code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
lowerCamelCase__ : Any = get_logger(__name__)
class _snake_case ( enum.Enum ):
__lowerCAmelCase : Optional[Any] = 'all_checks'
__lowerCAmelCase : int = 'basic_checks'
__lowerCAmelCase : str = 'no_checks'
class _snake_case ( UpperCAmelCase_ ):
pass
class _snake_case ( UpperCAmelCase_ ):
pass
class _snake_case ( UpperCAmelCase_ ):
pass
class _snake_case ( UpperCAmelCase_ ):
pass
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> List[str]:
'''simple docstring'''
if expected_checksums is None:
logger.info("""Unable to verify checksums.""" )
return
if len(set(lowercase_ ) - set(lowercase_ ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(lowercase_ ) - set(lowercase_ ) ) )
if len(set(lowercase_ ) - set(lowercase_ ) ) > 0:
raise UnexpectedDownloadedFile(str(set(lowercase_ ) - set(lowercase_ ) ) )
lowercase__ : Union[str, Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
lowercase__ : Dict = """ for """ + verification_name if verification_name is not None else """"""
if len(lowercase_ ) > 0:
raise NonMatchingChecksumError(
F'Checksums didn\'t match{for_verification_name}:\n'
F'{bad_urls}\n'
"""Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" )
logger.info("""All the checksums matched successfully""" + for_verification_name )
class _snake_case ( UpperCAmelCase_ ):
pass
class _snake_case ( UpperCAmelCase_ ):
pass
class _snake_case ( UpperCAmelCase_ ):
pass
class _snake_case ( UpperCAmelCase_ ):
pass
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
if expected_splits is None:
logger.info("""Unable to verify splits sizes.""" )
return
if len(set(lowercase_ ) - set(lowercase_ ) ) > 0:
raise ExpectedMoreSplits(str(set(lowercase_ ) - set(lowercase_ ) ) )
if len(set(lowercase_ ) - set(lowercase_ ) ) > 0:
raise UnexpectedSplits(str(set(lowercase_ ) - set(lowercase_ ) ) )
lowercase__ : List[str] = [
{"""expected""": expected_splits[name], """recorded""": recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(lowercase_ ) > 0:
raise NonMatchingSplitsSizesError(str(lowercase_ ) )
logger.info("""All the splits matched successfully.""" )
def UpperCamelCase ( lowercase_ , lowercase_ = True ) -> dict:
'''simple docstring'''
if record_checksum:
lowercase__ : Dict = shaaaa()
with open(lowercase_ , """rb""" ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ):
m.update(lowercase_ )
lowercase__ : Dict = m.hexdigest()
else:
lowercase__ : Optional[Any] = None
return {"num_bytes": os.path.getsize(lowercase_ ), "checksum": checksum}
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = eval_examples
lowercase__ : Any = post_process_function
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = "eval"):
'''simple docstring'''
lowercase__ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset
lowercase__ : Union[str, Any] = self.get_eval_dataloader(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowercase__ : Optional[Any] = self.compute_metrics
lowercase__ : Dict = None
lowercase__ : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
lowercase__ : Tuple = time.time()
try:
lowercase__ : str = eval_loop(
SCREAMING_SNAKE_CASE_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE_ , metric_key_prefix=SCREAMING_SNAKE_CASE_ , )
finally:
lowercase__ : Optional[Any] = compute_metrics
lowercase__ : Tuple = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
lowercase__ : int = self.post_process_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , output.predictions)
lowercase__ : List[str] = self.compute_metrics(SCREAMING_SNAKE_CASE_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'{metric_key_prefix}_'):
lowercase__ : List[str] = metrics.pop(SCREAMING_SNAKE_CASE_)
metrics.update(output.metrics)
else:
lowercase__ : Tuple = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(SCREAMING_SNAKE_CASE_)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
lowercase__ : Tuple = self.callback_handler.on_evaluate(self.args , self.state , self.control , SCREAMING_SNAKE_CASE_)
return metrics
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = "test"):
'''simple docstring'''
lowercase__ : List[Any] = self.get_test_dataloader(SCREAMING_SNAKE_CASE_)
# Temporarily disable metric computation, we will do it in the loop here.
lowercase__ : List[str] = self.compute_metrics
lowercase__ : Any = None
lowercase__ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
lowercase__ : List[str] = time.time()
try:
lowercase__ : Optional[Any] = eval_loop(
SCREAMING_SNAKE_CASE_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE_ , metric_key_prefix=SCREAMING_SNAKE_CASE_ , )
finally:
lowercase__ : Optional[int] = compute_metrics
lowercase__ : Tuple = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is None or self.compute_metrics is None:
return output
lowercase__ : Dict = self.post_process_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , output.predictions , """predict""")
lowercase__ : Any = self.compute_metrics(SCREAMING_SNAKE_CASE_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'{metric_key_prefix}_'):
lowercase__ : List[str] = metrics.pop(SCREAMING_SNAKE_CASE_)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=SCREAMING_SNAKE_CASE_)
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowercase_ , lowercase_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : int = tmp_path / """cache"""
lowercase__ : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase__ : int = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read()
_check_parquet_dataset(lowercase_ , lowercase_ )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = tmp_path / """cache"""
lowercase__ : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowercase__ : int = features.copy() if features else default_expected_features
lowercase__ : str = (
Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase__ : str = ParquetDatasetReader(lowercase_ , features=lowercase_ , cache_dir=lowercase_ ).read()
_check_parquet_dataset(lowercase_ , lowercase_ )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
lowercase__ : Tuple = tmp_path / """cache"""
lowercase__ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowercase__ : List[Any] = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , split=lowercase_ ).read()
_check_parquet_dataset(lowercase_ , lowercase_ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
if issubclass(lowercase_ , lowercase_ ):
lowercase__ : Any = parquet_path
elif issubclass(lowercase_ , lowercase_ ):
lowercase__ : str = [parquet_path]
lowercase__ : Any = tmp_path / """cache"""
lowercase__ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowercase__ : List[str] = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read()
_check_parquet_dataset(lowercase_ , lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=("train",) ) -> int:
'''simple docstring'''
assert isinstance(lowercase_ , lowercase_ )
for split in splits:
lowercase__ : List[Any] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : Union[str, Any] = tmp_path / """cache"""
lowercase__ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase__ : Tuple = ParquetDatasetReader(
{"""train""": parquet_path} , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read()
_check_parquet_datasetdict(lowercase_ , lowercase_ )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
lowercase__ : Union[str, Any] = tmp_path / """cache"""
lowercase__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowercase__ : List[str] = features.copy() if features else default_expected_features
lowercase__ : Tuple = (
Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase__ : Union[str, Any] = ParquetDatasetReader({"""train""": parquet_path} , features=lowercase_ , cache_dir=lowercase_ ).read()
_check_parquet_datasetdict(lowercase_ , lowercase_ )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
if split:
lowercase__ : Union[str, Any] = {split: parquet_path}
else:
lowercase__ : Optional[int] = """train"""
lowercase__ : List[Any] = {"""train""": parquet_path, """test""": parquet_path}
lowercase__ : Dict = tmp_path / """cache"""
lowercase__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowercase__ : int = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read()
_check_parquet_datasetdict(lowercase_ , lowercase_ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Dict = ParquetDatasetWriter(lowercase_ , tmp_path / """foo.parquet""" )
assert writer.write() > 0
lowercase__ : Any = pq.ParquetFile(tmp_path / """foo.parquet""" )
lowercase__ : Optional[Any] = pf.read()
assert dataset.data.table == output_table
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : List[str] = str(shared_datadir / """test_image_rgb.jpg""" )
lowercase__ : Any = {"""image""": [image_path]}
lowercase__ : str = Features({"""image""": Image()} )
lowercase__ : Dict = Dataset.from_dict(lowercase_ , features=lowercase_ )
lowercase__ : Any = ParquetDatasetWriter(lowercase_ , tmp_path / """foo.parquet""" )
assert writer.write() > 0
lowercase__ : Tuple = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) )
assert dataset.features == reloaded_dataset.features
lowercase__ : Tuple = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=lowercase_ ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"""feature, expected""" , [
(Features({"""foo""": Value("""int32""" )} ), None),
(Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
assert get_writer_batch_size(lowercase_ ) == expected
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
lowercase__ : Union[str, Any] = len(lowercase_ ) + 1
lowercase__ : List[Any] = len(lowercase_ ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
lowercase__ : List[str] = [[0 for i in range(lowercase_ )] for j in range(lowercase_ )]
# since string of zero length match pattern of zero length
lowercase__ : Optional[Any] = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , lowercase_ ):
lowercase__ : List[str] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , lowercase_ ):
lowercase__ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , lowercase_ ):
for j in range(1 , lowercase_ ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
lowercase__ : List[Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
lowercase__ : Any = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
lowercase__ : List[str] = dp[i - 1][j]
else:
lowercase__ : int = 0
else:
lowercase__ : Optional[int] = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
lowerCamelCase__ : Optional[Any] = """aab"""
lowerCamelCase__ : Any = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f'''{input_string} matches the given pattern {pattern}''')
else:
print(f'''{input_string} does not match with the given pattern {pattern}''')
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[int] = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def UpperCamelCase ( lowercase_ = 1_00 ) -> int:
'''simple docstring'''
lowercase__ : List[Any] = 1
lowercase__ : str = 2
for i in range(2 , max_n + 1 ):
lowercase__ : Optional[Any] = pre_numerator
lowercase__ : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1
lowercase__ : Any = cur_numerator
lowercase__ : Optional[Any] = e_cont * pre_numerator + temp
return sum_digits(lowercase_ )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
import math
import sys
import cva
import numpy as np
def UpperCamelCase ( lowercase_ , lowercase_ ) -> np.ndarray:
'''simple docstring'''
lowercase__ : List[Any] = math.sqrt(lowercase_ )
lowercase__ : Tuple = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> np.ndarray:
'''simple docstring'''
lowercase__ : Tuple = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def UpperCamelCase ( lowercase_ , lowercase_ ) -> np.ndarray:
'''simple docstring'''
lowercase__ : Union[str, Any] = np.zeros((kernel_size, kernel_size) )
for i in range(0 , lowercase_ ):
for j in range(0 , lowercase_ ):
lowercase__ : int = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(lowercase_ , lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> np.ndarray:
'''simple docstring'''
lowercase__ : Any = np.zeros(img.shape )
lowercase__ : Any = get_gauss_kernel(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
lowercase__ : Any = get_slice(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2]
lowercase__ : Optional[Any] = vec_gaussian(lowercase_ , lowercase_ )
lowercase__ : Any = np.multiply(lowercase_ , lowercase_ )
lowercase__ : int = np.multiply(lowercase_ , lowercase_ )
lowercase__ : List[Any] = np.sum(lowercase_ ) / np.sum(lowercase_ )
lowercase__ : List[Any] = val
return imga
def UpperCamelCase ( lowercase_ ) -> tuple:
'''simple docstring'''
lowercase__ : Optional[int] = args[1] if args[1:] else """../image_data/lena.jpg"""
lowercase__ : str = float(args[2] ) if args[2:] else 1.0
lowercase__ : Tuple = float(args[3] ) if args[3:] else 1.0
if args[4:]:
lowercase__ : int = int(args[4] )
lowercase__ : List[Any] = kernel_size + abs(kernel_size % 2 - 1 )
else:
lowercase__ : Tuple = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = parse_args(sys.argv)
lowerCamelCase__ : List[Any] = cva.imread(filename, 0)
cva.imshow("""input image""", img)
lowerCamelCase__ : str = img / 2_5_5
lowerCamelCase__ : Dict = out.astype("""float32""")
lowerCamelCase__ : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
lowerCamelCase__ : Optional[Any] = out * 2_5_5
lowerCamelCase__ : str = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
lowerCamelCase__ : Any = re.compile(R"""\b(a|an|the)\b""", re.UNICODE)
lowerCamelCase__ : Optional[int] = None
def UpperCamelCase ( ) -> Optional[int]:
'''simple docstring'''
lowercase__ : Union[str, Any] = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" )
parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" )
parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" )
parser.add_argument(
"""--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" )
parser.add_argument(
"""--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" )
parser.add_argument(
"""--na-prob-thresh""" , """-t""" , type=lowercase_ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , )
parser.add_argument(
"""--out-image-dir""" , """-p""" , metavar="""out_images""" , default=lowercase_ , help="""Save precision-recall curves to directory.""" )
parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[int] = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
lowercase__ : Optional[Any] = bool(qa["""answers"""]["""text"""] )
return qid_to_has_ans
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
def remove_articles(lowercase_ ):
return ARTICLES_REGEX.sub(""" """ , lowercase_ )
def white_space_fix(lowercase_ ):
return " ".join(text.split() )
def remove_punc(lowercase_ ):
lowercase__ : Union[str, Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowercase_ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) )
def UpperCamelCase ( lowercase_ ) -> Tuple:
'''simple docstring'''
if not s:
return []
return normalize_answer(lowercase_ ).split()
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : List[Any] = get_tokens(lowercase_ )
lowercase__ : Optional[int] = get_tokens(lowercase_ )
lowercase__ : List[Any] = collections.Counter(lowercase_ ) & collections.Counter(lowercase_ )
lowercase__ : Any = sum(common.values() )
if len(lowercase_ ) == 0 or len(lowercase_ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
lowercase__ : List[Any] = 1.0 * num_same / len(lowercase_ )
lowercase__ : Any = 1.0 * num_same / len(lowercase_ )
lowercase__ : List[str] = (2 * precision * recall) / (precision + recall)
return fa
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : Tuple = {}
lowercase__ : Optional[Any] = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
lowercase__ : List[Any] = qa["""id"""]
lowercase__ : Union[str, Any] = [t for t in qa["""answers"""]["""text"""] if normalize_answer(lowercase_ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
lowercase__ : List[str] = [""""""]
if qid not in preds:
print(F'Missing prediction for {qid}' )
continue
lowercase__ : Union[str, Any] = preds[qid]
# Take max over all gold answers
lowercase__ : int = max(compute_exact(lowercase_ , lowercase_ ) for a in gold_answers )
lowercase__ : Tuple = max(compute_fa(lowercase_ , lowercase_ ) for a in gold_answers )
return exact_scores, fa_scores
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Any = {}
for qid, s in scores.items():
lowercase__ : Union[str, Any] = na_probs[qid] > na_prob_thresh
if pred_na:
lowercase__ : Tuple = float(not qid_to_has_ans[qid] )
else:
lowercase__ : Union[str, Any] = s
return new_scores
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> int:
'''simple docstring'''
if not qid_list:
lowercase__ : Optional[int] = len(lowercase_ )
return collections.OrderedDict(
[
("""exact""", 100.0 * sum(exact_scores.values() ) / total),
("""f1""", 100.0 * sum(fa_scores.values() ) / total),
("""total""", total),
] )
else:
lowercase__ : Optional[int] = len(lowercase_ )
return collections.OrderedDict(
[
("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
("""total""", total),
] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
for k in new_eval:
lowercase__ : int = new_eval[k]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
plt.step(lowercase_ , lowercase_ , color="""b""" , alpha=0.2 , where="""post""" )
plt.fill_between(lowercase_ , lowercase_ , step="""post""" , alpha=0.2 , color="""b""" )
plt.xlabel("""Recall""" )
plt.ylabel("""Precision""" )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(lowercase_ )
plt.savefig(lowercase_ )
plt.clf()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] )
lowercase__ : Any = 0.0
lowercase__ : str = 1.0
lowercase__ : Any = 0.0
lowercase__ : Optional[int] = [1.0]
lowercase__ : Tuple = [0.0]
lowercase__ : Dict = 0.0
