a = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif query_images is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def __a ( self : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.image_processor.post_process(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __a ( self : List[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __a ( self : List[str] , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __a ( self : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __a ( self : Any , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __a ( self : Tuple ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def __a ( self : Optional[Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
582
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCAmelCase__ = get_logger() lowerCAmelCase__ = None class a__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self , lowercase=None , lowercase=None , **lowercase ) -> List[str]: '''simple docstring''' super().__init__(features=lowercase ) import jax from jaxlib.xla_client import Device if isinstance(lowercase , lowercase ): raise ValueError( F'Expected {device} to be a `str` not {type(lowercase )}, as `jaxlib.xla_extension.Device` ' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) A__ = device if isinstance(lowercase , lowercase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'Device with string identifier {self.device} not listed among the available ' F'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' F'device: {str(jax.devices()[0] )}.' ) A__ = str(jax.devices()[0] ) A__ = jnp_array_kwargs @staticmethod def UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: '''simple docstring''' import jax return {str(lowercase ): device for device in jax.devices()} def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(lowercase , lowercase ) and column: if all( isinstance(lowercase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(lowercase , axis=0 ) return column def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(lowercase , (str, bytes, type(lowercase )) ): return value elif isinstance(lowercase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A__ = {} if isinstance(lowercase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A__ = {"dtype": jnp.intaa} else: A__ = {"dtype": jnp.intaa} elif isinstance(lowercase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A__ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowercase , PIL.Image.Image ): A__ = np.asarray(lowercase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(lowercase , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCamelCase ( self , lowercase ) -> Optional[int]: '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(lowercase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(lowercase , "__array__" ) and not isinstance(lowercase , jax.Array ): A__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowercase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowercase ) for substruct in data_struct] ) elif isinstance(lowercase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowercase ) for substruct in data_struct] ) return self._tensorize(lowercase ) def UpperCamelCase ( self , lowercase ) -> Dict: '''simple docstring''' return map_nested(self._recursive_tensorize , lowercase , map_list=lowercase ) def UpperCamelCase ( self , lowercase ) -> Mapping: '''simple docstring''' A__ = self.numpy_arrow_extractor().extract_row(lowercase ) A__ = self.python_features_decoder.decode_row(lowercase ) return self.recursive_tensorize(lowercase ) def UpperCamelCase ( self , lowercase ) -> "jax.Array": '''simple docstring''' A__ = self.numpy_arrow_extractor().extract_column(lowercase ) A__ = self.python_features_decoder.decode_column(lowercase , pa_table.column_names[0] ) A__ = self.recursive_tensorize(lowercase ) A__ = self._consolidate(lowercase ) return column def UpperCamelCase ( self , lowercase ) -> Mapping: '''simple docstring''' A__ = self.numpy_arrow_extractor().extract_batch(lowercase ) A__ = self.python_features_decoder.decode_batch(lowercase ) A__ = self.recursive_tensorize(lowercase ) for column_name in batch: A__ = self._consolidate(batch[column_name] ) return batch
514
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A_ = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
393
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _A = sys.version_info >= (3, 10) def a__ ( lowerCAmelCase=None , lowerCAmelCase=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=__A ) @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'titi' SCREAMING_SNAKE_CASE = 'toto' class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'titi' SCREAMING_SNAKE_CASE = 'toto' SCREAMING_SNAKE_CASE = 4_2 @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = "toto" def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = BasicEnum(self.foo ) @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = "toto" def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase__ , metadata={'help': 'help message'} ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = list_field(default=[] ) SCREAMING_SNAKE_CASE = list_field(default=[] ) @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = list_field(default=[] ) SCREAMING_SNAKE_CASE = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) SCREAMING_SNAKE_CASE = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field() SCREAMING_SNAKE_CASE = field() SCREAMING_SNAKE_CASE = field() def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = BasicEnum(self.required_enum ) @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = field() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = field(default='toto' , metadata={'help': 'help message'} ) SCREAMING_SNAKE_CASE = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase__ , metadata={'help': 'help message'} ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = list_field(default=[] ) SCREAMING_SNAKE_CASE = list_field(default=[] ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCAmelCase__ : Optional[Any] = {k: v for k, v in vars(_lowerCamelCase ).items() if k != """container"""} UpperCAmelCase__ : str = {k: v for k, v in vars(_lowerCamelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _lowerCamelCase ) and yy.get("""choices""" , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_lowerCamelCase ) , yy["""type"""](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : int = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument("""--bar""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument("""--baz""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument("""--flag""" , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs="""?""" ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Dict = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((UpperCAmelCase__ ) , ) : Union[str, Any] = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=_lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCamelCase , help="""help message""" ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_lowerCamelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=_lowerCamelCase , default=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: UpperCAmelCase__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) UpperCAmelCase__ : Tuple = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) UpperCAmelCase__ : Any = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) UpperCAmelCase__ : List[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) UpperCAmelCase__ : Any = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Any = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase__ : Tuple = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCAmelCase__ : int = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase__ : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCAmelCase__ : Optional[int] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) UpperCAmelCase__ : str = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a (self ): """simple docstring""" @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = "toto" UpperCAmelCase__ : Any = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase__ : List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : str = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_lowerCamelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCamelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCAmelCase__ : Any = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument("""--bar""" , default=_lowerCamelCase , type=_lowerCamelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_lowerCamelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_lowerCamelCase ) UpperCAmelCase__ : Dict = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: UpperCAmelCase__ : Any = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) UpperCAmelCase__ : Tuple = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : int = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument("""--required_str""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_lowerCamelCase , ) expected.add_argument("""--opt""" , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=_lowerCamelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } UpperCAmelCase__ : Optional[Any] = parser.parse_dict(_lowerCamelCase )[0] UpperCAmelCase__ : str = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : str = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , """temp_json""" ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Any = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] UpperCAmelCase__ : Tuple = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = os.path.join(_lowerCamelCase , """temp_yaml""" ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] UpperCAmelCase__ : Union[str, Any] = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
182
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = r'''.*/layers_(\d+)''' _a = key if re.match(__A , __A): _a = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __A) _a = r'''(encoder|decoder)\/''' if re.match(__A , __A): _a = re.match(__A , __A).groups() if groups[0] == "encoder": _a = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __A) elif groups[0] == "decoder": _a = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __A) _a = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __A) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: _a = s_dict[key].shape[0] _a = s_dict[key] for idx in range(__A): _a = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring')}''') s_dict.pop(__A) return s_dict lowercase_ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def lowerCAmelCase (__A , __A): """simple docstring""" import regex as re with open(__A , '''r''') as f: _a = f.read() _a = re.findall(r'''(.*) = ([0-9.]*)''' , __A) _a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a = float(__A) if '''.''' in value else int(__A) _a = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __A)[0] _a = str(activation[1]) _a = num_experts _a = SwitchTransformersConfig(**__A) return config def lowerCAmelCase (__A , __A , __A=None , __A="./" , __A=8): """simple docstring""" print(F'''Loading flax weights from : {flax_checkpoint_path}''') _a = checkpoints.load_tax_checkpoint(__A) if gin_file is not None: _a = convert_gin_to_config(__A , __A) else: _a = SwitchTransformersConfig.from_pretrained(__A) _a = SwitchTransformersForConditionalGeneration(__A) _a = flax_params['''target'''] _a = flatten_dict(__A , sep='''/''') _a = rename_keys(__A) _a = unflatten_dict(__A , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A) print(F'''Save PyTorch model to {pytorch_dump_path}''') pt_model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Dict ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __lowerCAmelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = 'sshleifer/tiny-gpt2' __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = 'sgugger/tiny-distilbert-classification' __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , only_pretrain_model=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = 'sshleifer/tiny-gpt2' __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , torchscript=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = 'sshleifer/tiny-gpt2' __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , fpaa=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase ( self : Any ) -> int: __lowerCAmelCase = 'sshleifer/tiny-gpt2' __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) # set architectures equal to `None` __lowerCAmelCase = None __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase ( self : int ) -> str: __lowerCAmelCase = 'sshleifer/tiny-gpt2' __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = 'sshleifer/tiny-gpt2' __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCAmelCase_ , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = 'sshleifer/tiny-gpt2' __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = 'sshleifer/tinier_bart' __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = 'sshleifer/tiny-gpt2' __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = 'sshleifer/tinier_bart' __lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase ( self : int ) -> int: __lowerCAmelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , save_to_csv=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCAmelCase_ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(lowerCAmelCase_ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(lowerCAmelCase_ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(lowerCAmelCase_ , 'train_time.csv' ) , env_info_csv_file=os.path.join(lowerCAmelCase_ , 'env.csv' ) , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCAmelCase_ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , 'env.csv' ) ).exists() ) def lowercase ( self : Dict ) -> str: __lowerCAmelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowerCAmelCase_ : int ): self.assertTrue(hasattr(lowerCAmelCase_ , 'sequential' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'cumulative' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'current' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCAmelCase_ , 'log.txt' ) , log_print=lowerCAmelCase_ , trace_memory_line_by_line=lowerCAmelCase_ , multi_process=lowerCAmelCase_ , ) __lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase_ ) __lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , 'log.txt' ) ).exists() )
53
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : int = DistilBertTokenizer snake_case__ : Union[str, Any] = DistilBertTokenizerFast snake_case__ : Dict = True @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: a_ : List[str] = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) a_ : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) a_ : Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) a_ : int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) a_ : Any = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
570
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