for i, qid in enumerate(lowercase_ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
lowercase__ : List[Any] = true_pos / float(i + 1 )
lowercase__ : Tuple = true_pos / float(lowercase_ )
if i == len(lowercase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(lowercase_ )
recalls.append(lowercase_ )
if out_image:
plot_pr_curve(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return {"ap": 100.0 * avg_prec}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
if out_image_dir and not os.path.exists(lowercase_ ):
os.makedirs(lowercase_ )
lowercase__ : Dict = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
lowercase__ : Optional[int] = make_precision_recall_eval(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , )
lowercase__ : Union[str, Any] = make_precision_recall_eval(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , )
lowercase__ : Union[str, Any] = {k: float(lowercase_ ) for k, v in qid_to_has_ans.items()}
lowercase__ : Dict = make_precision_recall_eval(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , )
merge_eval(lowercase_ , lowercase_ , """pr_exact""" )
merge_eval(lowercase_ , lowercase_ , """pr_f1""" )
merge_eval(lowercase_ , lowercase_ , """pr_oracle""" )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
if not qid_list:
return
lowercase__ : Union[str, Any] = [na_probs[k] for k in qid_list]
lowercase__ : int = np.ones_like(lowercase_ ) / float(len(lowercase_ ) )
plt.hist(lowercase_ , weights=lowercase_ , bins=20 , range=(0.0, 1.0) )
plt.xlabel("""Model probability of no-answer""" )
plt.ylabel("""Proportion of dataset""" )
plt.title(F'Histogram of no-answer probability: {name}' )
plt.savefig(os.path.join(lowercase_ , F'na_prob_hist_{name}.png' ) )
plt.clf()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : Union[str, Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
lowercase__ : Tuple = num_no_ans
lowercase__ : Dict = cur_score
lowercase__ : Tuple = 0.0
lowercase__ : str = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] )
for i, qid in enumerate(lowercase_ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
lowercase__ : List[str] = scores[qid]
else:
if preds[qid]:
lowercase__ : Tuple = -1
else:
lowercase__ : Optional[int] = 0
cur_score += diff
if cur_score > best_score:
lowercase__ : Tuple = cur_score
lowercase__ : Optional[Any] = na_probs[qid]
return 100.0 * best_score / len(lowercase_ ), best_thresh
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ , lowercase__ : List[Any] = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Optional[Any] = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : str = best_exact
lowercase__ : Tuple = exact_thresh
lowercase__ : str = best_fa
lowercase__ : Any = fa_thresh
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
with open(OPTS.data_file ) as f:
lowercase__ : str = json.load(lowercase_ )
lowercase__ : int = dataset_json["""data"""]
with open(OPTS.pred_file ) as f:
lowercase__ : List[str] = json.load(lowercase_ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
lowercase__ : int = json.load(lowercase_ )
else:
lowercase__ : List[Any] = {k: 0.0 for k in preds}
lowercase__ : Optional[Any] = make_qid_to_has_ans(lowercase_ ) # maps qid to True/False
lowercase__ : int = [k for k, v in qid_to_has_ans.items() if v]
lowercase__ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v]
lowercase__ , lowercase__ : List[Any] = get_raw_scores(lowercase_ , lowercase_ )
lowercase__ : str = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh )
lowercase__ : Optional[Any] = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh )
lowercase__ : List[str] = make_eval_dict(lowercase_ , lowercase_ )
if has_ans_qids:
lowercase__ : Any = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ )
merge_eval(lowercase_ , lowercase_ , """HasAns""" )
if no_ans_qids:
lowercase__ : Optional[Any] = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ )
merge_eval(lowercase_ , lowercase_ , """NoAns""" )
if OPTS.na_prob_file:
find_all_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , OPTS.out_image_dir )
histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , """hasAns""" )
histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , """noAns""" )
if OPTS.out_file:
with open(OPTS.out_file , """w""" ) as f:
json.dump(lowercase_ , lowercase_ )
else:
print(json.dumps(lowercase_ , indent=2 ) )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("""Agg""")
import matplotlib.pyplot as plt
main()
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> float:
'''simple docstring'''
return round(float(moles / volume ) * nfactor )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> float:
'''simple docstring'''
return round(float((moles * 0.0821 * temperature) / (volume) ) )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> float:
'''simple docstring'''
return round(float((moles * 0.0821 * temperature) / (pressure) ) )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> float:
'''simple docstring'''
return round(float((pressure * volume) / (0.0821 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Any = logging.get_logger(__name__)
lowerCamelCase__ : Optional[Any] = {
"""edbeeching/decision-transformer-gym-hopper-medium""": (
"""https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"""
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = 'decision_transformer'
__lowerCAmelCase : Optional[Any] = ['past_key_values']
__lowerCAmelCase : int = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE_=17 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Tuple = state_dim
lowercase__ : List[Any] = act_dim
lowercase__ : Optional[int] = hidden_size
lowercase__ : Tuple = max_ep_len
lowercase__ : Any = action_tanh
lowercase__ : Union[str, Any] = vocab_size
lowercase__ : Any = n_positions
lowercase__ : Any = n_layer
lowercase__ : List[Any] = n_head
lowercase__ : Optional[int] = n_inner
lowercase__ : int = activation_function
lowercase__ : Optional[int] = resid_pdrop
lowercase__ : List[str] = embd_pdrop
lowercase__ : Any = attn_pdrop
lowercase__ : str = layer_norm_epsilon
lowercase__ : Any = initializer_range
lowercase__ : Optional[int] = scale_attn_weights
lowercase__ : Optional[Any] = use_cache
lowercase__ : Union[str, Any] = scale_attn_by_inverse_layer_idx
lowercase__ : Tuple = reorder_and_upcast_attn
lowercase__ : Union[str, Any] = bos_token_id
lowercase__ : int = eos_token_id
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
lowerCamelCase__ : Dict = 1_0
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for i in range(lowercase_ , lowercase_ ):
if array[i] == target:
return i
return -1
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Any = 0
lowercase__ : List[Any] = len(lowercase_ )
while left <= right:
if right - left < precision:
return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : Dict = (left + right) // 3 + 1
lowercase__ : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
lowercase__ : Any = one_third - 1
elif array[two_third] < target:
lowercase__ : Tuple = two_third + 1
else:
lowercase__ : Dict = one_third + 1
lowercase__ : Union[str, Any] = two_third - 1
else:
return -1
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if left < right:
if right - left < precision:
return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = (left + right) // 3 + 1
lowercase__ : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(lowercase_ , one_third - 1 , lowercase_ , lowercase_ )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , lowercase_ , lowercase_ , lowercase_ )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase_ , lowercase_ )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ : str = input("""Enter numbers separated by comma:\n""").strip()
lowerCamelCase__ : Dict = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
lowerCamelCase__ : List[Any] = int(input("""Enter the number to be found in the list:\n""").strip())
lowerCamelCase__ : Union[str, Any] = ite_ternary_search(collection, target)
lowerCamelCase__ : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'''Iterative search: {target} found at positions: {resulta}''')
print(f'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Dict = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : Any = size if size is not None else {"""shortest_edge""": 2_56}
lowercase__ : str = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
lowercase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = do_resize
lowercase__ : str = size
lowercase__ : Any = resample
lowercase__ : Dict = do_center_crop
lowercase__ : Optional[int] = crop_size
lowercase__ : Optional[Any] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Optional[int] = do_normalize
lowercase__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase__ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_)
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}')
lowercase__ : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size["""shortest_edge"""] , default_to_square=SCREAMING_SNAKE_CASE_)
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE_)
return center_crop(SCREAMING_SNAKE_CASE_ , size=(size["""height"""], size["""width"""]) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : int = do_resize if do_resize is not None else self.do_resize
lowercase__ : Dict = size if size is not None else self.size
lowercase__ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_)
lowercase__ : str = resample if resample is not None else self.resample
lowercase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase__ : List[Any] = crop_size if crop_size is not None else self.crop_size
lowercase__ : int = get_size_dict(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowercase__ : Optional[int] = image_std if image_std is not None else self.image_std
lowercase__ : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""")
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""")
# All transformations expect numpy arrays.
lowercase__ : str = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_resize:
lowercase__ : Tuple = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_) for image in images]
if do_center_crop:
lowercase__ : Any = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : Tuple = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_normalize:
lowercase__ : Tuple = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
from datetime import datetime as dt
import os
from github import Github
lowerCamelCase__ : Dict = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : int = Github(os.environ["""GITHUB_TOKEN"""] )
lowercase__ : Optional[Any] = g.get_repo("""huggingface/transformers""" )
lowercase__ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowercase__ : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase_ : i.created_at , reverse=lowercase_ )
lowercase__ : str = comments[0] if len(lowercase_ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
from __future__ import annotations
from functools import lru_cache
from math import ceil
lowerCamelCase__ : int = 1_0_0
lowerCamelCase__ : Optional[Any] = set(range(3, NUM_PRIMES, 2))
primes.add(2)
lowerCamelCase__ : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_00 )
def UpperCamelCase ( lowercase_ ) -> set[int]:
'''simple docstring'''
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
lowercase__ : set[int] = set()
lowercase__ : int
lowercase__ : int
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def UpperCamelCase ( lowercase_ = 50_00 ) -> int | None:
'''simple docstring'''
for number_to_partition in range(1 , lowercase_ ):
if len(partition(lowercase_ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def UpperCamelCase ( lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) )
lowercase__ : Tuple = FileLock(str(tmpdir / """foo.lock""" ) )
lowercase__ : Optional[int] = 0.01
with locka.acquire():
with pytest.raises(lowercase_ ):
lowercase__ : str = time.time()
locka.acquire(lowercase_ )
assert time.time() - _start > timeout
def UpperCamelCase ( lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : Optional[int] = """a""" * 10_00 + """.lock"""
lowercase__ : Optional[Any] = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith(""".lock""" )
assert not locka._lock_file.endswith(lowercase_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_55
lowercase__ : str = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(lowercase_ ):
locka.acquire(0 )
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
from __future__ import annotations
import time
import numpy as np
lowerCamelCase__ : List[str] = [8, 5, 9, 7]
lowerCamelCase__ : Union[str, Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
lowerCamelCase__ : Union[str, Any] = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Any = claim_vector
lowercase__ : List[Any] = allocated_resources_table
lowercase__ : Union[str, Any] = maximum_claim_table
def lowercase__ ( self):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table)
for i in range(len(self.__allocated_resources_table[0]))
]
def lowercase__ ( self):
'''simple docstring'''
return np.array(self.__claim_vector) - np.array(
self.__processes_resource_summation())
def lowercase__ ( self):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i]) - np.array(SCREAMING_SNAKE_CASE_))
for i, allocated_resource in enumerate(self.__allocated_resources_table)
]
def lowercase__ ( self):
'''simple docstring'''
return {self.__need().index(SCREAMING_SNAKE_CASE_): i for i in self.__need()}
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.__need()
lowercase__ : Union[str, Any] = self.__allocated_resources_table
lowercase__ : List[Any] = self.__available_resources()
lowercase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("""_""" * 50 + """\n""")
while need_list:
lowercase__ : Optional[int] = False
for each_need in need_list:
lowercase__ : str = True
for index, need in enumerate(SCREAMING_SNAKE_CASE_):
if need > available_resources[index]:
lowercase__ : List[str] = False
break
if execution:
lowercase__ : List[Any] = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowercase__ : Optional[int] = original_need_index
print(f'Process {process_number + 1} is executing.')
# remove the process run from stack
need_list.remove(SCREAMING_SNAKE_CASE_)
# update available/freed resources stack
lowercase__ : int = np.array(SCREAMING_SNAKE_CASE_) + np.array(
alloc_resources_table[process_number])
print(
"""Updated available resource stack for processes: """
+ """ """.join([str(SCREAMING_SNAKE_CASE_) for x in available_resources]))
break
if safe:
print("""The process is in a safe state.\n""")
else:
print("""System in unsafe state. Aborting...\n""")
break
def lowercase__ ( self):
'''simple docstring'''
print(""" """ * 9 + """Allocated Resource Table""")
for item in self.__allocated_resources_table:
print(
f'P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE_) + 1}'
+ """ """.join(f'{it:>8}' for it in item)
+ """\n""")
print(""" """ * 9 + """System Resource Table""")
for item in self.__maximum_claim_table:
print(
f'P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE_) + 1}'
+ """ """.join(f'{it:>8}' for it in item)
+ """\n""")
print(
"""Current Usage by Active Processes: """
+ """ """.join(str(SCREAMING_SNAKE_CASE_) for x in self.__claim_vector))
print(
"""Initial Available Resources: """
+ """ """.join(str(SCREAMING_SNAKE_CASE_) for x in self.__available_resources()))
time.sleep(1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : List[Any] = []
for line in lines:
lowercase__ : Dict = re.sub(R"""#.*""" , """""" , lowercase_ ) # remove comments
if line:
filtered_lines.append(lowercase_ )
lowercase__ : int = """\n""".join(lowercase_ )
# Make a hash from all this code
lowercase__ : int = full_str.encode("""utf-8""" )
return shaaaa(lowercase_ ).hexdigest()
# get importable module names and hash for caching
lowerCamelCase__ : Tuple = {
"""csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
"""json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
"""pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
"""parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
"""arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
"""text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
"""imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
"""audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
lowerCamelCase__ : Dict = {
""".csv""": ("""csv""", {}),
""".tsv""": ("""csv""", {"""sep""": """\t"""}),
""".json""": ("""json""", {}),
""".jsonl""": ("""json""", {}),
""".parquet""": ("""parquet""", {}),
""".arrow""": ("""arrow""", {}),
""".txt""": ("""text""", {}),
}
_EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
lowerCamelCase__ : Dict = {"""imagefolder""", """audiofolder"""}
# Used to filter data files based on extensions given a module name
lowerCamelCase__ : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""")
_MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from __future__ import annotations
def UpperCamelCase ( lowercase_ , lowercase_ ) -> list[int]:
'''simple docstring'''
lowercase__ : List[str] = 0
lowercase__ : List[Any] = len(lowercase_ ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
lowercase__ : Optional[Any] = i + 1
else:
lowercase__ : int = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
from math import factorial
def UpperCamelCase ( lowercase_ = 20 ) -> int:
'''simple docstring'''
lowercase__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
lowercase__ : Union[str, Any] = n // 2
return int(factorial(lowercase_ ) / (factorial(lowercase_ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
lowerCamelCase__ : Any = int(sys.argv[1])
print(solution(n))
except ValueError:
print("""Invalid entry - please enter a number.""")