import pprint import requests _snake_case = "https://zenquotes.io/api" def A ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/today" ).json() def A ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": _snake_case = random_quotes() pprint.pprint(response)
500
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): '''simple docstring''' def __init__(self ) -> Dict: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def a__ (self , A ) -> Dict: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A ) ) ) class __A ( A ): '''simple docstring''' def a__ (self , A , *A , **A ) -> Optional[Any]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __A ( A ): '''simple docstring''' def a__ (self , A , A ) -> int: """simple docstring""" return output + 1 class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) self.assertEqual(test_model._hf_hook , A ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() _a = ModelHook() add_hook_to_module(A , A ) add_hook_to_module(A , A , append=A ) self.assertEqual(isinstance(test_model._hf_hook , A ) , A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(A ) self.assertFalse(hasattr(A , '''_hf_hook''' ) ) self.assertFalse(hasattr(A , '''_old_forward''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(x + 1 ) _a = test_model(x + 2 ) _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PreForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , A , atol=1E-5 ) def a__ (self ) -> str: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(A , A ) _a = test_model(A ) assert torch.allclose(A , output + 2 , atol=1E-5 ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() _a = torch.randn(2 , 3 ) _a = test_model(A ) _a = PostForwardHook() add_hook_to_module(A , A ) _a = test_model(A ) self.assertTrue(torch.allclose(A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a = True _a = test_model(A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a__ (self ) -> List[Any]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(A , AlignDevicesHook(io_same_device=A ) ) _a = torch.randn(2 , 3 ).to(0 ) _a = model(A ) self.assertEqual(output.device , torch.device(0 ) ) def a__ (self ) -> List[str]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload _a = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(A , execution_device=A , offload=A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(A , execution_device=A , offload=A , offload_buffers=A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices _a = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device _a = torch.device(A ) self.assertEqual(model.batchnorm.running_mean.device , A ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( A , execution_device=A , offload=A , weights_map=model.state_dict() , offload_buffers=A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) _a = torch.randn(2 , 3 ) _a = model(A ) self.assertEqual(output.device , A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
11
0
def lowercase ( __A : Any , __A : str ) -> List[Any]: '''simple docstring''' while a != 0: snake_case , snake_case : Dict = b % a, a return b def lowercase ( __A : int , __A : str ) -> Any: '''simple docstring''' if gcd(__A , __A ) != 1: snake_case : Optional[int] = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(__A ) snake_case , snake_case , snake_case : Union[str, Any] = 1, 0, a snake_case , snake_case , snake_case : Dict = 0, 1, m while va != 0: snake_case : List[Any] = ua // va snake_case , snake_case , snake_case , snake_case , snake_case , snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
36
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
0
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_= UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: UpperCAmelCase_= self.dummy_uncond_unet UpperCAmelCase_= KarrasVeScheduler() UpperCAmelCase_= KarrasVePipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= torch.manual_seed(0 ) UpperCAmelCase_= pipe(num_inference_steps=2 , generator=__UpperCAmelCase , output_type="""numpy""" ).images UpperCAmelCase_= torch.manual_seed(0 ) UpperCAmelCase_= pipe(num_inference_steps=2 , generator=__UpperCAmelCase , output_type="""numpy""" , return_dict=__UpperCAmelCase )[0] UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_= np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: UpperCAmelCase_= """google/ncsnpp-celebahq-256""" UpperCAmelCase_= UNetaDModel.from_pretrained(__UpperCAmelCase ) UpperCAmelCase_= KarrasVeScheduler() UpperCAmelCase_= KarrasVePipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= torch.manual_seed(0 ) UpperCAmelCase_= pipe(num_inference_steps=20 , generator=__UpperCAmelCase , output_type="""numpy""" ).images UpperCAmelCase_= image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_= np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
593
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Tuple: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = act_dim _a = state_dim _a = hidden_size _a = max_length _a = is_training def a__ (self ) -> Optional[int]: """simple docstring""" _a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = floats_tensor((self.batch_size, self.seq_length, 1) ) _a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) _a = random_attention_mask((self.batch_size, self.seq_length) ) _a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ (self ) -> str: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ (self , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = DecisionTransformerModel(config=A ) model.to(A ) model.eval() _a = model(A , A , A , A , A , A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ (self ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : List[str] = () __lowerCamelCase : Tuple = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False def a__ (self ) -> Optional[int]: """simple docstring""" _a = DecisionTransformerModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def a__ (self ) -> Optional[Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DecisionTransformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A )] , A ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = 2 # number of steps of autoregressive prediction we will perform _a = 10 # defined by the RL environment, may be normalized _a = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) _a = model.to(A ) _a = model.config torch.manual_seed(0 ) _a = torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ) # env.reset() _a = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=A ) _a = torch.tensor(A , device=A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _a = state _a = torch.zeros(1 , 0 , config.act_dim , device=A , dtype=torch.floataa ) _a = torch.zeros(1 , 0 , device=A , dtype=torch.floataa ) _a = torch.tensor(0 , device=A , dtype=torch.long ).reshape(1 , 1 ) for step in range(A ): _a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A )] , dim=1 ) _a = torch.cat([rewards, torch.zeros(1 , 1 , device=A )] , dim=1 ) _a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _a , _a , _a = model( states=A , actions=A , rewards=A , returns_to_go=A , timesteps=A , attention_mask=A , return_dict=A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _a , _a , _a , _a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A , dtype=torch.floataa ), 1.0, False, {}, ) _a = action_pred[0, -1] _a = torch.cat([states, state] , dim=1 ) _a = returns_to_go[0, -1] - reward _a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _a = torch.cat( [timesteps, torch.ones((1, 1) , device=A , dtype=torch.long ) * (step + 1)] , dim=1 )
11
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE : int = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'tapas' def __init__(self , lowerCamelCase=30_522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=1_024 , lowerCamelCase=[3, 256, 256, 2, 256, 256, 10] , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=0 , lowerCamelCase=10.0 , lowerCamelCase=0 , lowerCamelCase=1.0 , lowerCamelCase=None , lowerCamelCase=1.0 , lowerCamelCase=False , lowerCamelCase=None , lowerCamelCase=1.0 , lowerCamelCase=1.0 , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase="ratio" , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=64 , lowerCamelCase=32 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_sizes _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps # Fine-tuning task hyperparameters _lowerCAmelCase = positive_label_weight _lowerCAmelCase = num_aggregation_labels _lowerCAmelCase = aggregation_loss_weight _lowerCAmelCase = use_answer_as_supervision _lowerCAmelCase = answer_loss_importance _lowerCAmelCase = use_normalized_answer_loss _lowerCAmelCase = huber_loss_delta _lowerCAmelCase = temperature _lowerCAmelCase = aggregation_temperature _lowerCAmelCase = use_gumbel_for_cells _lowerCAmelCase = use_gumbel_for_aggregation _lowerCAmelCase = average_approximation_function _lowerCAmelCase = cell_selection_preference _lowerCAmelCase = answer_loss_cutoff _lowerCAmelCase = max_num_rows _lowerCAmelCase = max_num_columns _lowerCAmelCase = average_logits_per_cell _lowerCAmelCase = select_one_column _lowerCAmelCase = allow_empty_column_selection _lowerCAmelCase = init_cell_selection_weights_to_zero _lowerCAmelCase = reset_position_index_per_cell _lowerCAmelCase = disable_per_token_loss # Aggregation hyperparameters _lowerCAmelCase = aggregation_labels _lowerCAmelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCamelCase ): _lowerCAmelCase = {int(lowerCamelCase ): v for k, v in aggregation_labels.items()}
156
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" return len(set(__A)) == len(__A) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def _A ( snake_case__ : List[Any] ): snake_case__ : int = torch.load(__A , map_location='''cpu''' ) if "model" in sd.keys(): snake_case__ : List[str] = torch.load(__A , map_location='''cpu''' )['''model'''] # pop unnecessary weights snake_case__ : Any = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(__A ) snake_case__ : List[str] = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case__ : Any = sd.pop(__A ) snake_case__ : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case__ : str = sd[key] # We split QKV in separate Q,K,V snake_case__ : List[str] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) snake_case__ : Any = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) snake_case__ : Optional[Any] = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) snake_case__ : List[str] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case__ ,snake_case__ ,snake_case__ : Optional[Any] = torch.split(__A , depth // 3 , dim=0 ) snake_case__ : int = q snake_case__ : Optional[int] = k snake_case__ : Optional[int] = v del sd[key] return sd @torch.no_grad() def _A ( snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Union[str, Any]=None ): snake_case__ : Any = load_checkpoint(__A ) if config is not None: snake_case__ : Optional[Any] = OPTConfig.from_pretrained(__A ) else: snake_case__ : Optional[Any] = OPTConfig() snake_case__ : Tuple = OPTModel(__A ).half().eval() model.load_state_dict(__A ) # Check results Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _lowerCAmelCase : int = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
261
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" if len(__A) == 0: return False _a = len(__A) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __A) else: return binary_search(a_list[midpoint + 1 :] , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] lowercase_ = int(input("Enter the number to be found in the list:\n").strip()) lowercase_ = "" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
11
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=1_3 , SCREAMING_SNAKE_CASE__ : Any=7 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=9_9 , SCREAMING_SNAKE_CASE__ : Any=3_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , SCREAMING_SNAKE_CASE__ : str=3_7 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Any=5_1_2 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : int=0 , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope __a = projection_dim def __a ( self : int ): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) __a = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' __a = TFDPRContextEncoder(config=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __a ( self : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a = TFDPRQuestionEncoder(config=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' __a = TFDPRReader(config=SCREAMING_SNAKE_CASE__ ) __a = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __a ( self : str ): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class lowerCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" a_ :Dict =( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a_ :List[str] ={'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} a_ :int =False a_ :Any =False a_ :Any =False a_ :List[Any] =False a_ :List[Any] =False def __a ( self : Optional[int] ): '''simple docstring''' __a = TFDPRModelTester(self ) __a = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def __a ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*SCREAMING_SNAKE_CASE__ ) def __a ( self : List[str] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*SCREAMING_SNAKE_CASE__ ) def __a ( self : List[str] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*SCREAMING_SNAKE_CASE__ ) @slow def __a ( self : str ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFDPRQuestionEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFDPRReader.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self : Optional[int] ): '''simple docstring''' __a = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) __a = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] __a = model(SCREAMING_SNAKE_CASE__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __a = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
582