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase__ : List[str] = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""")
@require_sentencepiece
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : List[Any] = SpeechTaTokenizer
__lowerCAmelCase : Union[str, Any] = False
__lowerCAmelCase : List[Any] = True
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ : int = SpeechTaTokenizer(SCREAMING_SNAKE_CASE_)
lowercase__ : str = AddedToken("""<mask>""" , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_)
lowercase__ : str = mask_token
tokenizer.add_special_tokens({"""mask_token""": mask_token})
tokenizer.add_tokens(["""<ctc_blank>"""])
tokenizer.save_pretrained(self.tmpdirname)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[Any] = """this is a test"""
lowercase__ : List[Any] = """this is a test"""
return input_text, output_text
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=20 , SCREAMING_SNAKE_CASE_=5):
'''simple docstring'''
lowercase__ , lowercase__ : List[Any] = self.get_input_output_texts(SCREAMING_SNAKE_CASE_)
lowercase__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_)
return text, ids
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = """<pad>"""
lowercase__ : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<s>""")
self.assertEqual(vocab_keys[1] , """<pad>""")
self.assertEqual(vocab_keys[-4] , """œ""")
self.assertEqual(vocab_keys[-2] , """<mask>""")
self.assertEqual(vocab_keys[-1] , """<ctc_blank>""")
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , 81)
def lowercase__ ( self):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 79)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Dict = tokenizer.vocab_size
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
lowercase__ : Union[str, Any] = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""]
lowercase__ : int = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer.vocab_size
lowercase__ : Any = len(SCREAMING_SNAKE_CASE_)
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_))
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_))
lowercase__ : Dict = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_) , 4)
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1)
lowercase__ : Optional[Any] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""}
lowercase__ : Optional[int] = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.vocab_size
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_)
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_))
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_))
lowercase__ : str = tokenizer.encode(
""">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_) , 6)
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[0] , tokens[1])
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3] , tokens[-4])
self.assertEqual(tokens[0] , tokenizer.eos_token_id)
self.assertEqual(tokens[-3] , tokenizer.pad_token_id)
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.get_tokenizer()
lowercase__ : Dict = tokenizer.tokenize("""This is a test""")
# fmt: off
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""])
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
lowercase__ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""")
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""])
lowercase__ : Tuple = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
# fmt: off
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26])
# fmt: on
lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""])
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = [
"""Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """
"""general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """
"""Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """
"""models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""",
"""BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """
"""conditioning on both left and right context in all layers.""",
"""The quick brown fox jumps over the lazy dog.""",
]
# fmt: off
lowercase__ : Dict = {
"""input_ids""": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"""attention_mask""": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=SCREAMING_SNAKE_CASE_ , )
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : List[Any] = {
"""configuration_blip_2""": [
"""BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Blip2Config""",
"""Blip2QFormerConfig""",
"""Blip2VisionConfig""",
],
"""processing_blip_2""": ["""Blip2Processor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = [
"""BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Blip2Model""",
"""Blip2QFormerModel""",
"""Blip2PreTrainedModel""",
"""Blip2ForConditionalGeneration""",
"""Blip2VisionModel""",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'CLIPImageProcessor'
__lowerCAmelCase : Optional[int] = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = kwargs.pop("""feature_extractor""")
lowercase__ : Tuple = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""")
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""")
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : int = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Tuple = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : int = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.tokenizer.model_input_names
lowercase__ : str = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def lowercase__ ( self):
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , SCREAMING_SNAKE_CASE_ , )
return self.image_processor_class
@property
def lowercase__ ( self):
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , SCREAMING_SNAKE_CASE_ , )
return self.image_processor
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : List[str] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : int = [
"""FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FocalNetForImageClassification""",
"""FocalNetForMaskedImageModeling""",
"""FocalNetBackbone""",
"""FocalNetModel""",
"""FocalNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
if not isinstance(lowercase_ , lowercase_ ):
lowercase__ : Optional[Any] = F'Input value of [number={number}] must be an integer'
raise TypeError(lowercase_ )
if number < 0:
return False
lowercase__ : int = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
lowerCamelCase__ : Tuple = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 1_01):
'''simple docstring'''
lowercase__ : Dict = length
def __len__( self):
'''simple docstring'''
return self.length
def __getitem__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return i
class _snake_case :
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return {"input_ids": torch.tensor(SCREAMING_SNAKE_CASE_), "labels": torch.tensor(SCREAMING_SNAKE_CASE_)}
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
# Add some (unused) params otherwise DDP will complain.
lowercase__ : Optional[Any] = nn.Linear(1_20 , 80)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
if labels is not None:
return torch.tensor(0.0 , device=input_ids.device), input_ids
else:
return input_ids
class _snake_case ( UpperCAmelCase_ ):
@require_torch_neuroncore
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split()
lowercase__ : Any = self.get_auto_remove_tmp_dir()
lowercase__ : Optional[int] = f'--output_dir {output_dir}'.split()
lowercase__ : Union[str, Any] = ["""torchrun"""] + distributed_args + args
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=self.get_env())
# successful return here == success - any errors would have caused an error in the sub-call
class _snake_case ( UpperCAmelCase_ ):
@require_torch_multi_gpu
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split()
lowercase__ : List[str] = self.get_auto_remove_tmp_dir()
lowercase__ : Dict = f'--output_dir {output_dir}'.split()
lowercase__ : List[str] = ["""torchrun"""] + distributed_args + args
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=self.get_env())
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
lowerCamelCase__ : List[Any] = HfArgumentParser((TrainingArguments,))
lowerCamelCase__ : Optional[Any] = parser.parse_args_into_dataclasses()[0]
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, '''
f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}'''
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [1_0_1, 4_0, 7]:
lowerCamelCase__ : Tuple = DummyDataset(dataset_length)
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : Dict = list(range(len(lowercase_ ) ) )
lowercase__ : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
"""Predictions and/or labels do not match expected results:\n - predictions: """
F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' )
return {"success": success}
lowerCamelCase__ : Optional[int] = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
lowerCamelCase__ : List[Any] = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
lowerCamelCase__ : str = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
lowerCamelCase__ : str = 2
lowerCamelCase__ : str = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
lowerCamelCase__ : Any = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
lowerCamelCase__ : List[Any] = None
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase__ : str = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Union[str, Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
lowerCamelCase__ : Optional[Any] = {
"""sample_size""": 3_2,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": 1_0_0_0,
"""block_out_channels""": [3_2, 6_4],
"""attention_head_dim""": 8,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
lowerCamelCase__ : Union[str, Any] = {
"""sample_size""": 6_4,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 3,
"""num_class_embeds""": 1_0_0_0,
"""block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4],
"""attention_head_dim""": 6_4,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
lowerCamelCase__ : List[str] = {
"""sample_size""": 2_5_6,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": None,
"""block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4],
"""attention_head_dim""": 6_4,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """default""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
lowerCamelCase__ : Any = {
"""num_train_timesteps""": 4_0,
"""sigma_min""": 0.002,
"""sigma_max""": 80.0,
}
lowerCamelCase__ : int = {
"""num_train_timesteps""": 2_0_1,
"""sigma_min""": 0.002,
"""sigma_max""": 80.0,
}
lowerCamelCase__ : List[Any] = {
"""num_train_timesteps""": 1_5_1,
"""sigma_min""": 0.002,
"""sigma_max""": 80.0,
}
def UpperCamelCase ( lowercase_ ) -> Tuple:
'''simple docstring'''
if isinstance(lowercase_ , lowercase_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("""boolean value expected""" )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Any:
'''simple docstring'''
lowercase__ : List[str] = checkpoint[F'{old_prefix}.in_layers.0.weight']
lowercase__ : Tuple = checkpoint[F'{old_prefix}.in_layers.0.bias']
lowercase__ : Any = checkpoint[F'{old_prefix}.in_layers.2.weight']
lowercase__ : Union[str, Any] = checkpoint[F'{old_prefix}.in_layers.2.bias']
lowercase__ : Optional[int] = checkpoint[F'{old_prefix}.emb_layers.1.weight']
lowercase__ : List[Any] = checkpoint[F'{old_prefix}.emb_layers.1.bias']
lowercase__ : List[Any] = checkpoint[F'{old_prefix}.out_layers.0.weight']
lowercase__ : Optional[int] = checkpoint[F'{old_prefix}.out_layers.0.bias']
lowercase__ : Union[str, Any] = checkpoint[F'{old_prefix}.out_layers.3.weight']
lowercase__ : Tuple = checkpoint[F'{old_prefix}.out_layers.3.bias']
if has_skip:
lowercase__ : Any = checkpoint[F'{old_prefix}.skip_connection.weight']
lowercase__ : Any = checkpoint[F'{old_prefix}.skip_connection.bias']
return new_checkpoint
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> List[str]:
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ : str = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 )
lowercase__ , lowercase__ , lowercase__ : Any = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 )
lowercase__ : Optional[Any] = checkpoint[F'{old_prefix}.norm.weight']
lowercase__ : Tuple = checkpoint[F'{old_prefix}.norm.bias']
lowercase__ : int = weight_q.squeeze(-1 ).squeeze(-1 )
lowercase__ : int = bias_q.squeeze(-1 ).squeeze(-1 )
lowercase__ : str = weight_k.squeeze(-1 ).squeeze(-1 )
lowercase__ : Dict = bias_k.squeeze(-1 ).squeeze(-1 )
lowercase__ : List[Any] = weight_v.squeeze(-1 ).squeeze(-1 )
lowercase__ : Dict = bias_v.squeeze(-1 ).squeeze(-1 )
lowercase__ : List[Any] = (
checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 )
)
lowercase__ : List[str] = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : List[Any] = torch.load(lowercase_ , map_location="""cpu""" )
lowercase__ : Optional[Any] = {}
lowercase__ : Tuple = checkpoint["""time_embed.0.weight"""]
lowercase__ : Any = checkpoint["""time_embed.0.bias"""]
lowercase__ : Dict = checkpoint["""time_embed.2.weight"""]
lowercase__ : str = checkpoint["""time_embed.2.bias"""]
if unet_config["num_class_embeds"] is not None:
lowercase__ : int = checkpoint["""label_emb.weight"""]
lowercase__ : Optional[int] = checkpoint["""input_blocks.0.0.weight"""]
lowercase__ : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""]
lowercase__ : Union[str, Any] = unet_config["""down_block_types"""]
lowercase__ : str = unet_config["""layers_per_block"""]
lowercase__ : Optional[int] = unet_config["""attention_head_dim"""]
lowercase__ : Optional[Any] = unet_config["""block_out_channels"""]
lowercase__ : Tuple = 1
lowercase__ : Optional[int] = channels_list[0]
for i, layer_type in enumerate(lowercase_ ):
lowercase__ : Any = channels_list[i]
lowercase__ : List[Any] = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(lowercase_ ):
lowercase__ : Any = F'down_blocks.{i}.resnets.{j}'
lowercase__ : int = F'input_blocks.{current_layer}.0'
lowercase__ : Tuple = True if j == 0 and downsample_block_has_skip else False
lowercase__ : Tuple = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(lowercase_ ):
lowercase__ : Optional[Any] = F'down_blocks.{i}.resnets.{j}'
lowercase__ : Union[str, Any] = F'input_blocks.{current_layer}.0'
lowercase__ : Any = True if j == 0 and downsample_block_has_skip else False
lowercase__ : Optional[int] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ )
lowercase__ : Optional[int] = F'down_blocks.{i}.attentions.{j}'
lowercase__ : int = F'input_blocks.{current_layer}.1'
lowercase__ : str = convert_attention(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
current_layer += 1
if i != len(lowercase_ ) - 1:
lowercase__ : Dict = F'down_blocks.{i}.downsamplers.0'
lowercase__ : Union[str, Any] = F'input_blocks.{current_layer}.0'
lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
current_layer += 1
lowercase__ : Optional[Any] = current_channels
# hardcoded the mid-block for now
lowercase__ : Any = """mid_block.resnets.0"""
lowercase__ : List[Any] = """middle_block.0"""
lowercase__ : Tuple = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : str = """mid_block.attentions.0"""
lowercase__ : Union[str, Any] = """middle_block.1"""
lowercase__ : Tuple = convert_attention(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : Dict = """mid_block.resnets.1"""
lowercase__ : List[Any] = """middle_block.2"""
lowercase__ : int = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : str = 0
lowercase__ : Union[str, Any] = unet_config["""up_block_types"""]
for i, layer_type in enumerate(lowercase_ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
lowercase__ : List[str] = F'up_blocks.{i}.resnets.{j}'
lowercase__ : Dict = F'output_blocks.{current_layer}.0'
lowercase__ : str = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ )
current_layer += 1
if i != len(lowercase_ ) - 1:
lowercase__ : List[Any] = F'up_blocks.{i}.upsamplers.0'
lowercase__ : Any = F'output_blocks.{current_layer-1}.1'
lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
lowercase__ : Dict = F'up_blocks.{i}.resnets.{j}'
lowercase__ : Any = F'output_blocks.{current_layer}.0'
lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ )
lowercase__ : Tuple = F'up_blocks.{i}.attentions.{j}'
lowercase__ : Optional[Any] = F'output_blocks.{current_layer}.1'
lowercase__ : Any = convert_attention(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
current_layer += 1
if i != len(lowercase_ ) - 1:
lowercase__ : Any = F'up_blocks.{i}.upsamplers.0'
lowercase__ : Optional[int] = F'output_blocks.{current_layer-1}.2'
lowercase__ : int = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : str = checkpoint["""out.0.weight"""]
lowercase__ : Any = checkpoint["""out.0.bias"""]
lowercase__ : Any = checkpoint["""out.2.weight"""]
lowercase__ : Any = checkpoint["""out.2.bias"""]
return new_checkpoint
if __name__ == "__main__":
lowerCamelCase__ : Dict = argparse.ArgumentParser()
parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""")
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model."""