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[int]="attention" ) -> Tuple: '''simple docstring''' A__ = params[F'{prefix}/layers_{i}/{layer_name}/key/kernel'] A__ = params[F'{prefix}/layers_{i}/{layer_name}/out/kernel'] A__ = params[F'{prefix}/layers_{i}/{layer_name}/query/kernel'] A__ = params[F'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Dict=False ) -> Any: '''simple docstring''' if split_mlp_wi: A__ = params[F'{prefix}/layers_{i}/mlp/wi_0/kernel'] A__ = params[F'{prefix}/layers_{i}/mlp/wi_1/kernel'] A__ = (wi_a, wi_a) else: A__ = params[F'{prefix}/layers_{i}/mlp/wi/kernel'] A__ = params[F'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[int]: '''simple docstring''' return params[F'{prefix}/layers_{i}/{layer_name}/scale'] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , *, SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: List[Any] ) -> List[Any]: '''simple docstring''' A__ = traverse_util.flatten_dict(variables["target"] ) A__ = {"/".join(__A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , __A ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old["token_embedder/embedding"] # Encoder. for i in range(__A ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(__A , __A , "encoder" , "pre_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(__A , __A , "encoder" , "attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(__A , __A , "encoder" , "pre_mlp_layer_norm" ) A__ , A__ = tax_mlp_lookup(__A , __A , "encoder" , __A ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old[ "encoder/relpos_bias/rel_embedding" ].T A__ = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(__A ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(__A , __A , "decoder" , "pre_self_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(__A , __A , "decoder" , "self_attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(__A , __A , "decoder" , "pre_cross_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(__A , __A , "decoder" , "encoder_decoder_attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(__A , __A , "decoder" , "pre_mlp_layer_norm" ) A__ , A__ = tax_mlp_lookup(__A , __A , "decoder" , __A ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old["decoder/decoder_norm/scale"] A__ = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old["decoder/logits_dense/kernel"].T return new def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Dict: '''simple docstring''' A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) A__ = state_dict["shared.weight"] return state_dict def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Any ) -> str: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(__A ) A__ = convert_tax_to_pytorch(__A , num_layers=config.num_layers , is_encoder_only=__A ) A__ = make_state_dict(__A , __A ) model.load_state_dict(__A , strict=__A ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: str = False ) -> Optional[int]: '''simple docstring''' A__ = TaConfig.from_json_file(__A ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = TaEncoderModel(__A ) else: A__ = TaForConditionalGeneration(__A ) # Load weights from tf checkpoint load_tax_weights_in_ta(__A , __A , __A , __A ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__A ) # Verify that we can load the checkpoint. model.from_pretrained(__A ) print("Done" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) lowerCAmelCase__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
514
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
393
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: return 1 if input_a == input_a else 0 def a__ ( ) -> List[str]: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
182
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def lowerCAmelCase (__A , __A): """simple docstring""" if os.path.exists(__A): if os.path.exists(os.path.join(__A , '''config.json''')) and os.path.isfile( os.path.join(__A , '''config.json''')): os.remove(os.path.join(__A , '''config.json''')) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''')) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''')): os.remove(os.path.join(__A , '''pytorch_model.bin''')) else: os.makedirs(__A) model.save_pretrained(__A) def lowerCAmelCase (__A , __A=False): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(__A , __A) _a = p * torch.log(__A) _a = 0 return -plogp.sum(dim=-1) def lowerCAmelCase (__A): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(__A)))) for row in range(len(__A)): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data)) def lowerCAmelCase (__A , __A , __A , __A=True , __A=True , __A=None , __A=False): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(__A , __A).to(args.device) _a = torch.zeros(__A , __A).to(args.device) if head_mask is None: _a = torch.ones(__A , __A).to(args.device) head_mask.requires_grad_(requires_grad=__A) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0])): _a = tuple(t.to(args.device) for t in inputs) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(__A , labels=__A , head_mask=__A) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A): _a = entropy(attn.detach() , __A) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(__A , __A).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''') print_ad_tensor(__A) if compute_importance: logger.info('''Head importance scores''') print_ad_tensor(__A) logger.info('''Head ranked by importance scores''') _a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) _a = torch.arange( head_importance.numel() , device=args.device) _a = head_ranks.view_as(__A) print_ad_tensor(__A) return attn_entropy, head_importance, total_loss def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a , _a , _a = compute_heads_importance(__A , __A , __A , compute_entropy=__A) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold) _a = torch.ones_like(__A) _a = max(1 , int(new_head_mask.numel() * args.masking_amount)) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''') _a = head_importance.view(-1).sort()[1] if len(__A) <= num_to_mask: print('''BREAK BY num_to_mask''') break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist())) _a = new_head_mask.view(-1) _a = 0.0 _a = new_head_mask.view_as(__A) _a = new_head_mask.clone().detach() print_ad_tensor(__A) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''') print_ad_tensor(__A) np.save(os.path.join(args.output_dir , '''head_mask.npy''') , head_mask.detach().cpu().numpy()) return head_mask def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters()) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A)) } for k, v in heads_to_prune.items(): if isinstance(__A , __A): _a = [ v, ] assert sum(len(__A) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(__A) _a = sum(p.numel() for p in model.parameters()) _a = datetime.now() _a , _a , _a = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100) save_model(__A , args.output_dir) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''') parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''') parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''') parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''') parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''') parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''') parser.add_argument('''--seed''' , type=__A , default=42) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''') parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''') parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''') _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''') _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) _a = torch.device('''cuda''' , args.local_rank) _a = 1 torch.distributed.init_process_group(backend='''nccl''') # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1))) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A) elif args.n_gpu > 1: _a = nn.DataParallel(__A) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''')) logger.info('''Training/evaluation parameters %s''' , __A) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) _a = (torch.from_numpy(__A),) _a = TensorDataset(*__A) _a = RandomSampler(__A) _a = DataLoader(__A , sampler=__A , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(__A , __A , __A) prune_heads(__A , __A , __A , __A) if __name__ == "__main__": main()
11
0
import os import numpy import onnx def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = a.name __lowerCAmelCase = b.name __lowerCAmelCase = '' __lowerCAmelCase = '' __lowerCAmelCase = a == b __lowerCAmelCase = name_a __lowerCAmelCase = name_b return res def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : List[Any] ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__A, __A ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, __A, __A ) _graph_replace_input_with(node_proto.attribute[1].g, __A, __A ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, __A, __A ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int ): for n in graph_proto.node: _node_replace_input_with(__A, __A, __A ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : int, lowerCAmelCase_ : Dict ): __lowerCAmelCase = list(model.graph.initializer ) __lowerCAmelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __lowerCAmelCase = inits[i].name __lowerCAmelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, __A, __A ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = os.path.dirname(__A ) __lowerCAmelCase = os.path.basename(__A ) __lowerCAmelCase = onnx.load(os.path.join(__A, __A ) ) __lowerCAmelCase = list(model.graph.initializer ) __lowerCAmelCase = set() __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(len(__A ) ): if i in dup_set: continue for j in range(i + 1, len(__A ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j] ): dup_set.add(__A ) dup_set.add(__A ) __lowerCAmelCase = inits[j].data_type __lowerCAmelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ', __A ) total_reduced_size += mem_size __lowerCAmelCase = inits[i].name __lowerCAmelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(__A ) else: __lowerCAmelCase = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ', total_reduced_size / 1024 / 1024 / 1024, 'GB' ) __lowerCAmelCase = sorted(__A ) _remove_dup_initializers_from_model(__A, __A, __A ) __lowerCAmelCase = 'optimized_' + model_file_name __lowerCAmelCase = os.path.join(__A, __A ) onnx.save(__A, __A ) return new_model
53
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] ) -> None: a_ : Optional[Any] = {} # Mapping from char to TrieNode a_ : Dict = False def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> None: for word in words: self.insert(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> None: a_ : Optional[Any] = self for char in word: if char not in curr.nodes: a_ : Dict = TrieNode() a_ : List[Any] = curr.nodes[char] a_ : Tuple = True def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> bool: a_ : Dict = self for char in word: if char not in curr.nodes: return False a_ : str = curr.nodes[char] return curr.is_leaf def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> None: def _delete(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> bool: if index == len(SCREAMING_SNAKE_CASE__ ): # If word does not exist if not curr.is_leaf: return False a_ : List[str] = False return len(curr.nodes ) == 0 a_ : Optional[Any] = word[index] a_ : Union[str, Any] = curr.nodes.get(SCREAMING_SNAKE_CASE__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted a_ : List[Any] = _delete(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , SCREAMING_SNAKE_CASE__ , 0 ) def SCREAMING_SNAKE_CASE_ ( __A : int , __A : Union[str, Any] ) -> int: """simple docstring""" if node.is_leaf: print(__A , end=' ' ) for key, value in node.nodes.items(): print_words(__A , word + key ) def SCREAMING_SNAKE_CASE_ ( ) -> int: """simple docstring""" a_ : List[Any] = 'banana bananas bandana band apple all beast'.split() a_ : Any = TrieNode() root.insert_many(__A ) # print_words(root, "") assert all(root.find(__A ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Union[str, Any] ) -> int: """simple docstring""" print(str(__A ) , 'works!' if passes else 'doesn\'t work :(' ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" assert test_trie() def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
570
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Optional[int] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : List[Any] = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : List[Any] = BeautifulSoup(requests.get(__A , headers=__A ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : List[Any] = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Tuple = item.ha.text _lowerCAmelCase : Optional[Any] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Optional[Any] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : Union[str, Any] = "Not available" try: _lowerCAmelCase : Union[str, Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Dict = "" try: _lowerCAmelCase : Optional[Any] = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : List[str] = float("nan" ) except AttributeError: pass _lowerCAmelCase : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[Any] = " " _lowerCAmelCase : Optional[Any] = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
500
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowercase : Tuple = ['''gpt2'''] __lowercase : List[Any] = '''gpt2''' if is_tf_available(): class _A ( tf.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : Optional[int] = tokenizer snake_case : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : int = TFGPTaLMHeadModel.from_config(SCREAMING_SNAKE_CASE_ ) @tf.function(input_signature=(tf.TensorSpec((None,) ,tf.string ,name="""text""" ),) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = tokenized["""input_ids"""].to_tensor() snake_case : int = tf.cast(input_ids_dense > 0 ,tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) snake_case : Any = self.model(input_ids=SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ )["""logits"""] return outputs @require_tf @require_keras_nlp class _A ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' super().setUp() snake_case : Tuple = [GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] snake_case : Optional[Any] = [TFGPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) snake_case : Optional[Any] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we\'re going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] snake_case : List[str] = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def snake_case_ ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in self.test_sentences: snake_case : List[str] = tokenizer([test_inputs] ,return_tensors="""tf""" ) snake_case : List[Any] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors snake_case : Union[str, Any] = python_outputs[key].numpy() snake_case : Union[str, Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(SCREAMING_SNAKE_CASE_ ,tf.intaa ) == tf_outputs_values ) ) @slow def snake_case_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : List[Any] = tf.function(SCREAMING_SNAKE_CASE_ ) for test_inputs in self.test_sentences: snake_case : List[str] = tf.constant(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = compiled_tokenizer(SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = tf_tokenizer(SCREAMING_SNAKE_CASE_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def snake_case_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : Any = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE_ ) snake_case : str = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : List[Any] = model.serving(SCREAMING_SNAKE_CASE_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: snake_case : Any = Path(SCREAMING_SNAKE_CASE_ ) / """saved.model""" tf.saved_model.save(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,signatures={"""serving_default""": model.serving} ) snake_case : int = tf.saved_model.load(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = loaded_model.signatures["""serving_default"""](SCREAMING_SNAKE_CASE_ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def snake_case_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : List[Any] = tf_tokenizer(SCREAMING_SNAKE_CASE_ ) # Build model with some sample inputs snake_case : str = tf_tokenizer.get_config() snake_case : Optional[Any] = TFGPTaTokenizer.from_config(SCREAMING_SNAKE_CASE_ ) snake_case : int = model_from_config(SCREAMING_SNAKE_CASE_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def snake_case_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run snake_case : Optional[int] = 123123 for max_length in [3, 5, 1024]: snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : Optional[int] = tf_tokenizer(SCREAMING_SNAKE_CASE_ ,max_length=SCREAMING_SNAKE_CASE_ ) snake_case : str = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
36
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowercase ( snake_case__): """simple docstring""" @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_= """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase_= """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase_= """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn\'t access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase_= """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task="""fill-mask""" , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network UpperCAmelCase_= [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase_= self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase_= """1""" UpperCAmelCase_= subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: UpperCAmelCase_= """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase_= """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase_= """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase_= """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task="""fill-mask""" , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network UpperCAmelCase_= [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase_= self.get_env() UpperCAmelCase_= subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_= """ from transformers import BertConfig, BertModel, BertTokenizer """ UpperCAmelCase_= """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ UpperCAmelCase_= """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network UpperCAmelCase_= [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase_= self.get_env() UpperCAmelCase_= subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network UpperCAmelCase_= [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase_= """1""" UpperCAmelCase_= subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_= """ from transformers import pipeline """ UpperCAmelCase_= """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ UpperCAmelCase_= """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ UpperCAmelCase_= self.get_env() UpperCAmelCase_= """1""" UpperCAmelCase_= [sys.executable, """-c""", """\n""".join([load, mock, run] )] UpperCAmelCase_= subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_= """ from transformers import AutoModel """ UpperCAmelCase_= """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network UpperCAmelCase_= [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase_= self.get_env() UpperCAmelCase_= subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase_= """1""" UpperCAmelCase_= subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
593
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=4 , ) -> List[str]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def a__ (self ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = FlaxAlbertModelTester(self ) @slow def a__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''albert-base-v2''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> Dict: """simple docstring""" _a = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(A , attention_mask=A )[0] _a = (1, 11, 768) self.assertEqual(output.shape , A ) _a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
11
0
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Dict=5 ) -> Any: """simple docstring""" assert masked_input.count("""<mask>""" ) == 1 _lowerCAmelCase = torch.tensor(tokenizer.encode(__A , add_special_tokens=__A ) ).unsqueeze(0 ) # Batch size 1 _lowerCAmelCase = model(__A )[0] # The last hidden-state is the first element of the output tuple _lowerCAmelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCAmelCase = logits[0, masked_index, :] _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase , _lowerCAmelCase = prob.topk(k=__A , dim=0 ) _lowerCAmelCase = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__A ) )] ) _lowerCAmelCase = tokenizer.mask_token _lowerCAmelCase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): _lowerCAmelCase = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(__A ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(__A ) , __A ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__A , __A ), values[index].item(), predicted_token, ) ) return topk_filled_outputs SCREAMING_SNAKE_CASE : Union[str, Any] = CamembertTokenizer.from_pretrained('''camembert-base''') SCREAMING_SNAKE_CASE : Any = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() SCREAMING_SNAKE_CASE : Optional[int] = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
156
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['image_processor'] _lowerCAmelCase = 'SamImageProcessor' def __init__( self , lowerCamelCase ) -> List[Any]: """simple docstring""" super().__init__(lowerCamelCase ) snake_case__ : Tuple = self.image_processor snake_case__ : Optional[int] = -10 snake_case__ : int = self.image_processor.size['''longest_edge'''] def __call__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase = None , **lowerCamelCase , ) -> BatchEncoding: """simple docstring""" snake_case__ : str = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) # pop arguments that are not used in the foward but used nevertheless snake_case__ : int = encoding_image_processor['''original_sizes'''] if hasattr(lowerCamelCase , '''numpy''' ): # Checks if Torch or TF tensor snake_case__ : List[Any] = original_sizes.numpy() snake_case__ ,snake_case__ ,snake_case__ : Optional[int] = self._check_and_preprocess_points( input_points=lowerCamelCase , input_labels=lowerCamelCase , input_boxes=lowerCamelCase , ) snake_case__ : List[Any] = self._normalize_and_convert( lowerCamelCase , lowerCamelCase , input_points=lowerCamelCase , input_labels=lowerCamelCase , input_boxes=lowerCamelCase , return_tensors=lowerCamelCase , ) return encoding_image_processor def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="pt" , ) -> Dict: """simple docstring""" if input_points is not None: if len(lowerCamelCase ) != len(lowerCamelCase ): snake_case__ : Optional[int] = [ self._normalize_coordinates(self.target_size , lowerCamelCase , original_sizes[0] ) for point in input_points ] else: snake_case__ : Any = [ self._normalize_coordinates(self.target_size , lowerCamelCase , lowerCamelCase ) for point, original_size in zip(lowerCamelCase , lowerCamelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: snake_case__ ,snake_case__ : Any = self._pad_points_and_labels(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = np.array(lowerCamelCase ) if input_labels is not None: snake_case__ : Optional[Any] = np.array(lowerCamelCase ) if input_boxes is not None: if len(lowerCamelCase ) != len(lowerCamelCase ): snake_case__ : Optional[int] = [ self._normalize_coordinates(self.target_size , lowerCamelCase , original_sizes[0] , is_bounding_box=lowerCamelCase ) for box in input_boxes ] else: snake_case__ : Optional[Any] = [ self._normalize_coordinates(self.target_size , lowerCamelCase , lowerCamelCase , is_bounding_box=lowerCamelCase ) for box, original_size in zip(lowerCamelCase , lowerCamelCase ) ] snake_case__ : List[str] = np.array(lowerCamelCase ) if input_boxes is not None: if return_tensors == "pt": snake_case__ : Dict = torch.from_numpy(lowerCamelCase ) # boxes batch size of 1 by default snake_case__ : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": snake_case__ : List[str] = tf.convert_to_tensor(lowerCamelCase ) # boxes batch size of 1 by default snake_case__ : Dict = tf.expand_dims(lowerCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": snake_case__ : int = torch.from_numpy(lowerCamelCase ) # point batch size of 1 by default snake_case__ : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": snake_case__ : Dict = tf.convert_to_tensor(lowerCamelCase ) # point batch size of 1 by default snake_case__ : Tuple = tf.expand_dims(lowerCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": snake_case__ : Union[str, Any] = torch.from_numpy(lowerCamelCase ) # point batch size of 1 by default snake_case__ : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": snake_case__ : Union[str, Any] = tf.convert_to_tensor(lowerCamelCase ) # point batch size of 1 by default snake_case__ : Dict = tf.expand_dims(lowerCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : Union[str, Any] = max([point.shape[0] for point in input_points] ) snake_case__ : List[str] = [] for i, point in enumerate(lowerCamelCase ): if point.shape[0] != expected_nb_points: snake_case__ : List[str] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) snake_case__ : Optional[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowerCamelCase ) snake_case__ : Optional[int] = processed_input_points return input_points, input_labels def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : List[Any] = original_size snake_case__ ,snake_case__ : List[Any] = self.image_processor._get_preprocess_shape(lowerCamelCase , longest_edge=lowerCamelCase ) snake_case__ : Optional[int] = deepcopy(lowerCamelCase ).astype(lowerCamelCase ) if is_bounding_box: snake_case__ : List[str] = coords.reshape(-1 , 2 , 2 ) snake_case__ : Dict = coords[..., 0] * (new_w / old_w) snake_case__ : Union[str, Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: snake_case__ : Optional[int] = coords.reshape(-1 , 4 ) return coords def lowercase__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Dict: """simple docstring""" if input_points is not None: if hasattr(lowerCamelCase , '''numpy''' ): # Checks for TF or Torch tensor snake_case__ : Optional[Any] = input_points.numpy().tolist() if not isinstance(lowerCamelCase , lowerCamelCase ) or not isinstance(input_points[0] , lowerCamelCase ): raise ValueError('''Input points must be a list of list of floating points.''' ) snake_case__ : List[Any] = [np.array(lowerCamelCase ) for input_point in input_points] else: snake_case__ : List[str] = None if input_labels is not None: if hasattr(lowerCamelCase , '''numpy''' ): snake_case__ : int = input_labels.numpy().tolist() if not isinstance(lowerCamelCase , lowerCamelCase ) or not isinstance(input_labels[0] , lowerCamelCase ): raise ValueError('''Input labels must be a list of list integers.''' ) snake_case__ : Any = [np.array(lowerCamelCase ) for label in input_labels] else: snake_case__ : int = None if input_boxes is not None: if hasattr(lowerCamelCase , '''numpy''' ): snake_case__ : List[str] = input_boxes.numpy().tolist() if ( not isinstance(lowerCamelCase , lowerCamelCase ) or not isinstance(input_boxes[0] , lowerCamelCase ) or not isinstance(input_boxes[0][0] , lowerCamelCase ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) snake_case__ : List[str] = [np.array(lowerCamelCase ).astype(np.floataa ) for box in input_boxes] else: snake_case__ : Any = None return input_points, input_labels, input_boxes @property def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(lowerCamelCase ) ) def lowercase__ ( self , *lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" return self.image_processor.post_process_masks(*lowerCamelCase , **lowerCamelCase )
261
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = math.inf , __SCREAMING_SNAKE_CASE = -math.inf , __SCREAMING_SNAKE_CASE = math.inf , __SCREAMING_SNAKE_CASE = -math.inf , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 100 , __SCREAMING_SNAKE_CASE = 0.01 , __SCREAMING_SNAKE_CASE = 1 , ) -> Optional[Any]: """simple docstring""" __a = False __a = search_prob __a = start_temperate __a = [] __a = 0 __a = None while not search_end: __a = current_state.score() if best_state is None or current_score > best_state.score(): __a = current_state scores.append(__A ) iterations += 1 __a = None __a = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __a = random.randint(0 , len(__A ) - 1 ) # picking a random neighbor __a = neighbors.pop(__A ) __a = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __a = change * -1 # in case we are finding minimum if change > 0: # improves the solution __a = picked_neighbor else: __a = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __a = picked_neighbor __a = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __a = True else: __a = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__A ) , __A ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) SCREAMING_SNAKE_CASE_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE_ = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) SCREAMING_SNAKE_CASE_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE_ = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return (3 * x**2) - (6 * y) SCREAMING_SNAKE_CASE_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE_ = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" ) SCREAMING_SNAKE_CASE_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE_ = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" )
582
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
0