)
parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""")
lowerCamelCase__ : Tuple = parser.parse_args()
lowerCamelCase__ : Dict = strabool(args.class_cond)
lowerCamelCase__ : List[Any] = os.path.basename(args.unet_path)
print(f'''Checkpoint: {ckpt_name}''')
# Get U-Net config
if "imagenet64" in ckpt_name:
lowerCamelCase__ : Optional[Any] = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
lowerCamelCase__ : Optional[Any] = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
lowerCamelCase__ : Dict = TEST_UNET_CONFIG
else:
raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''')
if not args.class_cond:
lowerCamelCase__ : Union[str, Any] = None
lowerCamelCase__ : Optional[Any] = con_pt_to_diffuser(args.unet_path, unet_config)
lowerCamelCase__ : List[Any] = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
lowerCamelCase__ : Union[str, Any] = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
lowerCamelCase__ : List[str] = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
lowerCamelCase__ : List[Any] = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''')
lowerCamelCase__ : str = CMStochasticIterativeScheduler(**scheduler_config)
lowerCamelCase__ : Optional[int] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
import argparse
lowerCamelCase__ : int = """docs/source/_static/js/custom.js"""
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
with open(lowercase_ , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase__ : Optional[int] = f.readlines()
lowercase__ : str = 0
# First let's put the right version
while not lines[index].startswith("""const stableVersion =""" ):
index += 1
lowercase__ : Union[str, Any] = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith("""const versionMapping = {""" ):
index += 1
# We go until the end
while not lines[index].startswith("""}""" ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(lowercase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
lowerCamelCase__ : Any = parser.parse_args()
update_custom_js(args.version)
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : Dict = logging.get_logger(__name__)
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : List[Any] = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
lowercase__ : Union[str, Any] = 10_24
lowercase__ : Dict = 40_96
lowercase__ : Optional[Any] = 24
lowercase__ : List[Any] = 16
lowercase__ : str = [5, 11, 17, 23]
lowercase__ : Union[str, Any] = [2_56, 5_12, 10_24, 10_24]
lowercase__ : Optional[Any] = (1, 3_84, 3_84)
if "nyu" or "midas" in checkpoint_url:
lowercase__ : Any = 7_68
lowercase__ : Tuple = [1, 1, 1, 0.5]
lowercase__ : Union[str, Any] = [2_56, 5_12, 7_68, 7_68]
lowercase__ : List[Any] = 1_50
lowercase__ : str = 16
lowercase__ : Optional[Any] = (1, 3_84, 3_84)
lowercase__ : Union[str, Any] = False
lowercase__ : List[str] = """project"""
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 7_68
lowercase__ : Union[str, Any] = [1, 1, 1, 0.5]
lowercase__ : Optional[Any] = 1_50
lowercase__ : Optional[int] = 16
lowercase__ : Optional[int] = """huggingface/label-files"""
lowercase__ : List[str] = """ade20k-id2label.json"""
lowercase__ : List[str] = json.load(open(cached_download(hf_hub_url(lowercase_ , lowercase_ , repo_type="""dataset""" ) ) , """r""" ) )
lowercase__ : Optional[Any] = {int(lowercase_ ): v for k, v in idalabel.items()}
lowercase__ : List[str] = idalabel
lowercase__ : List[Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Any = [1, 1_50, 4_80, 4_80]
return config, expected_shape
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Dict = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase_ , lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : List[str] = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowercase__ : Tuple = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowercase__ : Any = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowercase__ : Any = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowercase__ : Any = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowercase__ : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Any = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
lowercase__ : Dict = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
lowercase__ : Tuple = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowercase__ : Any = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowercase__ : int = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowercase__ : Tuple = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowercase__ : List[str] = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowercase__ : Dict = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowercase__ : List[str] = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowercase__ : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : List[str] = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
lowercase__ : List[Any] = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowercase__ : Union[str, Any] = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowercase__ : Optional[Any] = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowercase__ : Optional[Any] = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Any = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : int = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : str = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Tuple = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowercase__ : Union[str, Any] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowercase__ : Tuple = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Dict = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowercase__ : str = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowercase__ : Any = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowercase__ : Tuple = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowercase__ : List[Any] = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowercase__ : List[Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
lowercase__ : List[Any] = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
lowercase__ : Tuple = name.replace("""..""" , """.""" )
if "stem.conv" in name:
lowercase__ : List[Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowercase__ : Any = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
lowercase__ : Dict = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
lowercase__ : Dict = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
lowercase__ : Optional[int] = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
lowercase__ : Union[str, Any] = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
lowercase__ : str = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : str = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' )
lowercase__ : Tuple = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Tuple = in_proj_weight[: config.hidden_size, :]
lowercase__ : Union[str, Any] = in_proj_bias[: config.hidden_size]
lowercase__ : int = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : Any = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : Optional[Any] = in_proj_bias[-config.hidden_size :]
def UpperCamelCase ( ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase__ : Union[str, Any] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw )
return im
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ , lowercase__ : str = get_dpt_config(lowercase_ )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowercase__ : Any = torch.load(lowercase_ , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(lowercase_ )
# rename keys
for key in state_dict.copy().keys():
lowercase__ : str = state_dict.pop(lowercase_ )
lowercase__ : int = val
# read in qkv matrices
read_in_q_k_v(lowercase_ , lowercase_ )
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(lowercase_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowercase_ )
model.load_state_dict(lowercase_ )
model.eval()
# Check outputs on an image
lowercase__ : List[Any] = 4_80 if """ade""" in checkpoint_url else 3_84
lowercase__ : Dict = DPTImageProcessor(size=lowercase_ )
lowercase__ : Optional[int] = prepare_img()
lowercase__ : Dict = image_processor(lowercase_ , return_tensors="""pt""" )
# forward pass
lowercase__ : Any = model(**lowercase_ ).logits if """ade""" in checkpoint_url else model(**lowercase_ ).predicted_depth
if show_prediction:
lowercase__ : Union[str, Any] = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=lowercase_ , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 2_55 ).show()
if pytorch_dump_folder_path is not None:
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""",
type=str,
help="""URL of the original DPT checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=False,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
)
parser.add_argument(
"""--model_name""",
default="""dpt-large""",
type=str,
help="""Name of the model, in case you're pushing to the hub.""",
)
parser.add_argument(
"""--show_prediction""",
action="""store_true""",
)
lowerCamelCase__ : Any = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ ) -> list[int]:
'''simple docstring'''
lowercase__ : Tuple = int(lowercase_ )
# Initialize Result
lowercase__ : str = []
# Traverse through all denomination
for denomination in reversed(lowercase_ ):
# Find denominations
while int(lowercase_ ) >= int(lowercase_ ):
total_value -= int(lowercase_ )
answer.append(lowercase_ ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
lowerCamelCase__ : List[str] = []
lowerCamelCase__ : Union[str, Any] = """0"""
if (
input("""Do you want to enter your denominations ? (yY/n): """).strip().lower()
== "y"
):
lowerCamelCase__ : List[Any] = int(input("""Enter the number of denominations you want to add: """).strip())
for i in range(0, n):
denominations.append(int(input(f'''Denomination {i}: ''').strip()))
lowerCamelCase__ : Optional[int] = input("""Enter the change you want to make in Indian Currency: """).strip()
else:
# All denominations of Indian Currency if user does not enter
lowerCamelCase__ : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0]
lowerCamelCase__ : Optional[int] = input("""Enter the change you want to make: """).strip()
if int(value) == 0 or int(value) < 0:
print("""The total value cannot be zero or negative.""")
else:
print(f'''Following is minimal change for {value}: ''')
lowerCamelCase__ : List[Any] = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=""" """)
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
lowerCamelCase__ : Any = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Any = Sql(
cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = None
lowercase__ : Optional[Any] = None
lowercase__ : Optional[int] = None
lowercase__ : int = None
self.builder.download_and_prepare(
download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , )
# Build dataset for splits
lowercase__ : str = self.builder.as_dataset(
split="""train""" , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory)
return dataset
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(f'num_proc {num_proc} must be an integer > 0.')
lowercase__ : Union[str, Any] = dataset
lowercase__ : int = name
lowercase__ : Optional[int] = con
lowercase__ : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
lowercase__ : List[Any] = num_proc
lowercase__ : Dict = to_sql_kwargs
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.to_sql_kwargs.pop("""sql""" , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.to_sql_kwargs.pop("""con""" , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.to_sql_kwargs.pop("""index""" , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs)
return written
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ : Optional[int] = args
lowercase__ : List[Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
lowercase__ : Tuple = query_table(
table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size) , indices=self.dataset._indices , )
lowercase__ : Dict = batch.to_pandas()
lowercase__ : Dict = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return num_rows or len(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs))
else:
lowercase__ , lowercase__ : List[str] = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[Any] = name
lowercase__ : Any = value
lowercase__ : Union[str, Any] = weight
def __repr__( self):
'''simple docstring'''
return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def lowercase__ ( self):
'''simple docstring'''
return self.value
def lowercase__ ( self):
'''simple docstring'''
return self.name
def lowercase__ ( self):
'''simple docstring'''
return self.weight
def lowercase__ ( self):
'''simple docstring'''
return self.value / self.weight
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : Dict = []
for i in range(len(lowercase_ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : str = sorted(lowercase_ , key=lowercase_ , reverse=lowercase_ )
lowercase__ : Optional[int] = []
lowercase__ , lowercase__ : List[str] = 0.0, 0.0
for i in range(len(lowercase_ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def UpperCamelCase ( ) -> Dict:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
lowerCamelCase__ : str = {
"""microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""",
}
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ):
__lowerCAmelCase : List[Any] = 'focalnet'
def __init__( self , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=96 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=[1_92, 3_84, 7_68, 7_68] , SCREAMING_SNAKE_CASE_=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[3, 3, 3, 3] , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=4.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1E-4 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = image_size
lowercase__ : List[str] = patch_size
lowercase__ : str = num_channels
lowercase__ : str = embed_dim
lowercase__ : List[Any] = use_conv_embed
lowercase__ : Union[str, Any] = hidden_sizes
lowercase__ : Tuple = depths
lowercase__ : Union[str, Any] = focal_levels
lowercase__ : List[str] = focal_windows
lowercase__ : str = hidden_act
lowercase__ : str = mlp_ratio
lowercase__ : Optional[int] = hidden_dropout_prob
lowercase__ : Optional[int] = drop_path_rate
lowercase__ : Optional[Any] = use_layerscale
lowercase__ : str = layerscale_value
lowercase__ : Optional[Any] = use_post_layernorm
lowercase__ : Any = use_post_layernorm_in_modulation
lowercase__ : Optional[int] = normalize_modulator
lowercase__ : Optional[int] = initializer_range
lowercase__ : Tuple = layer_norm_eps
lowercase__ : str = encoder_stride
lowercase__ : int = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(self.depths) + 1)]
lowercase__ , lowercase__ : List[str] = get_aligned_output_features_output_indices(
out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names)
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
warnings.warn(
"""The preprocess method is deprecated and will be removed in a future version. Please"""
""" use VaeImageProcessor.preprocess instead""" , lowercase_ , )
if isinstance(lowercase_ , torch.Tensor ):
return image
elif isinstance(lowercase_ , PIL.Image.Image ):
lowercase__ : List[str] = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowercase__ , lowercase__ : List[str] = image[0].size
lowercase__ , lowercase__ : Tuple = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowercase__ : str = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
lowercase__ : List[str] = np.concatenate(lowercase_ , axis=0 )
lowercase__ : Tuple = np.array(lowercase_ ).astype(np.floataa ) / 255.0
lowercase__ : int = image.transpose(0 , 3 , 1 , 2 )
lowercase__ : Dict = 2.0 * image - 1.0
lowercase__ : Any = torch.from_numpy(lowercase_ )
elif isinstance(image[0] , torch.Tensor ):
lowercase__ : Tuple = torch.cat(lowercase_ , dim=0 )
return image
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
if isinstance(lowercase_ , torch.Tensor ):
return mask
elif isinstance(lowercase_ , PIL.Image.Image ):
lowercase__ : int = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowercase__ , lowercase__ : List[str] = mask[0].size
lowercase__ , lowercase__ : int = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowercase__ : str = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask]
lowercase__ : str = np.concatenate(lowercase_ , axis=0 )
lowercase__ : Any = mask.astype(np.floataa ) / 255.0
lowercase__ : Any = 0
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = torch.from_numpy(lowercase_ )
elif isinstance(mask[0] , torch.Tensor ):
lowercase__ : Tuple = torch.cat(lowercase_ , dim=0 )
return mask
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : UNetaDModel
__lowerCAmelCase : RePaintScheduler
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_)
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 2_50 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , ):
'''simple docstring'''
lowercase__ : List[str] = image
lowercase__ : Union[str, Any] = _preprocess_image(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = original_image.to(device=self.device , dtype=self.unet.dtype)
lowercase__ : str = _preprocess_mask(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = mask_image.to(device=self.device , dtype=self.unet.dtype)
lowercase__ : List[Any] = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and len(SCREAMING_SNAKE_CASE_) != batch_size:
raise ValueError(
f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_)}, but requested an effective batch'
f' size of {batch_size}. Make sure the batch size matches the length of the generators.')
lowercase__ : Dict = original_image.shape
lowercase__ : List[str] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=self.unet.dtype)
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device)
lowercase__ : Dict = eta
lowercase__ : str = self.scheduler.timesteps[0] + 1
lowercase__ : List[str] = generator[0] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
if t < t_last:
# predict the noise residual
lowercase__ : List[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).sample
# compute previous image: x_t -> x_t-1
lowercase__ : Optional[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowercase__ : Optional[int] = self.scheduler.undo_step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : int = t
lowercase__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1)
lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
lowercase__ : Any = self.numpy_to_pil(SCREAMING_SNAKE_CASE_)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_)
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
lowerCamelCase__ : str = None
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Any = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ : str = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""",
},
}
lowerCamelCase__ : List[str] = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
lowerCamelCase__ : str = """▁"""
# Segments (not really needed)
lowerCamelCase__ : Dict = 0
lowerCamelCase__ : str = 1
lowerCamelCase__ : int = 2
lowerCamelCase__ : Optional[Any] = 3
lowerCamelCase__ : Dict = 4
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES
__lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : Optional[int] = 'left'
__lowerCAmelCase : Dict = XLNetTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=["<eop>", "<eod>"] , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else mask_token
super().__init__(
vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Union[str, Any] = 3
lowercase__ : Optional[Any] = do_lower_case
lowercase__ : Optional[int] = remove_space
lowercase__ : Any = keep_accents
lowercase__ : Optional[int] = vocab_file
lowercase__ : Optional[Any] = False if not self.vocab_file else True
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : Optional[int] = [self.sep_token_id]
lowercase__ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : Any = [self.sep_token_id]
lowercase__ : Optional[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep) * [0] + cls_segment_id
return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""")
if not os.path.isdir(SCREAMING_SNAKE_CASE_):
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
return
lowercase__ : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE_):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_)
return (out_vocab_file,)
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 / 2_55 , SCREAMING_SNAKE_CASE_=True , ):
'''simple docstring'''
lowercase__ : Tuple = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33}
lowercase__ : Dict = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : Optional[int] = num_channels
lowercase__ : Union[str, Any] = min_resolution
lowercase__ : List[Any] = max_resolution
lowercase__ : Union[str, Any] = do_resize
lowercase__ : List[str] = size
lowercase__ : List[str] = do_normalize
lowercase__ : List[str] = image_mean
lowercase__ : Union[str, Any] = image_std
lowercase__ : List[str] = do_rescale
lowercase__ : str = rescale_factor
lowercase__ : Dict = do_pad
def lowercase__ ( self):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False):
'''simple docstring'''
if not batched:
lowercase__ : Optional[Any] = image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE_ , Image.Image):
lowercase__ , lowercase__ : Any = image.size
else:
lowercase__ , lowercase__ : Union[str, Any] = image.shape[1], image.shape[2]
if w < h:
lowercase__ : Any = int(self.size["""shortest_edge"""] * h / w)
lowercase__ : Dict = self.size["""shortest_edge"""]
elif w > h:
lowercase__ : Dict = self.size["""shortest_edge"""]
lowercase__ : str = int(self.size["""shortest_edge"""] * w / h)
else:
lowercase__ : Union[str, Any] = self.size["""shortest_edge"""]