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a__ ( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: '''simple docstring''' super().__init__() A__ = nn.Linear(3 , 4 ) A__ = nn.BatchNormad(4 ) A__ = nn.Linear(4 , 5 ) def UpperCamelCase ( self , lowercase ) -> Dict: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowercase ) ) ) class a__ ( snake_case ): """simple docstring""" def UpperCamelCase ( self , lowercase , *lowercase , **lowercase ) -> Optional[Any]: '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class a__ ( snake_case ): """simple docstring""" def UpperCamelCase ( self , lowercase , lowercase ) -> int: '''simple docstring''' return output + 1 class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = ModelForTest() A__ = ModelHook() add_hook_to_module(lowercase , lowercase ) self.assertEqual(test_model._hf_hook , lowercase ) self.assertTrue(hasattr(lowercase , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(lowercase ) self.assertFalse(hasattr(lowercase , "_hf_hook" ) ) self.assertFalse(hasattr(lowercase , "_old_forward" ) ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = ModelForTest() A__ = ModelHook() add_hook_to_module(lowercase , lowercase ) add_hook_to_module(lowercase , lowercase , append=lowercase ) self.assertEqual(isinstance(test_model._hf_hook , lowercase ) , lowercase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(lowercase , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(lowercase ) self.assertFalse(hasattr(lowercase , "_hf_hook" ) ) self.assertFalse(hasattr(lowercase , "_old_forward" ) ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = ModelForTest() A__ = torch.randn(2 , 3 ) A__ = test_model(x + 1 ) A__ = test_model(x + 2 ) A__ = PreForwardHook() add_hook_to_module(lowercase , lowercase ) A__ = test_model(lowercase ) self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A__ = PreForwardHook() add_hook_to_module(lowercase , lowercase ) A__ = test_model(lowercase ) self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A__ = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(lowercase , lowercase ) A__ = test_model(lowercase ) assert torch.allclose(lowercase , lowercase , atol=1e-5 ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = ModelForTest() A__ = torch.randn(2 , 3 ) A__ = test_model(lowercase ) A__ = PostForwardHook() add_hook_to_module(lowercase , lowercase ) A__ = test_model(lowercase ) self.assertTrue(torch.allclose(lowercase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A__ = PostForwardHook() add_hook_to_module(lowercase , lowercase ) A__ = test_model(lowercase ) self.assertTrue(torch.allclose(lowercase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A__ = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(lowercase , lowercase ) A__ = test_model(lowercase ) assert torch.allclose(lowercase , output + 2 , atol=1e-5 ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = ModelForTest() A__ = torch.randn(2 , 3 ) A__ = test_model(lowercase ) A__ = PostForwardHook() add_hook_to_module(lowercase , lowercase ) A__ = test_model(lowercase ) self.assertTrue(torch.allclose(lowercase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) A__ = True A__ = test_model(lowercase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A__ = torch.randn(2 , 3 ) A__ = model(lowercase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase , AlignDevicesHook(io_same_device=lowercase ) ) A__ = torch.randn(2 , 3 ).to(0 ) A__ = model(lowercase ) self.assertEqual(output.device , torch.device(0 ) ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices A__ = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device A__ = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , lowercase ) A__ = torch.randn(2 , 3 ) A__ = model(lowercase ) self.assertEqual(output.device , lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload A__ = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) A__ = torch.randn(2 , 3 ) A__ = model(lowercase ) self.assertEqual(output.device , lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices A__ = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(lowercase , execution_device=lowercase , offload=lowercase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device A__ = torch.device(lowercase ) self.assertEqual(model.batchnorm.running_mean.device , lowercase ) A__ = torch.randn(2 , 3 ) A__ = model(lowercase ) self.assertEqual(output.device , lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(lowercase , execution_device=lowercase , offload=lowercase , offload_buffers=lowercase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) A__ = torch.randn(2 , 3 ) A__ = model(lowercase ) self.assertEqual(output.device , lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices A__ = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( lowercase , execution_device=lowercase , offload=lowercase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device A__ = torch.device(lowercase ) self.assertEqual(model.batchnorm.running_mean.device , lowercase ) A__ = torch.randn(2 , 3 ) A__ = model(lowercase ) self.assertEqual(output.device , lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( lowercase , execution_device=lowercase , offload=lowercase , weights_map=model.state_dict() , offload_buffers=lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) A__ = torch.randn(2 , 3 ) A__ = model(lowercase ) self.assertEqual(output.device , lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
514
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
0
import sys import turtle def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase )-> Dict: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,)-> Tuple: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) A_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") A_ = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
393
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' with open(lowercase_ ) as metadata_file: lowercase__ : Any = json.load(lowercase_ ) lowercase__ : Tuple = LukeConfig(use_entity_aware_attention=lowercase_ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowercase__ : List[str] = torch.load(lowercase_ , map_location="""cpu""" )["""module"""] # Load the entity vocab file lowercase__ : Any = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] lowercase__ : int = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase__ : str = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowercase__ : Any = AddedToken("""<ent>""" , lstrip=lowercase_ , rstrip=lowercase_ ) lowercase__ : List[Any] = AddedToken("""<ent2>""" , lstrip=lowercase_ , rstrip=lowercase_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) , """r""" ) as f: lowercase__ : Tuple = json.load(lowercase_ ) lowercase__ : Tuple = """MLukeTokenizer""" with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) with open(os.path.join(lowercase_ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) lowercase__ : str = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens lowercase__ : int = tokenizer.convert_tokens_to_ids(["""@"""] )[0] lowercase__ : int = tokenizer.convert_tokens_to_ids(["""#"""] )[0] lowercase__ : int = state_dict["""embeddings.word_embeddings.weight"""] lowercase__ : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) lowercase__ : Optional[Any] = word_emb[enta_init_index].unsqueeze(0 ) lowercase__ : int = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase__ : Any = state_dict[bias_name] lowercase__ : Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase__ : List[str] = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase__ : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase__ : List[str] = F'encoder.layer.{layer_index}.attention.self.' lowercase__ : Any = state_dict[prefix + matrix_name] lowercase__ : int = state_dict[prefix + matrix_name] lowercase__ : Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase__ : Optional[int] = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowercase__ : Union[str, Any] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase__ : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase__ : List[str] = state_dict["""entity_predictions.bias"""] lowercase__ : List[Any] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase__ : List[str] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase__ : Dict = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) lowercase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): lowercase__ : Dict = state_dict[key] else: lowercase__ : Optional[Any] = state_dict[key] lowercase__ , lowercase__ : int = model.load_state_dict(lowercase_ , strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase__ : Union[str, Any] = MLukeTokenizer.from_pretrained(lowercase_ , task="""entity_classification""" ) lowercase__ : List[Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowercase__ : List[str] = (0, 9) lowercase__ : List[Any] = tokenizer(lowercase_ , entity_spans=[span] , return_tensors="""pt""" ) lowercase__ : Dict = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase__ : Tuple = torch.Size((1, 33, 7_68) ) lowercase__ : Any = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase__ : List[str] = torch.Size((1, 1, 7_68) ) lowercase__ : List[str] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction lowercase__ : Any = MLukeTokenizer.from_pretrained(lowercase_ ) lowercase__ : int = """Tokyo is the capital of <mask>.""" lowercase__ : List[str] = (24, 30) lowercase__ : Union[str, Any] = tokenizer(lowercase_ , entity_spans=[span] , return_tensors="""pt""" ) lowercase__ : str = model(**lowercase_ ) lowercase__ : Optional[int] = encoding["""input_ids"""][0].tolist() lowercase__ : Optional[int] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) lowercase__ : List[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) lowercase__ : str = outputs.entity_logits[0][0].argmax().item() lowercase__ : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowercase__ : Optional[int] = [json.loads(lowercase_ ) for line in open(lowercase_ )] lowercase__ : str = {} for entry in data: lowercase__ : Tuple = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase__ : str = entity_id break lowercase__ : Dict = F'{language}:{entity_name}' lowercase__ : Dict = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCamelCase__ : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
12
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowerCamelCase__ : Dict = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowerCamelCase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : List[str] = 'whisper' __lowerCAmelCase : str = ['past_key_values'] __lowerCAmelCase : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=5_18_65 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=15_36 , SCREAMING_SNAKE_CASE_=15_36 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=5_02_57 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=15_00 , SCREAMING_SNAKE_CASE_=4_48 , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[2_20, 5_02_56] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : str = vocab_size lowercase__ : Tuple = num_mel_bins lowercase__ : int = d_model lowercase__ : str = encoder_layers lowercase__ : str = encoder_attention_heads lowercase__ : Any = decoder_layers lowercase__ : Optional[int] = decoder_attention_heads lowercase__ : List[str] = decoder_ffn_dim lowercase__ : Dict = encoder_ffn_dim lowercase__ : Dict = dropout lowercase__ : Dict = attention_dropout lowercase__ : List[str] = activation_dropout lowercase__ : List[str] = activation_function lowercase__ : Dict = init_std lowercase__ : int = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : List[str] = use_cache lowercase__ : Tuple = encoder_layers lowercase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : int = max_source_positions lowercase__ : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase__ : Tuple = classifier_proj_size lowercase__ : Optional[int] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : Optional[int] = apply_spec_augment lowercase__ : Any = mask_time_prob lowercase__ : str = mask_time_length lowercase__ : int = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : List[Any] = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks lowercase__ : Dict = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' lowercase__ : int = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ]) if self.use_past: lowercase__ : List[str] = {0: """batch"""} else: lowercase__ : int = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction="""inputs""") return common_inputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 2_20_50 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 2_20 , ): '''simple docstring''' lowercase__ : str = OrderedDict() lowercase__ : List[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = encoder_inputs["""input_features"""].shape[2] lowercase__ : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length lowercase__ : Optional[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = encoder_inputs.pop("""input_features""") lowercase__ : Optional[Any] = decoder_inputs.pop("""decoder_input_ids""") if "past_key_values" in decoder_inputs: lowercase__ : Dict = decoder_inputs.pop("""past_key_values""") return dummy_inputs @property def lowercase__ ( self): '''simple docstring''' return 1E-3
12
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = IFPipeline __lowerCAmelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} __lowerCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'} def lowercase__ ( self): '''simple docstring''' return self._get_dummy_components() def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0): '''simple docstring''' if str(SCREAMING_SNAKE_CASE_).startswith("""mps"""): lowercase__ : Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_) else: lowercase__ : int = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowercase__ ( self): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def lowercase__ ( self): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1) def lowercase__ ( self): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def lowercase__ ( self): '''simple docstring''' self._test_save_load_local() def lowercase__ ( self): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) lowercase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") lowercase__ , lowercase__ : Dict = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase__ : str = None lowercase__ : Optional[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase__ : List[Any] = IFImgaImgPipeline(**pipe_a.components) lowercase__ : str = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase__ : str = IFInpaintingPipeline(**pipe_a.components) lowercase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' _start_torch_memory_measurement() lowercase__ : str = torch.Generator(device="""cpu""").manual_seed(0) lowercase__ : List[str] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) lowercase__ : List[str] = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowercase__ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # pipeline 2 _start_torch_memory_measurement() lowercase__ : Tuple = torch.Generator(device="""cpu""").manual_seed(0) lowercase__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type="""np""" , ) lowercase__ : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' _start_torch_memory_measurement() lowercase__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_) lowercase__ : int = torch.Generator(device="""cpu""").manual_seed(0) lowercase__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) lowercase__ : Tuple = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase__ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # pipeline 2 _start_torch_memory_measurement() lowercase__ : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) lowercase__ : Dict = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_) lowercase__ : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , original_image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type="""np""" , ) lowercase__ : int = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' _start_torch_memory_measurement() lowercase__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(SCREAMING_SNAKE_CASE_) lowercase__ : str = torch.Generator(device="""cpu""").manual_seed(0) lowercase__ : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) lowercase__ : Any = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase__ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # pipeline 2 _start_torch_memory_measurement() lowercase__ : List[str] = torch.Generator(device="""cpu""").manual_seed(0) lowercase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1)).to(SCREAMING_SNAKE_CASE_) lowercase__ : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , original_image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type="""np""" , ) lowercase__ : Optional[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def UpperCamelCase ( ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
12
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) lowercase__ : str = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
12
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(lowercase_ , lowercase_ , lowercase_=0 , lowercase_=None ): lowercase__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ : List[str] = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ : Dict = math.ceil(val / multiple ) * multiple return x lowercase__ : Optional[int] = (output_size, output_size) if isinstance(lowercase_ , lowercase_ ) else output_size lowercase__ , lowercase__ : List[Any] = get_image_size(lowercase_ ) lowercase__ , lowercase__ : Union[str, Any] = output_size # determine new height and width lowercase__ : Optional[int] = output_height / input_height lowercase__ : Optional[int] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ : Tuple = scale_width else: # fit height lowercase__ : List[Any] = scale_height lowercase__ : Optional[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase_ ) lowercase__ : List[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase_ ) return (new_height, new_width) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : List[str] = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} lowercase__ : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_) lowercase__ : str = do_resize lowercase__ : List[Any] = size lowercase__ : List[Any] = keep_aspect_ratio lowercase__ : Dict = ensure_multiple_of lowercase__ : Optional[int] = resample lowercase__ : Optional[int] = do_rescale lowercase__ : str = rescale_factor lowercase__ : Tuple = do_normalize lowercase__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE_) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}') lowercase__ : Tuple = get_resize_output_image_size( SCREAMING_SNAKE_CASE_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=SCREAMING_SNAKE_CASE_ , multiple=SCREAMING_SNAKE_CASE_ , ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : str = do_resize if do_resize is not None else self.do_resize lowercase__ : Dict = size if size is not None else self.size lowercase__ : str = get_size_dict(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ : Dict = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ : Union[str, Any] = resample if resample is not None else self.resample lowercase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : str = image_mean if image_mean is not None else self.image_mean lowercase__ : int = image_std if image_std is not None else self.image_std lowercase__ : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. lowercase__ : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_resize: lowercase__ : str = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : Dict = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_) != len(SCREAMING_SNAKE_CASE_): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""") if is_torch_tensor(SCREAMING_SNAKE_CASE_): lowercase__ : List[Any] = target_sizes.numpy() lowercase__ : List[Any] = [] for idx in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(SCREAMING_SNAKE_CASE_) else: lowercase__ : Dict = logits.argmax(dim=1) lowercase__ : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
12
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) lowerCamelCase__ : Optional[int] = logging.getLogger(__name__) lowerCamelCase__ : int = {"""facebook/bart-base""": BartForConditionalGeneration} lowerCamelCase__ : List[Any] = {"""facebook/bart-base""": BartTokenizer} def UpperCamelCase ( ) -> Dict: '''simple docstring''' lowercase__ : Union[str, Any] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=lowercase_ , default=lowercase_ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=lowercase_ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=lowercase_ , default=lowercase_ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=lowercase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase_ , ) parser.add_argument( """--config_name""" , type=lowercase_ , default=lowercase_ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=lowercase_ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=lowercase_ , default=lowercase_ , help="""Where to store the final ONNX file.""" ) lowercase__ : str = parser.parse_args() return args def UpperCamelCase ( lowercase_ , lowercase_="cpu" ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = model_dict[model_name].from_pretrained(lowercase_ ).to(lowercase_ ) lowercase__ : Tuple = tokenizer_dict[model_name].from_pretrained(lowercase_ ) if model_name in ["facebook/bart-base"]: lowercase__ : Optional[Any] = 0 lowercase__ : Optional[int] = None lowercase__ : List[Any] = 0 return huggingface_model, tokenizer def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' model.eval() lowercase__ : int = None lowercase__ : Any = torch.jit.script(BARTBeamSearchGenerator(lowercase_ ) ) with torch.no_grad(): lowercase__ : Union[str, Any] = """My friends are cool but they eat too many carbs.""" lowercase__ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="""pt""" ).to(model.device ) lowercase__ : Optional[int] = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=lowercase_ , max_length=lowercase_ , early_stopping=lowercase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowercase_ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , lowercase_ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=lowercase_ , ) logger.info("""Model exported to {}""".format(lowercase_ ) ) lowercase__ : str = remove_dup_initializers(os.path.abspath(lowercase_ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(lowercase_ ) ) lowercase__ : Optional[Any] = onnxruntime.InferenceSession(lowercase_ ) lowercase__ : Optional[int] = ort_sess.run( lowercase_ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(lowercase_ ), """max_length""": np.array(lowercase_ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowercase__ : Dict = parse_args() lowercase__ : List[Any] = 5 lowercase__ : Any = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase__ : Optional[Any] = torch.device(args.device ) lowercase__ , lowercase__ : str = load_model_tokenizer(args.model_name_or_path , lowercase_ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(lowercase_ ) if args.max_length: lowercase__ : List[Any] = args.max_length if args.num_beams: lowercase__ : List[Any] = args.num_beams if args.output_file_path: lowercase__ : str = args.output_file_path else: lowercase__ : int = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": main()
12
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
1
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : int = LxmertTokenizer __lowerCAmelCase : Any = LxmertTokenizerFast __lowerCAmelCase : Dict = True __lowerCAmelCase : List[Any] = True def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Tuple = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = """UNwant\u00E9d,running""" lowercase__ : Union[str, Any] = """unwanted, running""" return input_text, output_text def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file) lowercase__ : List[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [7, 4, 5, 10, 8, 9]) def lowercase__ ( self): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase__ : Tuple = self.get_tokenizer() lowercase__ : Dict = self.get_rust_tokenizer() lowercase__ : List[Any] = """I was born in 92000, and this is falsé.""" lowercase__ : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Any = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.get_rust_tokenizer() lowercase__ : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
1
# Imports import numpy as np class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' self.set_matricies(red=SCREAMING_SNAKE_CASE_ , green=SCREAMING_SNAKE_CASE_ , blue=SCREAMING_SNAKE_CASE_ , red_edge=SCREAMING_SNAKE_CASE_ , nir=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' if red is not None: lowercase__ : List[str] = red if green is not None: lowercase__ : Union[str, Any] = green if blue is not None: lowercase__ : int = blue if red_edge is not None: lowercase__ : Optional[Any] = red_edge if nir is not None: lowercase__ : Optional[Any] = nir return True def lowercase__ ( self , SCREAMING_SNAKE_CASE_="" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' self.set_matricies(red=SCREAMING_SNAKE_CASE_ , green=SCREAMING_SNAKE_CASE_ , blue=SCREAMING_SNAKE_CASE_ , red_edge=SCREAMING_SNAKE_CASE_ , nir=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""") return False def lowercase__ ( self): '''simple docstring''' return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase__ ( self): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase__ ( self): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def lowercase__ ( self): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase__ ( self): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def lowercase__ ( self): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def lowercase__ ( self): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase__ ( self): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def lowercase__ ( self): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase__ ( self): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase__ ( self): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase__ ( self): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0.0_8 , SCREAMING_SNAKE_CASE_=1.2_2 , SCREAMING_SNAKE_CASE_=0.0_3): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase__ ( self): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase__ ( self): '''simple docstring''' return (self.nir / self.green) - 1 def lowercase__ ( self): '''simple docstring''' return (self.nir / self.redEdge) - 1 def lowercase__ ( self): '''simple docstring''' return (self.red - self.blue) / self.red def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def lowercase__ ( self): '''simple docstring''' return self.nir - self.green def lowercase__ ( self): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0.1_6): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0.5): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase__ ( self): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' return (self.nir - b) / (a * self.red) def lowercase__ ( self): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase__ ( self): '''simple docstring''' return (self.red + self.green + self.blue) / 3_0.5 def lowercase__ ( self): '''simple docstring''' return self.nir / self.red def lowercase__ ( self): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def lowercase__ ( self): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase__ ( self): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def lowercase__ ( self): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def lowercase__ ( self): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def lowercase__ ( self): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def lowercase__ ( self): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ : Dict = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def lowercase__ ( self): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase__ ( self): '''simple docstring''' return self.nir / self.red def lowercase__ ( self): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def lowercase__ ( self): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
12
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = 1 lowercase__ : Optional[int] = 3 lowercase__ : Optional[int] = (32, 32) lowercase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(SCREAMING_SNAKE_CASE_) return image @property def lowercase__ ( self): '''simple docstring''' torch.manual_seed(0) lowercase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowercase__ ( self): '''simple docstring''' torch.manual_seed(0) lowercase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowercase__ ( self): '''simple docstring''' torch.manual_seed(0) lowercase__ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' def extract(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): class _snake_case : def __init__( self): '''simple docstring''' lowercase__ : List[Any] = torch.ones([0]) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.pixel_values.to(SCREAMING_SNAKE_CASE_) return self return Out() return extract def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ : str = self.dummy_cond_unet lowercase__ : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Union[str, Any] = self.dummy_vae lowercase__ : Tuple = self.dummy_text_encoder lowercase__ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") # make sure here that pndm scheduler skips prk lowercase__ : Any = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , ) lowercase__ : Optional[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) lowercase__ : str = """A painting of a squirrel eating a burger""" lowercase__ : int = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0) lowercase__ : Any = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""") lowercase__ : Dict = output.images lowercase__ : List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0) lowercase__ : int = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowercase__ : List[str] = image[0, -3:, -3:, -1] lowercase__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ : Tuple = self.dummy_cond_unet lowercase__ : Dict = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = self.dummy_vae lowercase__ : Optional[int] = self.dummy_text_encoder lowercase__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") # make sure here that pndm scheduler skips prk lowercase__ : Tuple = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , ) lowercase__ : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = """A painting of a squirrel eating a burger""" lowercase__ : str = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0) lowercase__ : Dict = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""") lowercase__ : Any = output.images lowercase__ : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0) lowercase__ : Any = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : int = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=SCREAMING_SNAKE_CASE_) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert isinstance(pipe.scheduler , SCREAMING_SNAKE_CASE_) assert pipe.safety_checker is None lowercase__ : Dict = pipe("""example prompt""" , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase__ : int = pipe("""example