lowercase__ : int = self.size["""shortest_edge"""]
else:
lowercase__ : Tuple = []
for image in image_inputs:
lowercase__ , lowercase__ : Tuple = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
lowercase__ : Optional[int] = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: item[0])[0]
lowercase__ : Dict = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[int] = ConditionalDetrImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = ConditionalDetrImageProcessingTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33})
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_)
lowercase__ : int = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE_)
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84})
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
lowercase__ , lowercase__ : List[str] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowercase__ , lowercase__ : str = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
lowercase__ , lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowercase__ : Any = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
lowercase__ , lowercase__ : int = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
lowercase__ , lowercase__ : Dict = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowercase__ : Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
lowercase__ , lowercase__ : Tuple = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f:
lowercase__ : Optional[Any] = json.loads(f.read())
lowercase__ : Union[str, Any] = {"""image_id""": 3_97_69, """annotations""": target}
# encode them
lowercase__ : Union[str, Any] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""")
lowercase__ : int = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""")
# verify pixel values
lowercase__ : Tuple = torch.Size([1, 3, 8_00, 10_66])
self.assertEqual(encoding["""pixel_values"""].shape , SCREAMING_SNAKE_CASE_)
lowercase__ : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1])
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4))
# verify area
lowercase__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , SCREAMING_SNAKE_CASE_))
# verify boxes
lowercase__ : List[Any] = torch.Size([6, 4])
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , SCREAMING_SNAKE_CASE_ , atol=1E-3))
# verify image_id
lowercase__ : List[str] = torch.tensor([3_97_69])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , SCREAMING_SNAKE_CASE_))
# verify is_crowd
lowercase__ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , SCREAMING_SNAKE_CASE_))
# verify class_labels
lowercase__ : Tuple = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , SCREAMING_SNAKE_CASE_))
# verify orig_size
lowercase__ : Optional[int] = torch.tensor([4_80, 6_40])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , SCREAMING_SNAKE_CASE_))
# verify size
lowercase__ : Optional[Any] = torch.tensor([8_00, 10_66])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , SCREAMING_SNAKE_CASE_))
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f:
lowercase__ : List[str] = json.loads(f.read())
lowercase__ : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target}
lowercase__ : int = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""")
# encode them
lowercase__ : str = ConditionalDetrImageProcessor(format="""coco_panoptic""")
lowercase__ : Any = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , masks_path=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""")
# verify pixel values
lowercase__ : Dict = torch.Size([1, 3, 8_00, 10_66])
self.assertEqual(encoding["""pixel_values"""].shape , SCREAMING_SNAKE_CASE_)
lowercase__ : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1])
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4))
# verify area
lowercase__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , SCREAMING_SNAKE_CASE_))
# verify boxes
lowercase__ : str = torch.Size([6, 4])
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , SCREAMING_SNAKE_CASE_)
lowercase__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , SCREAMING_SNAKE_CASE_ , atol=1E-3))
# verify image_id
lowercase__ : List[str] = torch.tensor([3_97_69])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , SCREAMING_SNAKE_CASE_))
# verify is_crowd
lowercase__ : int = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , SCREAMING_SNAKE_CASE_))
# verify class_labels
lowercase__ : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , SCREAMING_SNAKE_CASE_))
# verify masks
lowercase__ : Union[str, Any] = 82_28_73
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , SCREAMING_SNAKE_CASE_)
# verify orig_size
lowercase__ : List[str] = torch.tensor([4_80, 6_40])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , SCREAMING_SNAKE_CASE_))
# verify size
lowercase__ : Union[str, Any] = torch.tensor([8_00, 10_66])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , SCREAMING_SNAKE_CASE_))
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = (DEISMultistepScheduler,)
__lowerCAmelCase : Optional[Any] = (('num_inference_steps', 25),)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = dict(self.forward_default_kwargs)
lowercase__ : Optional[Any] = kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_sample
lowercase__ : Any = 0.1 * sample
lowercase__ : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowercase__ : Optional[int] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE_)
scheduler.set_timesteps(SCREAMING_SNAKE_CASE_)
# copy over dummy past residuals
lowercase__ : Dict = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_)
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_)
# copy over dummy past residuals
lowercase__ : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order]
lowercase__ , lowercase__ : Union[str, Any] = sample, sample
for t in range(SCREAMING_SNAKE_CASE_ , time_step + scheduler.config.solver_order + 1):
lowercase__ : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_).prev_sample
lowercase__ : int = new_scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical"
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[Any] = dict(self.forward_default_kwargs)
lowercase__ : Optional[Any] = kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.dummy_sample
lowercase__ : Dict = 0.1 * sample
lowercase__ : Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowercase__ : Any = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
scheduler.set_timesteps(SCREAMING_SNAKE_CASE_)
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_)
# copy over dummy past residuals
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_)
# copy over dummy past residual (must be after setting timesteps)
lowercase__ : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
lowercase__ : Tuple = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_).prev_sample
lowercase__ : List[str] = new_scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical"
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if scheduler is None:
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = 10
lowercase__ : str = self.dummy_model()
lowercase__ : Any = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE_)
for i, t in enumerate(scheduler.timesteps):
lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).prev_sample
return sample
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = dict(self.forward_default_kwargs)
lowercase__ : Optional[Any] = kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE_)
for scheduler_class in self.scheduler_classes:
lowercase__ : int = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_sample
lowercase__ : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE_ , """set_timesteps"""):
scheduler.set_timesteps(SCREAMING_SNAKE_CASE_)
elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE_ , """set_timesteps"""):
lowercase__ : Optional[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
lowercase__ : str = dummy_past_residuals[: scheduler.config.solver_order]
lowercase__ : Optional[int] = scheduler.timesteps[5]
lowercase__ : str = scheduler.timesteps[6]
lowercase__ : Any = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_).prev_sample
lowercase__ : Tuple = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_).prev_sample
self.assertEqual(output_a.shape , sample.shape)
self.assertEqual(output_a.shape , output_a.shape)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEISMultistepScheduler(**self.get_scheduler_config())
lowercase__ : Dict = self.full_loop(scheduler=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_mean.item() - 0.2_3_9_1_6) < 1E-3
lowercase__ : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config)
lowercase__ : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config)
lowercase__ : Optional[int] = UniPCMultistepScheduler.from_config(scheduler.config)
lowercase__ : Any = DEISMultistepScheduler.from_config(scheduler.config)
lowercase__ : Any = self.full_loop(scheduler=SCREAMING_SNAKE_CASE_)
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_mean.item() - 0.2_3_9_1_6) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [25, 50, 1_00, 9_99, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , algorithm_type="""deis""" , solver_order=SCREAMING_SNAKE_CASE_ , solver_type=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=SCREAMING_SNAKE_CASE_ , solver_type=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , algorithm_type=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = self.full_loop(
solver_order=SCREAMING_SNAKE_CASE_ , solver_type=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , algorithm_type=SCREAMING_SNAKE_CASE_ , )
assert not torch.isnan(SCREAMING_SNAKE_CASE_).any(), "Samples have nan numbers"
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE_)
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]:
self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE_ , time_step=0)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.full_loop()
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_mean.item() - 0.2_3_9_1_6) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.full_loop(prediction_type="""v_prediction""")
lowercase__ : List[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_mean.item() - 0.0_9_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : Optional[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE_ , dynamic_thresholding_ratio=0)
lowercase__ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = 10
lowercase__ : List[Any] = self.dummy_model()
lowercase__ : List[str] = self.dummy_sample_deter.half()
scheduler.set_timesteps(SCREAMING_SNAKE_CASE_)
for i, t in enumerate(scheduler.timesteps):
lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).prev_sample
assert sample.dtype == torch.floataa
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase__ : str = {
"""configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""],
"""tokenization_xlm""": ["""XLMTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[Any] = [
"""XLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMForMultipleChoice""",
"""XLMForQuestionAnswering""",
"""XLMForQuestionAnsweringSimple""",
"""XLMForSequenceClassification""",
"""XLMForTokenClassification""",
"""XLMModel""",
"""XLMPreTrainedModel""",
"""XLMWithLMHeadModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[Any] = [
"""TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLMForMultipleChoice""",
"""TFXLMForQuestionAnsweringSimple""",
"""TFXLMForSequenceClassification""",
"""TFXLMForTokenClassification""",
"""TFXLMMainLayer""",
"""TFXLMModel""",
"""TFXLMPreTrainedModel""",
"""TFXLMWithLMHeadModel""",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
lowerCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ : Union[str, Any] = {
"""tokenizer_file""": {
"""EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""",
},
}
lowerCamelCase__ : Optional[Any] = {
"""gpt-neox-20b""": 2_0_4_8,
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Tuple = VOCAB_FILES_NAMES
__lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : Dict = ['input_ids', 'attention_mask']
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , SCREAMING_SNAKE_CASE_) != add_prefix_space:
lowercase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop("""type"""))
lowercase__ : List[Any] = add_prefix_space
lowercase__ : Union[str, Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = add_prefix_space
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : Union[str, Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_)
return tuple(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) + [self.eos_token_id])
if len(SCREAMING_SNAKE_CASE_) > self.model_max_length:
lowercase__ : Any = input_ids[-self.model_max_length :]
return input_ids
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
from collections import defaultdict
from math import ceil, sqrt
def UpperCamelCase ( lowercase_ = 1_00_00_00 , lowercase_ = 10 ) -> int:
'''simple docstring'''
lowercase__ : defaultdict = defaultdict(lowercase_ )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
lowercase__ : Any = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
lowercase__ : List[str] = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowercase_ , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
import numpy as np
class _snake_case :
def __init__( self):
'''simple docstring'''
lowercase__ : Optional[int] = (0, 0)
lowercase__ : Optional[int] = None
lowercase__ : Optional[int] = 0
lowercase__ : Optional[Any] = 0
lowercase__ : Tuple = 0
def __eq__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.position == cell.position
def lowercase__ ( self):
'''simple docstring'''
print(self.position)
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_=(5, 5)):
'''simple docstring'''
lowercase__ : List[Any] = np.zeros(SCREAMING_SNAKE_CASE_)
lowercase__ : int = world_size[0]
lowercase__ : Tuple = world_size[1]
def lowercase__ ( self):
'''simple docstring'''
print(self.w)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
lowercase__ : int = cell.position[0]
lowercase__ : Optional[Any] = cell.position[1]
lowercase__ : Tuple = []
for n in neughbour_cord:
lowercase__ : List[Any] = current_x + n[0]
lowercase__ : List[str] = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
lowercase__ : Tuple = Cell()
lowercase__ : str = (x, y)
lowercase__ : int = cell
neighbours.append(SCREAMING_SNAKE_CASE_)
return neighbours
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : List[str] = []
lowercase__ : int = []
_open.append(lowercase_ )
while _open:
lowercase__ : Tuple = np.argmin([n.f for n in _open] )
lowercase__ : List[str] = _open[min_f]
_closed.append(_open.pop(lowercase_ ) )
if current == goal:
break
for n in world.get_neigbours(lowercase_ ):
for c in _closed:
if c == n:
continue
lowercase__ : Dict = current.g + 1
lowercase__ , lowercase__ : Dict = n.position
lowercase__ , lowercase__ : int = goal.position
lowercase__ : Optional[int] = (ya - ya) ** 2 + (xa - xa) ** 2
lowercase__ : List[str] = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(lowercase_ )
lowercase__ : Tuple = []
while current.parent is not None:
path.append(current.position )
lowercase__ : Dict = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
lowerCamelCase__ : Union[str, Any] = Gridworld()
# Start position and goal
lowerCamelCase__ : List[Any] = Cell()
lowerCamelCase__ : Dict = (0, 0)
lowerCamelCase__ : Dict = Cell()
lowerCamelCase__ : str = (4, 4)
print(f'''path from {start.position} to {goal.position}''')
lowerCamelCase__ : Tuple = astar(world, start, goal)
# Just for visual reasons.
for i in s:
lowerCamelCase__ : Union[str, Any] = 1
print(world.w)
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCamelCase ( lowercase_ = "isbn/0140328726" ) -> dict:
'''simple docstring'''
lowercase__ : Dict = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("""/""" ) != 1:
lowercase__ : Optional[Any] = F'{olid} is not a valid Open Library olid'
raise ValueError(lowercase_ )
return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json()
def UpperCamelCase ( lowercase_ ) -> dict:
'''simple docstring'''
lowercase__ : Tuple = {
"""title""": """Title""",
"""publish_date""": """Publish date""",
"""authors""": """Authors""",
"""number_of_pages""": """Number of pages:""",
"""first_sentence""": """First sentence""",
"""isbn_10""": """ISBN (10)""",
"""isbn_13""": """ISBN (13)""",
}
lowercase__ : List[Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
lowercase__ : Any = [
get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""]
]
lowercase__ : Tuple = data["""First sentence"""]["""value"""]
for key, value in data.items():
if isinstance(lowercase_ , lowercase_ ):
lowercase__ : List[str] = """, """.join(lowercase_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCamelCase__ : Tuple = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (1_0, 1_3) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
lowerCamelCase__ : Optional[Any] = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print("""\n""".join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
from __future__ import annotations
lowerCamelCase__ : Optional[int] = list[list[int]]
# assigning initial values to the grid
lowerCamelCase__ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
lowerCamelCase__ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def UpperCamelCase ( lowercase_ ) -> tuple[int, int] | None:
'''simple docstring'''
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def UpperCamelCase ( lowercase_ ) -> Matrix | None:
'''simple docstring'''
if location := find_empty_location(lowercase_ ):
lowercase__ , lowercase__ : Tuple = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
lowercase__ : Optional[Any] = digit
if sudoku(lowercase_ ) is not None:
return grid
lowercase__ : List[Any] = 0
return None
def UpperCamelCase ( lowercase_ ) -> None:
'''simple docstring'''
for row in grid:
for cell in row:
print(lowercase_ , end=""" """ )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 2_0)
print_solution(example_grid)
print("""\nExample grid solution:""")
lowerCamelCase__ : Tuple = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Any = parent
lowercase__ : Optional[Any] = 13
lowercase__ : Any = 7
lowercase__ : Optional[Any] = 30
lowercase__ : int = self.seq_length + self.mem_len
lowercase__ : str = 15
lowercase__ : int = True
lowercase__ : Union[str, Any] = True
lowercase__ : Optional[Any] = 99
lowercase__ : Any = [10, 50, 80]
lowercase__ : str = 32
lowercase__ : Tuple = 32
lowercase__ : int = 4
lowercase__ : Tuple = 8
lowercase__ : Optional[int] = 1_28
lowercase__ : Any = 2
lowercase__ : Optional[int] = 2
lowercase__ : List[Any] = None
lowercase__ : Union[str, Any] = 1
lowercase__ : List[Any] = 0
lowercase__ : Union[str, Any] = 3
lowercase__ : Tuple = self.vocab_size - 1
lowercase__ : Union[str, Any] = 0.0_1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : List[str] = None
if self.use_labels:
lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : int = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def lowercase__ ( self):
'''simple docstring'''
random.seed(self.seed)
tf.random.set_seed(self.seed)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = TFTransfoXLModel(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : List[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a}
lowercase__ , lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : int = {"""input_ids""": input_ids_a, """labels""": lm_labels}
lowercase__ , lowercase__ : str = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ , lowercase__ : Dict = model([input_ids_a, mems_a]).to_tuple()
lowercase__ : Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
lowercase__ , lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : Any = config_and_inputs
lowercase__ : Any = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : List[Any] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__lowerCAmelCase : Union[str, Any] = () if is_tf_available() else ()
__lowerCAmelCase : Optional[int] = (
{
'feature-extraction': TFTransfoXLModel,
'text-classification': TFTransfoXLForSequenceClassification,
'text-generation': TFTransfoXLLMHeadModel,
'zero-shot': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__lowerCAmelCase : Any = False
__lowerCAmelCase : Dict = False
__lowerCAmelCase : Union[str, Any] = False
__lowerCAmelCase : List[Any] = False
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = TFTransfoXLModelTester(self)
lowercase__ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , d_embed=37)
def lowercase__ ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self):
'''simple docstring'''
self.model_tester.set_seed()
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.model_tester.set_seed()
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : List[str] = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
lowercase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_)
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer)
if model_class in list_other_models_with_output_ebd:
lowercase__ : Tuple = model.get_output_embeddings()
assert isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer)
lowercase__ : List[Any] = model.get_bias()
assert name is None
else:
lowercase__ : Union[str, Any] = model.get_output_embeddings()
assert x is None
lowercase__ : Optional[Any] = model.get_bias()
assert name is None
def lowercase__ ( self):
'''simple docstring'''
pass
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Union[str, Any] = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
@unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""")
def lowercase__ ( self):
'''simple docstring'''
pass
@require_tf
class _snake_case ( unittest.TestCase ):
@unittest.skip("""Skip test until #12651 is resolved.""")