prompt""" , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""") def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.dummy_cond_unet lowercase__ : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_) lowercase__ : int = self.dummy_vae lowercase__ : int = self.dummy_text_encoder lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") # put models in fp16 lowercase__ : Optional[Any] = unet.half() lowercase__ : List[Any] = vae.half() lowercase__ : Any = bert.half() # make sure here that pndm scheduler skips prk lowercase__ : Dict = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , ) lowercase__ : Optional[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = """A painting of a squirrel eating a burger""" lowercase__ : List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=SCREAMING_SNAKE_CASE_) lowercase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) lowercase__ : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) lowercase__ : int = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase__ : Any = 40_03_66_03_46 lowercase__ : Dict = 7 # without safety guidance (sld_guidance_scale = 0) lowercase__ : Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowercase__ : str = output.images lowercase__ : List[str] = image[0, -3:, -3:, -1] lowercase__ : List[str] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) lowercase__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_) lowercase__ : Any = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase__ : Dict = output.images lowercase__ : List[str] = image[0, -3:, -3:, -1] lowercase__ : Union[str, Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) lowercase__ : Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase__ : Tuple = 27_34_97_17_55 lowercase__ : List[str] = 7 lowercase__ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowercase__ : Tuple = output.images lowercase__ : List[str] = image[0, -3:, -3:, -1] lowercase__ : int = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 lowercase__ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase__ : List[str] = output.images lowercase__ : int = image[0, -3:, -3:, -1] lowercase__ : List[Any] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""") lowercase__ : Optional[int] = sd_pipe.to(SCREAMING_SNAKE_CASE_) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase__ : Any = 10_44_35_52_34 lowercase__ : List[str] = 12 lowercase__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) lowercase__ : Tuple = output.images lowercase__ : str = image[0, -3:, -3:, -1] lowercase__ : Any = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 lowercase__ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase__ : Optional[int] = output.images lowercase__ : Any = image[0, -3:, -3:, -1] lowercase__ : Optional[int] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1]) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
12
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
1
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(lowercase_ , lowercase_ ): raise TypeError("""Input value must be a 'int' type""" ) return bin(lowercase_ ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
12
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
1
import unittest import numpy as np def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , ) -> np.ndarray: '''simple docstring''' lowercase__ : Tuple = np.shape(lowercase_ ) lowercase__ : Tuple = np.shape(lowercase_ ) lowercase__ : Optional[int] = np.shape(lowercase_ ) if shape_a[0] != shape_b[0]: lowercase__ : List[Any] = ( """Expected the same number of rows for A and B. """ F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(lowercase_ ) if shape_b[1] != shape_c[1]: lowercase__ : Any = ( """Expected the same number of columns for B and C. """ F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(lowercase_ ) lowercase__ : List[str] = pseudo_inv if a_inv is None: try: lowercase__ : List[str] = np.linalg.inv(lowercase_ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) lowercase__ : List[str] = np.array([[0, 3], [3, 0], [2, 3]]) lowercase__ : Tuple = np.array([[2, 1], [6, 3]]) lowercase__ : List[Any] = schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.block([[a, b], [b.T, c]]) lowercase__ : List[Any] = np.linalg.det(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = np.linalg.det(SCREAMING_SNAKE_CASE_) lowercase__ : int = np.linalg.det(SCREAMING_SNAKE_CASE_) self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ , det_a * det_s) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) lowercase__ : Dict = np.array([[0, 3], [3, 0], [2, 3]]) lowercase__ : int = np.array([[2, 1], [6, 3]]) with self.assertRaises(SCREAMING_SNAKE_CASE_): schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) lowercase__ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]]) lowercase__ : str = np.array([[2, 1, 3], [6, 3, 5]]) with self.assertRaises(SCREAMING_SNAKE_CASE_): schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
12
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = (CMStochasticIterativeScheduler,) __lowerCAmelCase : int = 10 def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = { """num_train_timesteps""": 2_01, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = 10 lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[str] = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_) lowercase__ : int = scheduler.timesteps[0] lowercase__ : str = scheduler.timesteps[1] lowercase__ : List[Any] = self.dummy_sample lowercase__ : str = 0.1 * sample lowercase__ : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).prev_sample lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def lowercase__ ( self): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = scheduler.timesteps lowercase__ : int = torch.manual_seed(0) lowercase__ : List[str] = self.dummy_model() lowercase__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_): # 1. scale model input lowercase__ : Dict = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict noise residual lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 3. predict previous sample x_t-1 lowercase__ : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample lowercase__ : int = pred_prev_sample lowercase__ : int = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 1_9_2.7_6_1_4) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : Any = scheduler.timesteps lowercase__ : List[Any] = torch.manual_seed(0) lowercase__ : Optional[int] = self.dummy_model() lowercase__ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowercase__ : Any = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict noise residual lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 3. predict previous sample x_t-1 lowercase__ : Any = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample lowercase__ : Any = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 3_4_7.6_3_5_7) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [39, 30, 12, 1, 0] lowercase__ : str = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config() lowercase__ : Any = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
1
from dataclasses import dataclass, field from typing import Optional @dataclass class _snake_case : __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) __lowerCAmelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) __lowerCAmelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) __lowerCAmelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) __lowerCAmelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) __lowerCAmelCase : Optional[int] = field( default=10_000 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) __lowerCAmelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) __lowerCAmelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) __lowerCAmelCase : Optional[int] = field( default=750 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) __lowerCAmelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) __lowerCAmelCase : Optional[bool] = field( default=UpperCAmelCase_ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) __lowerCAmelCase : Optional[int] = field(default=50_000 , metadata={'help': 'Maximum number of training steps.'} ) __lowerCAmelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) __lowerCAmelCase : Optional[int] = field(default=1_024 , metadata={'help': 'Sequence lengths used for training.'} ) __lowerCAmelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) __lowerCAmelCase : Optional[int] = field( default=1_024 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) __lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase_ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) __lowerCAmelCase : Optional[bool] = field(default=UpperCAmelCase_ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class _snake_case : __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) __lowerCAmelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) __lowerCAmelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) __lowerCAmelCase : Optional[int] = field(default=1_024 , metadata={'help': 'Length of sequences to be evaluated.'} ) __lowerCAmelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class _snake_case : __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) __lowerCAmelCase : Optional[int] = field(default=UpperCAmelCase_ , metadata={'help': 'Number of workers used for code evaluation.'} ) __lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase_ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) __lowerCAmelCase : Optional[bool] = field( default=UpperCAmelCase_ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) __lowerCAmelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) __lowerCAmelCase : Optional[int] = field(default=256 , metadata={'help': 'Maximum number of newly generated tokens.'} ) __lowerCAmelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) __lowerCAmelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) __lowerCAmelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) __lowerCAmelCase : Optional[int] = field( default=200 , metadata={'help': 'Number of completions to generate for each sample.'} ) __lowerCAmelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) __lowerCAmelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) __lowerCAmelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) __lowerCAmelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class _snake_case : __lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase_ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) __lowerCAmelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) __lowerCAmelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) __lowerCAmelCase : Optional[int] = field( default=100_000 , metadata={'help': 'Number of files to save per JSON output file.'} ) __lowerCAmelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) __lowerCAmelCase : Optional[float] = field( default=1_000 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) __lowerCAmelCase : Optional[float] = field( default=100 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) __lowerCAmelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) __lowerCAmelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) __lowerCAmelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) __lowerCAmelCase : Optional[bool] = field( default=UpperCAmelCase_ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) __lowerCAmelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class _snake_case : __lowerCAmelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) __lowerCAmelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) __lowerCAmelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) __lowerCAmelCase : Optional[int] = field(default=200_000 , metadata={'help': 'Number of examples to train tokenizer on.'} ) __lowerCAmelCase : Optional[int] = field( default=32_768 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) __lowerCAmelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) __lowerCAmelCase : Optional[bool] = field(default=UpperCAmelCase_ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class _snake_case : __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) __lowerCAmelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) __lowerCAmelCase : Optional[int] = field(default=UpperCAmelCase_ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class _snake_case : __lowerCAmelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) __lowerCAmelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) __lowerCAmelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) __lowerCAmelCase : Optional[bool] = field(default=UpperCAmelCase_ , metadata={'help': 'Push saved tokenizer to the hub.'} )
12
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase__ : List[str] = 2 class _snake_case : def __init__( self , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_=None , ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = bos, unk, pad, eos lowercase__ : Union[str, Any] = [] lowercase__ : str = [] lowercase__ : List[str] = {} lowercase__ : List[str] = self.add_symbol(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.add_symbol(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.add_symbol(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.add_symbol(SCREAMING_SNAKE_CASE_) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = len(self.symbols) def __eq__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.indices == other.indices def __getitem__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self): '''simple docstring''' return len(self.symbols) def __contains__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return sym in self.indices @classmethod def lowercase__ ( cls , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = cls() d.add_from_file(SCREAMING_SNAKE_CASE_) return d def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=False): '''simple docstring''' if word in self.indices and not overwrite: lowercase__ : Optional[Any] = self.indices[word] lowercase__ : int = self.count[idx] + n return idx else: lowercase__ : Optional[int] = len(self.symbols) lowercase__ : Dict = idx self.symbols.append(SCREAMING_SNAKE_CASE_) self.count.append(SCREAMING_SNAKE_CASE_) return idx def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return 0 def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): try: with open(SCREAMING_SNAKE_CASE_ , """r""" , encoding="""utf-8""") as fd: self.add_from_file(SCREAMING_SNAKE_CASE_) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(SCREAMING_SNAKE_CASE_)) return lowercase__ : Any = f.readlines() lowercase__ : str = self._load_meta(SCREAMING_SNAKE_CASE_) for line in lines[indices_start_line:]: try: lowercase__ , lowercase__ : Tuple = line.rstrip().rsplit(""" """ , 1) if field == "#fairseq:overwrite": lowercase__ : int = True lowercase__ , lowercase__ : Dict = line.rsplit(""" """ , 1) else: lowercase__ : int = False lowercase__ : Dict = int(SCREAMING_SNAKE_CASE_) lowercase__ : str = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(SCREAMING_SNAKE_CASE_)) self.add_symbol(SCREAMING_SNAKE_CASE_ , n=SCREAMING_SNAKE_CASE_ , overwrite=SCREAMING_SNAKE_CASE_) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""") def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Any = dict((re.sub(R"""@@$""" , """""" , lowercase_ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , lowercase_ ), v) for k, v in d.items() ) lowercase__ : Tuple = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] lowercase__ : str = d[k] # restore return da def UpperCamelCase ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if not os.path.exists(lowercase_ ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase__ : Dict = os.path.join(lowercase_ , """checkpoint.pt""" ) if not os.path.isfile(lowercase_ ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) lowercase__ : List[Any] = torch.load(lowercase_ , map_location="""cpu""" ) lowercase__ : Optional[Any] = chkpt["""cfg"""]["""model"""] # dicts lowercase__ : str = os.path.join(lowercase_ , """dict.txt""" ) if not os.path.isfile(lowercase_ ): raise ValueError(F'path to the file {dict_file} does not exist!' ) lowercase__ : List[Any] = Dictionary.load(lowercase_ ) lowercase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowercase__ : int = len(lowercase_ ) lowercase__ : Dict = os.path.join(lowercase_ , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # merges_file (bpecodes) lowercase__ : Any = os.path.join(lowercase_ , """bpecodes""" ) if not os.path.isfile(lowercase_ ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) lowercase__ : Dict = os.path.join(lowercase_ , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowercase_ , lowercase_ ) # model config lowercase__ : Optional[int] = os.path.join(lowercase_ , """config.json""" ) lowercase__ : Dict = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1E-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # tokenizer config lowercase__ : Dict = os.path.join(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 10_24, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # model lowercase__ : Union[str, Any] = chkpt["""model"""] # remove unneeded keys lowercase__ : Union[str, Any] = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowercase_ , lowercase_ ) lowercase__ : List[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): lowercase__ : Optional[Any] = model_state_dict.pop(lowercase_ ) else: lowercase__ : Dict = model_state_dict.pop(lowercase_ ) lowercase__ : Optional[Any] = BioGptConfig.from_pretrained(lowercase_ ) lowercase__ : Optional[Any] = BioGptForCausalLM(lowercase_ ) # check that it loads ok model_new.load_state_dict(lowercase_ ) # save lowercase__ : Tuple = os.path.join(lowercase_ , lowercase_ ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase_ , lowercase_ ) print("""Conversion is done!""" ) if __name__ == "__main__": lowerCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ : str = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
12
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _snake_case : __lowerCAmelCase : Optional[Any] = MBartConfig __lowerCAmelCase : Tuple = {} __lowerCAmelCase : Any = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=20 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Tuple = batch_size lowercase__ : List[str] = seq_length lowercase__ : List[Any] = is_training lowercase__ : str = use_labels lowercase__ : Any = vocab_size lowercase__ : str = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : Any = eos_token_id lowercase__ : Dict = pad_token_id lowercase__ : Dict = bos_token_id def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) lowercase__ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) lowercase__ : Dict = tf.concat([input_ids, eos_tensor] , axis=1) lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase__ : Tuple = prepare_mbart_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = TFMBartModel(config=SCREAMING_SNAKE_CASE_).get_decoder() lowercase__ : Optional[Any] = inputs_dict["""input_ids"""] lowercase__ : List[str] = input_ids[:1, :] lowercase__ : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] lowercase__ : List[str] = inputs_dict["""head_mask"""] lowercase__ : Any = 1 # first forward pass lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : int = outputs.to_tuple() lowercase__ : str = past_key_values[1] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> str: '''simple docstring''' if attention_mask is None: lowercase__ : Optional[int] = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase__ : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase__ : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Any = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __lowerCAmelCase : List[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () __lowerCAmelCase : Optional[Any] = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : str = False __lowerCAmelCase : Union[str, Any] = False def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = TFMBartModelTester(self) lowercase__ : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_) @require_sentencepiece @require_tokenizers @require_tf class _snake_case ( unittest.TestCase ): __lowerCAmelCase : Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ] __lowerCAmelCase : Any = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] __lowerCAmelCase : int = 'facebook/mbart-large-en-ro' @cached_property def lowercase__ ( self): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name) @cached_property def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.translate_src_text(**SCREAMING_SNAKE_CASE_) self.assertListEqual(self.expected_text , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = self.tokenizer(self.src_text , **SCREAMING_SNAKE_CASE_ , return_tensors="""tf""") lowercase__ : Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2) lowercase__ : Union[str, Any] = self.tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) return generated_words @slow def lowercase__ ( self): '''simple docstring''' self._assert_generated_batch_equal_expected()
12
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
1
def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) lowercase__ : Union[str, Any] = """""" while len(lowercase_ ) % 3 != 0: lowercase__ : Tuple = """0""" + bin_string lowercase__ : List[str] = [ bin_string[index : index + 3] for index in range(len(lowercase_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowercase__ : List[Any] = 0 for index, val in enumerate(lowercase_ ): oct_val += int(2 ** (2 - index) * int(lowercase_ ) ) oct_string += str(lowercase_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
12
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
1
from __future__ import annotations import time lowerCamelCase__ : List[str] = list[tuple[int, int]] lowerCamelCase__ : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase__ : List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = pos_x lowercase__ : Optional[int] = pos_y lowercase__ : List[Any] = (pos_y, pos_x) lowercase__ : Optional[Any] = goal_x lowercase__ : Union[str, Any] = goal_y lowercase__ : Any = parent class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , SCREAMING_SNAKE_CASE_) lowercase__ : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [self.start] lowercase__ : int = False def lowercase__ ( self): '''simple docstring''' while self.node_queue: lowercase__ : List[Any] = self.node_queue.pop(0) if current_node.pos == self.target.pos: lowercase__ : Union[str, Any] = True return self.retrace_path(SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_successors(SCREAMING_SNAKE_CASE_) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE_) if not self.reached: return [self.start.pos] return None def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = [] for action in delta: lowercase__ : Optional[Any] = parent.pos_x + action[1] lowercase__ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , SCREAMING_SNAKE_CASE_)) return successors def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = node lowercase__ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) lowercase__ : Tuple = current_node.parent path.reverse() return path class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = False def lowercase__ ( self): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowercase__ : Optional[int] = self.fwd_bfs.node_queue.pop(0) lowercase__ : Optional[Any] = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: lowercase__ : Optional[Any] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = current_bwd_node lowercase__ : str = current_fwd_node lowercase__ : Tuple = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE_), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE_), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE_) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_) bwd_path.pop() bwd_path.reverse() lowercase__ : Optional[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase__ : Optional[Any] = (0, 0) lowerCamelCase__ : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase__ : Tuple = time.time() lowerCamelCase__ : Union[str, Any] = BreadthFirstSearch(init, goal) lowerCamelCase__ : List[Any] = bfs.search() lowerCamelCase__ : str = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) lowerCamelCase__ : Tuple = time.time() lowerCamelCase__ : Union[str, Any] = BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase__ : Union[str, Any] = bd_bfs.search() lowerCamelCase__ : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
12
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCamelCase__ : Dict = logging.getLogger(__name__) class _snake_case ( UpperCAmelCase_ ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : int = self.layer[current_layer](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , head_mask[current_layer]) lowercase__ : List[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , UpperCAmelCase_ , ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = BertEncoderWithPabee(SCREAMING_SNAKE_CASE_) self.init_weights() lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = 0 lowercase__ : Optional[Any] = 0 lowercase__ : Optional[int] = 0 def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = threshold def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = patience def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = 0 lowercase__ : Tuple = 0 def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = self.inference_layers_num / self.inference_instances_num lowercase__ : Optional[Any] = ( f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =' f' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***' ) print(SCREAMING_SNAKE_CASE_) @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase__ : int = input_ids.size() elif inputs_embeds is not None: lowercase__ : int = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase__ : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase__ : Optional[int] = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_) if token_type_ids is None: lowercase__ : str = torch.zeros(SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase__ : torch.Tensor = self.get_extended_attention_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase__ , lowercase__ , lowercase__ : List[Any] = encoder_hidden_states.size() lowercase__ : Tuple = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase__ : Tuple = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.invert_attention_mask(SCREAMING_SNAKE_CASE_) else: lowercase__ : Optional[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase__ : int = self.get_head_mask(SCREAMING_SNAKE_CASE_ , self.config.num_hidden_layers) lowercase__ : str = self.embeddings( input_ids=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_) lowercase__ : Any = embedding_output if self.training: lowercase__ : Tuple = [] for i in range(self.config.num_hidden_layers): lowercase__ : Tuple = self.encoder.adaptive_forward( SCREAMING_SNAKE_CASE_ , current_layer=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.pooler(SCREAMING_SNAKE_CASE_) lowercase__ : Any = output_layers[i](output_dropout(SCREAMING_SNAKE_CASE_)) res.append(SCREAMING_SNAKE_CASE_) elif self.patience == 0: # Use all layers for inference lowercase__ : Dict = self.encoder( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[int] = self.pooler(encoder_outputs[0]) lowercase__ : Optional[Any] = [output_layers[self.config.num_hidden_layers - 1](SCREAMING_SNAKE_CASE_)] else: lowercase__ : Tuple = 0 lowercase__ : Dict = None lowercase__ : Union[str, Any] = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase__ : List[Any] = self.encoder.adaptive_forward( SCREAMING_SNAKE_CASE_ , current_layer=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.pooler(SCREAMING_SNAKE_CASE_) lowercase__ : Any = output_layers[i](SCREAMING_SNAKE_CASE_) if regression: lowercase__ : Any = logits.detach() if patient_result is not None: lowercase__ : str = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase__ : List[Any] = 0 else: lowercase__ : Tuple = logits.detach().argmax(dim=1) if patient_result is not None: lowercase__ : Union[str, Any] = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(SCREAMING_SNAKE_CASE_)): patient_counter += 1 else: lowercase__ : Dict = 0 lowercase__ : List[str] = logits if patient_counter == self.patience: break lowercase__ : Union[str, Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , UpperCAmelCase_ , ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = config.num_labels lowercase__ : str = BertModelWithPabee(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = nn.Dropout(config.hidden_dropout_prob) lowercase__ : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ): '''simple docstring''' lowercase__ : Any = self.bert( input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase__ : Optional[Any] = (logits[-1],) if labels is not None: lowercase__ : List[str] = None lowercase__ : Union[str, Any] = 0 for ix, logits_item in enumerate(SCREAMING_SNAKE_CASE_): if self.num_labels == 1: # We are doing regression lowercase__ : int = MSELoss() lowercase__ : List[str] = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase__ : Union[str, Any] = CrossEntropyLoss() lowercase__ : Dict = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase__ : Optional[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase__ : List[Any] = (total_loss / total_weights,) + outputs return outputs
12
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
12
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
1
def UpperCamelCase ( lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : Any = len(lowercase_ ) for i in range(length - 1 ): lowercase__ : List[str] = i for k in range(i + 1 , lowercase_ ): if collection[k] < collection[least]: lowercase__ : Any = k if least != i: lowercase__ , lowercase__ : Dict = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase__ : int = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ : List[str] = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
12
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
1