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""")
# fmt: off
lowercase__ : int = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
lowercase__ : Optional[int] = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
lowercase__ : List[Any] = model.generate(SCREAMING_SNAKE_CASE_ , max_length=2_00 , do_sample=SCREAMING_SNAKE_CASE_)
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_)
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
from __future__ import annotations
def UpperCamelCase ( lowercase_ , lowercase_ ) -> set[str]:
'''simple docstring'''
lowercase__ , lowercase__ : int = set(lowercase_ ), [start]
while stack:
lowercase__ : Optional[int] = stack.pop()
explored.add(lowercase_ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(lowercase_ )
return explored
lowerCamelCase__ : Optional[Any] = {
"""A""": ["""B""", """C""", """D"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F"""],
"""D""": ["""B""", """D"""],
"""E""": ["""B""", """F"""],
"""F""": ["""C""", """E""", """G"""],
"""G""": ["""F"""],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, """A"""))
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> set:
'''simple docstring'''
lowercase__ : Optional[Any] = set()
# edges = list of graph's edges
lowercase__ : List[Any] = get_edges(lowercase_ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
lowercase__ , lowercase__ : Union[str, Any] = edges.pop()
chosen_vertices.add(lowercase_ )
chosen_vertices.add(lowercase_ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(lowercase_ )
return chosen_vertices
def UpperCamelCase ( lowercase_ ) -> set:
'''simple docstring'''
lowercase__ : Tuple = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = ''
__lowerCAmelCase : List[Any] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(self , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = repo_info
lowercase__ : Tuple = token
lowercase__ : Any = None
def lowercase__ ( self):
'''simple docstring'''
if self.dir_cache is None:
lowercase__ : Any = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
lowercase__ : Optional[int] = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(SCREAMING_SNAKE_CASE_): {"""name""": str(SCREAMING_SNAKE_CASE_), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1]
})
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "rb" , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if not isinstance(self.repo_info , SCREAMING_SNAKE_CASE_):
raise NotImplementedError(f'Open is only implemented for dataset repositories, but got {self.repo_info}')
lowercase__ : Tuple = hf_hub_url(self.repo_info.id , SCREAMING_SNAKE_CASE_ , revision=self.repo_info.sha)
return fsspec.open(
SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ , headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE_ , use_auth_token=self.token) , client_kwargs={"""trust_env""": True} , ).open()
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self._get_dirs()
lowercase__ : Any = self._strip_protocol(SCREAMING_SNAKE_CASE_)
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self._get_dirs()
lowercase__ : int = PurePosixPath(path.strip("""/"""))
lowercase__ : Optional[int] = {}
for p, f in self.dir_cache.items():
lowercase__ : Optional[Any] = PurePosixPath(p.strip("""/"""))
lowercase__ : str = p.parent
if root == path:
lowercase__ : Optional[Any] = f
lowercase__ : Dict = list(paths.values())
if detail:
return out
else:
return sorted(f["""name"""] for f in out)
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""")
lowercase__ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""")
lowercase__ : List[Any] = tokenizer("""Hello there""" , return_tensors="""np""").input_ids
lowercase__ : Optional[Any] = tokenizer("""Hi I am""" , return_tensors="""np""").input_ids
lowercase__ : Optional[int] = shift_tokens_right(SCREAMING_SNAKE_CASE_ , model.config.pad_token_id , model.config.decoder_start_token_id)
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_).logits
lowercase__ : Union[str, Any] = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE_ , onehot(SCREAMING_SNAKE_CASE_ , logits.shape[-1])).mean()
lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item())
lowercase__ : Tuple = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
from __future__ import annotations
def UpperCamelCase ( lowercase_ , lowercase_ = None , lowercase_ = None ) -> None:
'''simple docstring'''
if start is None:
lowercase__ : Optional[int] = 0
if end is None:
lowercase__ : int = len(lowercase_ ) - 1
if start >= end:
return
lowercase__ : Any = (start + end) // 2
slowsort(lowercase_ , lowercase_ , lowercase_ )
slowsort(lowercase_ , mid + 1 , lowercase_ )
if sequence[end] < sequence[mid]:
lowercase__ , lowercase__ : List[Any] = sequence[mid], sequence[end]
slowsort(lowercase_ , lowercase_ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def UpperCamelCase ( lowercase_ ) -> List[str]:
'''simple docstring'''
lowercase__ : Union[str, Any] = filter(lambda lowercase_ : p.requires_grad , model.parameters() )
lowercase__ : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCamelCase__ : Dict = logging.getLogger(__name__)
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if metric == "rouge2":
lowercase__ : Union[str, Any] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
lowercase__ : Tuple = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
lowercase__ : Tuple = """{val_avg_em:.4f}-{step_count}"""
elif metric == "loss":
lowercase__ : Any = """{val_avg_loss:.4f}-{step_count}"""
else:
raise NotImplementedError(
F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'
""" function.""" )
lowercase__ : Dict = ModelCheckpoint(
dirpath=lowercase_ , filename=lowercase_ , monitor=F'val_{metric}' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
return EarlyStopping(
monitor=F'val_{metric}' , mode="""min""" if """loss""" in metric else """max""" , patience=lowercase_ , verbose=lowercase_ , )
class _snake_case ( pl.Callback ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = {f'lr_group_{i}': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)}
pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_)
@rank_zero_only
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True):
'''simple docstring'''
logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****')
lowercase__ : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]})
# Log results
lowercase__ : Union[str, Any] = Path(pl_module.hparams.output_dir)
if type_path == "test":
lowercase__ : List[Any] = od / """test_results.txt"""
lowercase__ : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
lowercase__ : Tuple = od / f'{type_path}_results/{trainer.global_step:05d}.txt'
lowercase__ : Any = od / f'{type_path}_generations/{trainer.global_step:05d}.txt'
results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_)
generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_)
with open(SCREAMING_SNAKE_CASE_ , """a+""") as writer:
for key in sorted(SCREAMING_SNAKE_CASE_):
if key in ["log", "progress_bar", "preds"]:
continue
lowercase__ : Dict = metrics[key]
if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor):
lowercase__ : Any = val.item()
lowercase__ : Optional[int] = f'{key}: {val:.6f}\n'
writer.write(SCREAMING_SNAKE_CASE_)
if not save_generations:
return
if "preds" in metrics:
lowercase__ : Dict = """\n""".join(metrics["""preds"""])
generations_file.open("""w+""").write(SCREAMING_SNAKE_CASE_)
@rank_zero_only
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
try:
lowercase__ : Tuple = pl_module.model.model.num_parameters()
except AttributeError:
lowercase__ : Optional[Any] = pl_module.model.num_parameters()
lowercase__ : List[Any] = count_trainable_parameters(SCREAMING_SNAKE_CASE_)
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6})
@rank_zero_only
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path)
return self._write_logs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """test""")
@rank_zero_only
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path)
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase__ : List[Any] = logging.getLogger()
def UpperCamelCase ( ) -> int:
'''simple docstring'''
lowercase__ : str = argparse.ArgumentParser()
parser.add_argument("""-f""" )
lowercase__ : str = parser.parse_args()
return args.f
class _snake_case ( UpperCAmelCase_ ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = logging.StreamHandler(sys.stdout)
logger.addHandler(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""")
with patch.object(SCREAMING_SNAKE_CASE_ , """argv""" , SCREAMING_SNAKE_CASE_):
lowercase__ : Any = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(SCREAMING_SNAKE_CASE_ , 0.6_6_6)
@slow
@require_torch_non_multi_gpu
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(SCREAMING_SNAKE_CASE_)
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
from unittest import TestCase
from datasets import Sequence, Value
from datasets.arrow_dataset import Dataset
class _snake_case ( UpperCAmelCase_ ):
def lowercase__ ( self):
'''simple docstring'''
return [
{"col_1": 3, "col_2": "a"},
{"col_1": 2, "col_2": "b"},
{"col_1": 1, "col_2": "c"},
{"col_1": 0, "col_2": "d"},
]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]}
return Dataset.from_dict(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self._create_example_records()
lowercase__ : Union[str, Any] = Dataset.from_list(SCREAMING_SNAKE_CASE_)
self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""])
for i, r in enumerate(SCREAMING_SNAKE_CASE_):
self.assertDictEqual(SCREAMING_SNAKE_CASE_ , example_records[i])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self._create_example_records()
lowercase__ : Tuple = Dataset.from_list(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]})
self.assertEqual(dset.info , dset_from_dict.info)
def lowercase__ ( self): # checks what happens with missing columns
'''simple docstring'''
lowercase__ : Optional[int] = [{"""col_1""": 1}, {"""col_2""": """x"""}]
lowercase__ : Dict = Dataset.from_list(SCREAMING_SNAKE_CASE_)
self.assertDictEqual(dset[0] , {"""col_1""": 1})
self.assertDictEqual(dset[1] , {"""col_1""": None}) # NB: first record is used for columns
def lowercase__ ( self): # checks if the type can be inferred from the second record
'''simple docstring'''
lowercase__ : Union[str, Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}]
lowercase__ : List[Any] = Dataset.from_list(SCREAMING_SNAKE_CASE_)
self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""")))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = Dataset.from_list([])
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , 0)
self.assertListEqual(dset.column_names , [])
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""")
lowercase__ : Optional[int] = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_)["""last_hidden_state"""]
lowercase__ : Tuple = tf.TensorShape((1, 10, 7_68))
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_)
# compare the actual values for a slice.
lowercase__ : Optional[Any] = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if index == r:
for j in range(lowercase_ ):
print(data[j] , end=""" """ )
print(""" """ )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
lowercase__ : int = arr[i]
combination_util(lowercase_ , lowercase_ , lowercase_ , index + 1 , lowercase_ , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : int = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase_ , lowercase_ , lowercase_ , 0 , lowercase_ , 0 )
if __name__ == "__main__":
# Driver code to check the function above
lowerCamelCase__ : Any = [1_0, 2_0, 3_0, 4_0, 5_0]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowerCamelCase__ : int = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
from ...configuration_utils import PretrainedConfig
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : str = 'bert-generation'
def __init__( self , SCREAMING_SNAKE_CASE_=5_03_58 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Union[str, Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : Dict = hidden_act
lowercase__ : Optional[int] = intermediate_size
lowercase__ : Union[str, Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : List[Any] = position_embedding_type
lowercase__ : Dict = use_cache
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import math
import unittest
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
assert isinstance(lowercase_ , lowercase_ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(is_prime(2))
self.assertTrue(is_prime(3))
self.assertTrue(is_prime(5))
self.assertTrue(is_prime(7))
self.assertTrue(is_prime(11))
self.assertTrue(is_prime(13))
self.assertTrue(is_prime(17))
self.assertTrue(is_prime(19))
self.assertTrue(is_prime(23))
self.assertTrue(is_prime(29))
def lowercase__ ( self):
'''simple docstring'''
with self.assertRaises(SCREAMING_SNAKE_CASE_):
is_prime(-19)
self.assertFalse(
is_prime(0) , """Zero doesn't have any positive factors, primes must have exactly two.""" , )
self.assertFalse(
is_prime(1) , """One only has 1 positive factor, primes must have exactly two.""" , )
self.assertFalse(is_prime(2 * 2))
self.assertFalse(is_prime(2 * 3))
self.assertFalse(is_prime(3 * 3))
self.assertFalse(is_prime(3 * 5))
self.assertFalse(is_prime(3 * 5 * 7))
if __name__ == "__main__":
unittest.main()
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
return "\n".join(
F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=1_0))
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
lowercase__ : str = sorted(string.lower() )
return len(lowercase_ ) == len(set(lowercase_ ) )
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = input("""Enter a string """).strip()
lowerCamelCase__ : Optional[Any] = is_isogram(input_str)
print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
import os
lowerCamelCase__ : int = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0}
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : List[str] = 0
while index < len(lowercase_ ) - 1:
lowercase__ : str = SYMBOLS[numerals[index]]
lowercase__ : str = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : List[Any] = """"""
lowercase__ : List[Any] = num // 10_00
numerals += m_count * "M"
num %= 10_00
lowercase__ : List[Any] = num // 1_00
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 1_00
lowercase__ : Optional[Any] = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def UpperCamelCase ( lowercase_ = "/p089_roman.txt" ) -> int:
'''simple docstring'''
lowercase__ : Optional[int] = 0
with open(os.path.dirname(lowercase_ ) + roman_numerals_filename ) as filea:
lowercase__ : int = filea.readlines()
for line in lines:
lowercase__ : Optional[int] = line.strip()
lowercase__ : Dict = parse_roman_numerals(lowercase_ )
lowercase__ : int = generate_roman_numerals(lowercase_ )
savings += len(lowercase_ ) - len(lowercase_ )
return savings
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
lowerCamelCase__ : Dict = logging.getLogger(__name__)
@dataclass
class _snake_case :
__lowerCAmelCase : str = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
__lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
__lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
__lowerCAmelCase : bool = field(default=UpperCAmelCase_ , metadata={'help': 'Whether tp freeze the encoder.'} )
__lowerCAmelCase : bool = field(default=UpperCAmelCase_ , metadata={'help': 'Whether to freeze the embeddings.'} )
@dataclass
class _snake_case :
__lowerCAmelCase : str = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
__lowerCAmelCase : Optional[str] = field(
default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , )
__lowerCAmelCase : Optional[int] = field(
default=1_024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__lowerCAmelCase : Optional[int] = field(
default=128 , metadata={
'help': (
'The maximum total sequence length for target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__lowerCAmelCase : Optional[int] = field(
default=142 , metadata={
'help': (
'The maximum total sequence length for validation target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded. '
'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '
'during ``evaluate`` and ``predict``.'
)
} , )
__lowerCAmelCase : Optional[int] = field(
default=142 , metadata={
'help': (
'The maximum total sequence length for test target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__lowerCAmelCase : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} )
__lowerCAmelCase : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} )
__lowerCAmelCase : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} )
__lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase_ , metadata={'help': 'Source language id for translation.'} )
__lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase_ , metadata={'help': 'Target language id for translation.'} )
__lowerCAmelCase : Optional[int] = field(default=UpperCAmelCase_ , metadata={'help': '# num_beams to use for evaluation.'} )
__lowerCAmelCase : bool = field(
default=UpperCAmelCase_ , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
logger.info(F'***** {split} metrics *****' )
for key in sorted(metrics.keys() ):
logger.info(F' {key} = {metrics[key]}' )
save_json(lowercase_ , os.path.join(lowercase_ , F'{split}_results.json' ) )
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowercase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ : int = parser.parse_args_into_dataclasses()
check_output_dir(lowercase_ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""" , lowercase_ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase__ : Tuple = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(lowercase_ , lowercase_ , lowercase_ ):
assert hasattr(lowercase_ , lowercase_ ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute'
setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) )
lowercase__ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase__ : str = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(lowercase_ , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
lowercase__ : Tuple = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(lowercase_ , lowercase_ ):
lowercase__ : Union[str, Any] = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
lowercase__ : Tuple = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(lowercase_ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
lowercase__ : Tuple = SeqaSeqDataset
# Get datasets
lowercase__ : Dict = (
dataset_class(
lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_train
else None
)
lowercase__ : Union[str, Any] = (
dataset_class(
lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
lowercase__ : Union[str, Any] = (
dataset_class(
lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
lowercase__ : List[Any] = (
build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None
)
lowercase__ : Optional[int] = SeqaSeqTrainer(
model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator(
lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , )
lowercase__ : Any = {}
# Training
if training_args.do_train:
logger.info("""*** Train ***""" )
lowercase__ : Optional[Any] = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
lowercase__ : Optional[Any] = train_result.metrics
lowercase__ : str = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("""train""" , lowercase_ , training_args.output_dir )
all_metrics.update(lowercase_ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowercase__ : Any = trainer.evaluate(metric_key_prefix="""val""" )
lowercase__ : int = data_args.n_val
lowercase__ : Any = round(metrics["""val_loss"""] , 4 )
if trainer.is_world_process_zero():
handle_metrics("""val""" , lowercase_ , training_args.output_dir )
all_metrics.update(lowercase_ )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
lowercase__ : Optional[Any] = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" )
lowercase__ : List[Any] = test_output.metrics
lowercase__ : Any = data_args.n_test
if trainer.is_world_process_zero():
lowercase__ : Any = round(metrics["""test_loss"""] , 4 )
handle_metrics("""test""" , lowercase_ , training_args.output_dir )
all_metrics.update(lowercase_ )
if training_args.predict_with_generate:
lowercase__ : Dict = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ )
lowercase__ : Optional[int] = lmap(str.strip , lowercase_ )
write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) )
if trainer.is_world_process_zero():
save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) )
return all_metrics
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
lowerCamelCase__ : Optional[Any] = True
except ImportError:
lowerCamelCase__ : str = False
try:
from torch.hub import _get_torch_home
lowerCamelCase__ : List[str] = _get_torch_home()
except ImportError:
lowerCamelCase__ : Any = os.path.expanduser(
os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch"""))
)
lowerCamelCase__ : Optional[int] = os.path.join(torch_cache_home, """transformers""")
lowerCamelCase__ : Optional[Any] = """https://cdn.huggingface.co"""
lowerCamelCase__ : Union[str, Any] = """https://s3.amazonaws.com/models.huggingface.co/bert"""
lowerCamelCase__ : Tuple = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1])
lowerCamelCase__ : Dict = os.path.join(PATH, """config.yaml""")
lowerCamelCase__ : Dict = os.path.join(PATH, """attributes.txt""")
lowerCamelCase__ : Optional[int] = os.path.join(PATH, """objects.txt""")
lowerCamelCase__ : Any = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path)
lowerCamelCase__ : Any = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE)
lowerCamelCase__ : Optional[int] = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE)
lowerCamelCase__ : Dict = """pytorch_model.bin"""
lowerCamelCase__ : Union[str, Any] = """config.yaml"""
def UpperCamelCase ( lowercase_=OBJECTS , lowercase_=ATTRIBUTES ) -> Tuple:
'''simple docstring'''
lowercase__ : List[Any] = []
with open(lowercase_ ) as f:
for object in f.readlines():
vg_classes.append(object.split(""",""" )[0].lower().strip() )
lowercase__ : List[str] = []
with open(lowercase_ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(""",""" )[0].lower().strip() )
return vg_classes, vg_attrs
def UpperCamelCase ( lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : List[Any] = OrderedDict()
with open(lowercase_ , """rb""" ) as f:
lowercase__ : int = pkl.load(lowercase_ )["""model"""]
for k in copy.deepcopy(list(ckp.keys() ) ):
lowercase__ : List[Any] = ckp.pop(lowercase_ )
if isinstance(lowercase_ , np.ndarray ):
lowercase__ : List[str] = torch.tensor(lowercase_ )
else:
assert isinstance(lowercase_ , torch.tensor ), type(lowercase_ )
lowercase__ : Tuple = v
return r
class _snake_case :
__lowerCAmelCase : str = {}
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "root" , SCREAMING_SNAKE_CASE_=0):
'''simple docstring'''
lowercase__ : Dict = name
lowercase__ : List[Any] = level
lowercase__ : Tuple = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowercase__ : Optional[int] = copy.deepcopy(SCREAMING_SNAKE_CASE_)
lowercase__ : str = copy.deepcopy(SCREAMING_SNAKE_CASE_)
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : Any = Config(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , level=level + 1)
lowercase__ : Tuple = v
setattr(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = d
def __repr__( self):
'''simple docstring'''
return str(list((self._pointer.keys())))
def __setattr__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = val
lowercase__ : Optional[Any] = val
lowercase__ : Union[str, Any] = key.split(""".""")
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) - 1
lowercase__ : Tuple = self._pointer
if len(SCREAMING_SNAKE_CASE_) > 1:
for i, l in enumerate(SCREAMING_SNAKE_CASE_):
if hasattr(self , SCREAMING_SNAKE_CASE_) and isinstance(getattr(self , SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_):
setattr(getattr(self , SCREAMING_SNAKE_CASE_) , """.""".join(levels[i:]) , SCREAMING_SNAKE_CASE_)
if l == last_level:
lowercase__ : Dict = val
else:
lowercase__ : List[str] = pointer[l]
def lowercase__ ( self):
'''simple docstring'''
return self._pointer
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
with open(f'{file_name}' , """w""") as stream:
dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
with open(f'{file_name}' , """w""") as stream:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@staticmethod
def lowercase__ ( SCREAMING_SNAKE_CASE_):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE_) as stream:
lowercase__ : int = load(SCREAMING_SNAKE_CASE_ , Loader=SCREAMING_SNAKE_CASE_)
return data
def __str__( self):
'''simple docstring'''
lowercase__ : str = """ """
if self._name != "root":
lowercase__ : List[Any] = f'{t * (self._level-1)}{self._name}:\n'
else:
lowercase__ : Dict = """"""
lowercase__ : Optional[int] = self._level
for i, (k, v) in enumerate(self._pointer.items()):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
r += f'{t * (self._level)}{v}\n'
self._level += 1
else:
r += f'{t * (self._level)}{k}: {v} ({type(SCREAMING_SNAKE_CASE_).__name__})\n'
lowercase__ : Dict = level
return r[:-1]
@classmethod
def lowercase__ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return cls(SCREAMING_SNAKE_CASE_)
@classmethod
def lowercase__ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = kwargs.pop("""cache_dir""" , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = kwargs.pop("""force_download""" , SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = kwargs.pop("""resume_download""" , SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = kwargs.pop("""proxies""" , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = kwargs.pop("""local_files_only""" , SCREAMING_SNAKE_CASE_)
if os.path.isdir(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif os.path.isfile(SCREAMING_SNAKE_CASE_) or is_remote_url(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[int] = pretrained_model_name_or_path
else:
lowercase__ : int = hf_bucket_url(SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , use_cdn=SCREAMING_SNAKE_CASE_)
try:
# Load from URL or cache if already cached
lowercase__ : Optional[int] = cached_path(
SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowercase__ : Union[str, Any] = Config.load_yaml(SCREAMING_SNAKE_CASE_)
except EnvironmentError:
lowercase__ : Optional[Any] = """Can't load config for"""
raise EnvironmentError(SCREAMING_SNAKE_CASE_)
if resolved_config_file == config_file:
print("""loading configuration file from path""")
else:
print("""loading configuration file cache""")
return Config.load_yaml(SCREAMING_SNAKE_CASE_), kwargs
def UpperCamelCase ( lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : str = torch.load("""dump.pt""" , map_location=in_tensor.device )
lowercase__ : int = in_tensor.numpy()
lowercase__ : Optional[Any] = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(lowercase_ , lowercase_ , rtol=0.01 , atol=0.1 ), (
F'{sum([1 for x in np.isclose(lowercase_ , lowercase_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %'
" element-wise mismatch"
)
raise Exception("""tensors are all good""" )
# Hugging face functions below
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : Any = urlparse(lowercase_ )
return parsed.scheme in ("http", "https")
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=True ) -> str:
'''simple docstring'''
lowercase__ : Optional[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowercase__ : Dict = """/""" not in model_id
if legacy_format:
return F'{endpoint}/{model_id}-{filename}'
else:
return F'{endpoint}/{model_id}/{filename}'
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=0 , lowercase_=None , ) -> Optional[int]:
'''simple docstring'''
lowercase__ : Dict = """python/{}""".format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowercase_ , lowercase_ ):
ua += "; " + "; ".join("""{}/{}""".format(lowercase_ , lowercase_ ) for k, v in user_agent.items() )
elif isinstance(lowercase_ , lowercase_ ):
ua += "; " + user_agent
lowercase__ : Any = {"""user-agent""": ua}
if resume_size > 0:
lowercase__ : Tuple = """bytes=%d-""" % (resume_size,)
lowercase__ : Union[str, Any] = requests.get(lowercase_ , stream=lowercase_ , proxies=lowercase_ , headers=lowercase_ )
if response.status_code == 4_16: # Range not satisfiable
return
lowercase__ : Tuple = response.headers.get("""Content-Length""" )
lowercase__ : Optional[int] = resume_size + int(lowercase_ ) if content_length is not None else None
lowercase__ : Dict = tqdm(
unit="""B""" , unit_scale=lowercase_ , total=lowercase_ , initial=lowercase_ , desc="""Downloading""" , )
for chunk in response.iter_content(chunk_size=10_24 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowercase_ ) )
temp_file.write(lowercase_ )
progress.close()
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=10 , lowercase_=False , lowercase_=None , lowercase_=False , ) -> Tuple:
'''simple docstring'''
if cache_dir is None:
lowercase__ : int = TRANSFORMERS_CACHE
if isinstance(lowercase_ , lowercase_ ):
lowercase__ : str = str(lowercase_ )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowercase__ : Optional[int] = None
if not local_files_only:
try:
lowercase__ : List[Any] = requests.head(lowercase_ , allow_redirects=lowercase_ , proxies=lowercase_ , timeout=lowercase_ )
if response.status_code == 2_00:
lowercase__ : List[Any] = response.headers.get("""ETag""" )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowercase__ : List[Any] = url_to_filename(lowercase_ , lowercase_ )
# get cache path to put the file
lowercase__ : Optional[Any] = os.path.join(lowercase_ , lowercase_ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowercase_ ):
return cache_path
else:
lowercase__ : Tuple = [
file
for file in fnmatch.filter(os.listdir(lowercase_ ) , filename + """.*""" )
if not file.endswith(""".json""" ) and not file.endswith(""".lock""" )
]
if len(lowercase_ ) > 0:
return os.path.join(lowercase_ , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
"""Cannot find the requested files in the cached path and outgoing traffic has been"""
""" disabled. To enable model look-ups and downloads online, set 'local_files_only'"""
""" to False.""" )
return None
# From now on, etag is not None.
if os.path.exists(lowercase_ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowercase__ : int = cache_path + """.lock"""
with FileLock(lowercase_ ):
# If the download just completed while the lock was activated.
if os.path.exists(lowercase_ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowercase__ : Any = cache_path + """.incomplete"""
@contextmanager
def _resumable_file_manager():
with open(lowercase_ , """a+b""" ) as f:
yield f
lowercase__ : List[Any] = _resumable_file_manager
if os.path.exists(lowercase_ ):
lowercase__ : str = os.stat(lowercase_ ).st_size
else:
lowercase__ : Union[str, Any] = 0
else:
lowercase__ : int = partial(tempfile.NamedTemporaryFile , dir=lowercase_ , delete=lowercase_ )
lowercase__ : Dict = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
"""%s not found in cache or force_download set to True, downloading to %s""" , lowercase_ , temp_file.name , )
http_get(
lowercase_ , lowercase_ , proxies=lowercase_ , resume_size=lowercase_ , user_agent=lowercase_ , )
os.replace(temp_file.name , lowercase_ )
lowercase__ : Any = {"""url""": url, """etag""": etag}
lowercase__ : List[Any] = cache_path + """.json"""
with open(lowercase_ , """w""" ) as meta_file:
json.dump(lowercase_ , lowercase_ )
return cache_path
def UpperCamelCase ( lowercase_ , lowercase_=None ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = url.encode("""utf-8""" )
lowercase__ : Optional[int] = shaaaa(lowercase_ )
lowercase__ : int = url_hash.hexdigest()
if etag:
lowercase__ : Any = etag.encode("""utf-8""" )
lowercase__ : Any = shaaaa(lowercase_ )
filename += "." + etag_hash.hexdigest()
if url.endswith(""".h5""" ):
filename += ".h5"
return filename
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=False , ) -> int:
'''simple docstring'''
if cache_dir is None:
lowercase__ : Union[str, Any] = TRANSFORMERS_CACHE
if isinstance(lowercase_ , lowercase_ ):
lowercase__ : int = str(lowercase_ )
if isinstance(lowercase_ , lowercase_ ):
lowercase__ : int = str(lowercase_ )
if is_remote_url(lowercase_ ):
# URL, so get it from the cache (downloading if necessary)
lowercase__ : Union[str, Any] = get_from_cache(
lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , proxies=lowercase_ , resume_download=lowercase_ , user_agent=lowercase_ , local_files_only=lowercase_ , )
elif os.path.exists(lowercase_ ):
# File, and it exists.
lowercase__ : Optional[int] = url_or_filename
elif urlparse(lowercase_ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError("""file {} not found""".format(lowercase_ ) )
else:
# Something unknown
raise ValueError("""unable to parse {} as a URL or as a local path""".format(lowercase_ ) )
if extract_compressed_file:
if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowercase__ , lowercase__ : int = os.path.split(lowercase_ )
lowercase__ : Optional[int] = output_file.replace(""".""" , """-""" ) + """-extracted"""
lowercase__ : Dict = os.path.join(lowercase_ , lowercase_ )
if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowercase__ : Optional[int] = output_path + """.lock"""
with FileLock(lowercase_ ):
shutil.rmtree(lowercase_ , ignore_errors=lowercase_ )
os.makedirs(lowercase_ )
if is_zipfile(lowercase_ ):
with ZipFile(lowercase_ , """r""" ) as zip_file:
zip_file.extractall(lowercase_ )
zip_file.close()
elif tarfile.is_tarfile(lowercase_ ):
lowercase__ : Tuple = tarfile.open(lowercase_ )
tar_file.extractall(lowercase_ )
tar_file.close()
else:
raise EnvironmentError("""Archive format of {} could not be identified""".format(lowercase_ ) )
return output_path_extracted
return output_path
def UpperCamelCase ( lowercase_ , lowercase_="," ) -> str:
'''simple docstring'''
assert isinstance(lowercase_ , lowercase_ )
if os.path.isfile(lowercase_ ):
with open(lowercase_ ) as f:
lowercase__ : List[Any] = eval(f.read() )
else:
lowercase__ : Union[str, Any] = requests.get(lowercase_ )
try:
lowercase__ : List[str] = requests.json()
except Exception:
lowercase__ : List[Any] = req.content.decode()
assert data is not None, "could not connect"
try:
lowercase__ : Optional[Any] = eval(lowercase_ )
except Exception:
lowercase__ : Optional[int] = data.split("""\n""" )
req.close()
return data
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = requests.get(lowercase_ )
lowercase__ : List[Any] = np.array(Image.open(BytesIO(response.content ) ) )
return img
def UpperCamelCase ( lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : Union[str, Any] = url.split("""/""" )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowercase_ )
with open(lowercase_ , """rb""" ) as stream:
lowercase__ : Union[str, Any] = pkl.load(lowercase_ )
lowercase__ : Tuple = weights.pop("""model""" )
lowercase__ : int = {}
for k, v in model.items():
lowercase__ : int = torch.from_numpy(lowercase_ )
if "running_var" in k:
lowercase__ : Optional[Any] = torch.tensor([0] )
lowercase__ : Optional[int] = k.replace("""running_var""" , """num_batches_tracked""" )
lowercase__ : List[Any] = zero
return new
def UpperCamelCase ( ) -> List[str]:
'''simple docstring'''
print(F'{os.path.abspath(os.path.join(lowercase_ , os.pardir ) )}/demo.ipynb' )
def UpperCamelCase ( lowercase_ , lowercase_="RGB" ) -> Tuple:
'''simple docstring'''
assert isinstance(lowercase_ , lowercase_ )
if os.path.isfile(lowercase_ ):
lowercase__ : Optional[Any] = cva.imread(lowercase_ )
else:
lowercase__ : str = get_image_from_url(lowercase_ )
assert img is not None, F'could not connect to: {im}'
lowercase__ : Union[str, Any] = cva.cvtColor(lowercase_ , cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowercase__ : List[Any] = img[:, :, ::-1]
return img
def UpperCamelCase ( lowercase_ , lowercase_=1 ) -> str:
'''simple docstring'''
return (images[i : i + batch] for i in range(0 , len(lowercase_ ) , lowercase_ ))
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = """ylacombe/bark-small"""
lowercase__ : Dict = tempfile.mkdtemp()
lowercase__ : Any = """en_speaker_1"""
lowercase__ : Optional[int] = """This is a test string"""
lowercase__ : Tuple = """speaker_embeddings_path.json"""
lowercase__ : str = """speaker_embeddings"""
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : int = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_)
processor.save_pretrained(self.tmpdirname)
lowercase__ : List[str] = BarkProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowercase__ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
lowercase__ : Any = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowercase__ : Optional[int] = 35
lowercase__ : Tuple = 2
lowercase__ : Dict = 8
lowercase__ : Optional[int] = {
"""semantic_prompt""": np.ones(SCREAMING_SNAKE_CASE_),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len)),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len)),
}
# test providing already loaded voice_preset
lowercase__ : Tuple = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist())
# test loading voice preset from npz file
lowercase__ : List[Any] = os.path.join(self.tmpdirname , """file.npz""")
np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : str = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist())
# test loading voice preset from the hub
lowercase__ : int = processor(text=self.input_string , voice_preset=self.voice_preset)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : str = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = processor(text=self.input_string)
lowercase__ : List[str] = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
lowerCamelCase__ : Tuple = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ : List[Any] = {
"""vocab_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""",
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-german-cased""": (
"""https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"""
),
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase__ : Dict = {
"""distilbert-base-uncased""": 5_1_2,
"""distilbert-base-uncased-distilled-squad""": 5_1_2,
"""distilbert-base-cased""": 5_1_2,
"""distilbert-base-cased-distilled-squad""": 5_1_2,
"""distilbert-base-german-cased""": 5_1_2,
"""distilbert-base-multilingual-cased""": 5_1_2,
}
lowerCamelCase__ : List[Any] = {
"""distilbert-base-uncased""": {"""do_lower_case""": True},
"""distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True},
"""distilbert-base-cased""": {"""do_lower_case""": False},
"""distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False},
"""distilbert-base-german-cased""": {"""do_lower_case""": False},
"""distilbert-base-multilingual-cased""": {"""do_lower_case""": False},
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = VOCAB_FILES_NAMES
__lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
__lowerCAmelCase : int = ['input_ids', 'attention_mask']
__lowerCAmelCase : Optional[Any] = DistilBertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("""lowercase""" , SCREAMING_SNAKE_CASE_) != do_lower_case
or normalizer_state.get("""strip_accents""" , SCREAMING_SNAKE_CASE_) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , SCREAMING_SNAKE_CASE_) != tokenize_chinese_chars
):
lowercase__ : Tuple = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop("""type"""))
lowercase__ : int = do_lower_case
lowercase__ : str = strip_accents
lowercase__ : str = tokenize_chinese_chars
lowercase__ : int = normalizer_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = do_lower_case
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : int = [self.sep_token_id]
lowercase__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_)
return tuple(SCREAMING_SNAKE_CASE_)
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=4 , ):
'''simple docstring'''
lowercase__ : Tuple = parent
lowercase__ : int = batch_size
lowercase__ : int = seq_length
lowercase__ : str = is_training
lowercase__ : Dict = use_attention_mask
lowercase__ : Dict = use_token_type_ids
lowercase__ : Union[str, Any] = use_labels
lowercase__ : Any = vocab_size
lowercase__ : str = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : int = num_attention_heads
lowercase__ : Any = intermediate_size
lowercase__ : Optional[Any] = hidden_act
lowercase__ : Dict = hidden_dropout_prob
lowercase__ : Union[str, Any] = attention_probs_dropout_prob
lowercase__ : Optional[int] = max_position_embeddings
lowercase__ : Tuple = type_vocab_size
lowercase__ : int = type_sequence_label_size
lowercase__ : int = initializer_range
lowercase__ : Any = num_choices
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Tuple = None
if self.use_attention_mask:
lowercase__ : str = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : Dict = None
if self.use_token_type_ids:
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ : Dict = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = True
__lowerCAmelCase : Optional[int] = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = FlaxRoFormerModelTester(self)
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Optional[Any] = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""")
lowercase__ : str = jnp.array([[0, 1, 2, 3, 4, 5]])
lowercase__ : str = model(SCREAMING_SNAKE_CASE_)[0]
lowercase__ : Optional[Any] = 5_00_00
lowercase__ : List[str] = (1, 6, vocab_size)
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = jnp.array(
[[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]])
self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4))
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = inspect.getfile(accelerate.test_utils)
lowercase__ : Tuple = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["""scripts""", """test_script.py"""])
lowercase__ : Optional[Any] = os.path.sep.join(
mod_file.split(os.path.sep)[:-1] + ["""scripts""", """test_distributed_data_loop.py"""])
lowercase__ : int = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["""scripts""", """test_ops.py"""])
@require_multi_gpu
def lowercase__ ( self):
'''simple docstring'''
print(f'Found {torch.cuda.device_count()} devices.')
lowercase__ : Any = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path]
with patch_environment(omp_num_threads=1):
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy())
@require_multi_gpu
def lowercase__ ( self):
'''simple docstring'''
print(f'Found {torch.cuda.device_count()} devices.')
lowercase__ : Tuple = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path]
print(f'Command: {cmd}')
with patch_environment(omp_num_threads=1):
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy())
@require_multi_gpu
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__)]
with patch_environment(omp_num_threads=1):
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy())
@require_multi_gpu
def lowercase__ ( self):
'''simple docstring'''
print(f'Found {torch.cuda.device_count()} devices, using 2 devices only')
lowercase__ : Optional[Any] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1"""):
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy())
if __name__ == "__main__":
lowerCamelCase__ : Any = Accelerator()
lowerCamelCase__ : Union[str, Any] = (accelerator.state.process_index + 2, 1_0)
lowerCamelCase__ : Tuple = torch.randint(0, 1_0, shape).to(accelerator.device)
lowerCamelCase__ : List[Any] = """"""
lowerCamelCase__ : str = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
lowerCamelCase__ : Any = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
lowerCamelCase__ : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
from __future__ import annotations
def UpperCamelCase ( lowercase_ ) -> list[int]:
'''simple docstring'''
lowercase__ : str = [True] * limit
lowercase__ : Union[str, Any] = False
lowercase__ : List[str] = False
lowercase__ : List[str] = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
lowercase__ : Optional[int] = i * 2
while index < limit:
lowercase__ : Optional[Any] = False
lowercase__ : int = index + i
lowercase__ : List[str] = [2]
for i in range(3 , lowercase_ , 2 ):
if is_prime[i]:
primes.append(lowercase_ )
return primes
def UpperCamelCase ( lowercase_ = 1_00_00_00 ) -> int:
'''simple docstring'''
lowercase__ : str = prime_sieve(lowercase_ )
lowercase__ : Union[str, Any] = 0
lowercase__ : Optional[Any] = 0
for i in range(len(lowercase_ ) ):
for j in range(i + length , len(lowercase_ ) ):
lowercase__ : Dict = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
lowercase__ : Optional[Any] = j - i
lowercase__ : List[str] = sol
return largest
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class _snake_case ( UpperCAmelCase_ ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""") as input_file:
lowercase__ : Any = re.compile(R"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""")
lowercase__ : Any = input_file.read()
lowercase__ : Any = regexp.search(SCREAMING_SNAKE_CASE_)
return match
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""") as input_file:
lowercase__ : Any = re.compile(R"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL)
lowercase__ : Union[str, Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
lowercase__ : List[Any] = regexp.finditer(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [match for match in matches if match is not None and match.group(1) is not None]
return matches[0] if matches else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = Path("""./datasets""")
lowercase__ : List[Any] = list(dataset_paths.absolute().glob("""**/*.py"""))
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(SCREAMING_SNAKE_CASE_)):
raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}')
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = Path("""./datasets""")
lowercase__ : int = list(dataset_paths.absolute().glob("""**/*.py"""))
for dataset in dataset_files:
if self._no_print_statements(str(SCREAMING_SNAKE_CASE_)):
raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.')
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : List[str] = 'ClapFeatureExtractor'
__lowerCAmelCase : Tuple = ('RobertaTokenizer', 'RobertaTokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_)
if text is None and audios is None:
raise ValueError("""You have to specify either text or audios. Both cannot be none.""")
if text is not None:
lowercase__ : int = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if audios is not None:
lowercase__ : List[str] = self.feature_extractor(
SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and audios is not None:
lowercase__ : Optional[Any] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.tokenizer.model_input_names
lowercase__ : List[Any] = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
lowercase__ : int = credit_card_number
lowercase__ : Dict = 0
lowercase__ : Dict = len(lowercase_ ) - 2
for i in range(lowercase_ , -1 , -2 ):
# double the value of every second digit
lowercase__ : str = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
lowercase__ : Optional[int] = cc_number[:i] + str(lowercase_ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowercase_ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
lowercase__ : str = F'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(F'{error_message} it has nonnumerical characters.' )
return False
if not 13 <= len(lowercase_ ) <= 16:
print(F'{error_message} of its length.' )
return False
if not validate_initial_digits(lowercase_ ):
print(F'{error_message} of its first two digits.' )
return False
if not luhn_validation(lowercase_ ):
print(F'{error_message} it fails the Luhn check.' )
return False
print(F'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
lowerCamelCase__ : Optional[int] = """tiny-wmt19-en-ru"""
# Build
# borrowed from a test
lowerCamelCase__ : int = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
lowerCamelCase__ : Any = dict(zip(vocab, range(len(vocab))))
lowerCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ : int = Path(tmpdirname)
lowerCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""]
lowerCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""]
lowerCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""]
with open(src_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, """w""") as fp:
fp.write("""\n""".join(merges))
lowerCamelCase__ : Dict = FSMTTokenizer(
langs=["""en""", """ru"""],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
lowerCamelCase__ : List[str] = FSMTConfig(
langs=["""ru""", """en"""],
src_vocab_size=1_0_0_0,
tgt_vocab_size=1_0_0_0,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
lowerCamelCase__ : List[Any] = FSMTForConditionalGeneration(config)
print(f'''num of params {tiny_model.num_parameters()}''')
# Test
lowerCamelCase__ : Union[str, Any] = tokenizer(["""Making tiny model"""], return_tensors="""pt""")
lowerCamelCase__ : List[str] = tiny_model(**batch)
print("""test output:""", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(f'''Generated {mname_tiny}''')
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : str = (EulerDiscreteScheduler,)
__lowerCAmelCase : Any = 10
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = {
"""num_train_timesteps""": 11_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
scheduler.set_timesteps(self.num_inference_steps)
lowercase__ : Optional[Any] = torch.manual_seed(0)
lowercase__ : List[Any] = self.dummy_model()
lowercase__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase__ : int = sample.to(SCREAMING_SNAKE_CASE_)
for i, t in enumerate(scheduler.timesteps):
lowercase__ : Tuple = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_)
lowercase__ : str = output.prev_sample
lowercase__ : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : str = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
scheduler.set_timesteps(self.num_inference_steps)
lowercase__ : Dict = torch.manual_seed(0)
lowercase__ : Union[str, Any] = self.dummy_model()
lowercase__ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase__ : Optional[int] = sample.to(SCREAMING_SNAKE_CASE_)
for i, t in enumerate(scheduler.timesteps):
lowercase__ : Tuple = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = output.prev_sample
lowercase__ : List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2
assert abs(result_mean.item() - 2.26_76E-06) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.scheduler_classes[0]
lowercase__ : Any = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_)
lowercase__ : str = torch.manual_seed(0)
lowercase__ : Dict = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
lowercase__ : List[str] = sample.to(SCREAMING_SNAKE_CASE_)
for t in scheduler.timesteps:
lowercase__ : List[Any] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = output.prev_sample
lowercase__ : int = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : List[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : Any = self.get_scheduler_config()
lowercase__ : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ , use_karras_sigmas=SCREAMING_SNAKE_CASE_)
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = torch.manual_seed(0)
lowercase__ : Any = self.dummy_model()
lowercase__ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
lowercase__ : Any = sample.to(SCREAMING_SNAKE_CASE_)
for t in scheduler.timesteps:
lowercase__ : Union[str, Any] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = output.prev_sample
lowercase__ : Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : List[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ):
'''simple docstring'''
lowercase__ : int = parent
lowercase__ : Tuple = batch_size
lowercase__ : List[str] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : List[str] = num_channels
lowercase__ : Dict = is_training
lowercase__ : Dict = use_labels
lowercase__ : List[Any] = hidden_size
lowercase__ : Union[str, Any] = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : Dict = intermediate_size
lowercase__ : Optional[Any] = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : List[Any] = attention_probs_dropout_prob
lowercase__ : int = type_sequence_label_size
lowercase__ : Any = initializer_range
lowercase__ : List[str] = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase__ : Union[str, Any] = (image_size // patch_size) ** 2
lowercase__ : Union[str, Any] = num_patches + 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase__ : List[str] = None
if self.use_labels:
lowercase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ : Optional[int] = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self):
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = TFViTModel(config=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
# Test with an image with different size than the one specified in config.
lowercase__ : Optional[Any] = self.image_size // 2
lowercase__ : Tuple = pixel_values[:, :, :image_size, :image_size]
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_)
lowercase__ : str = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = self.type_sequence_label_size
lowercase__ : Any = TFViTForImageClassification(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# Test with an image with different size than the one specified in config.
lowercase__ : str = self.image_size // 2
lowercase__ : Dict = pixel_values[:, :, :image_size, :image_size]
lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
lowercase__ : Any = 1
lowercase__ : Any = TFViTForImageClassification(SCREAMING_SNAKE_CASE_)
lowercase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : int = config_and_inputs
lowercase__ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
__lowerCAmelCase : Dict = (
{'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification}
if is_tf_available()
else {}
)
__lowerCAmelCase : Tuple = False
__lowerCAmelCase : List[str] = False
__lowerCAmelCase : Union[str, Any] = False
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = TFViTModelTester(self)
lowercase__ : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37)
def lowercase__ ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""")
def lowercase__ ( self):
'''simple docstring'''
pass
@unittest.skip(reason="""ViT does not use inputs_embeds""")
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Tuple = model_class(SCREAMING_SNAKE_CASE_)
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer))
lowercase__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : str = model_class(SCREAMING_SNAKE_CASE_)
lowercase__ : int = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : str = [*signature.parameters.keys()]
lowercase__ : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = TFViTModel.from_pretrained("""google/vit-base-patch16-224""")
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
def UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def lowercase__ ( self):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""") if is_vision_available() else None
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""")
lowercase__ : Optional[int] = self.default_image_processor
lowercase__ : List[str] = prepare_img()
lowercase__ : Any = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""")
# forward pass
lowercase__ : Any = model(**SCREAMING_SNAKE_CASE_)
# verify the logits
lowercase__ : Dict = tf.TensorShape((1, 10_00))
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6])
tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4)
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCamelCase__ : str = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
requires_backends(self , """vision""")
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = {}
lowercase__ : Optional[Any] = {}
if prompt is not None:
lowercase__ : Tuple = prompt
if generate_kwargs is not None:
lowercase__ : List[str] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
lowercase__ : int = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""")
lowercase__ : Tuple = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Any = load_image(SCREAMING_SNAKE_CASE_)
if prompt is not None:
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
raise ValueError(
f'Received an invalid text input, got - {type(SCREAMING_SNAKE_CASE_)} - but expected a single string. '
"""Note also that one single text can be provided for conditional image to text generation.""")
lowercase__ : Optional[Any] = self.model.config.model_type
if model_type == "git":
lowercase__ : Tuple = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : str = self.tokenizer(text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_).input_ids
lowercase__ : Tuple = [self.tokenizer.cls_token_id] + input_ids
lowercase__ : Dict = torch.tensor(SCREAMING_SNAKE_CASE_).unsqueeze(0)
model_inputs.update({"""input_ids""": input_ids})
elif model_type == "pix2struct":
lowercase__ : int = self.image_processor(images=SCREAMING_SNAKE_CASE_ , header_text=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
lowercase__ : str = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
model_inputs.update(SCREAMING_SNAKE_CASE_)
else:
raise ValueError(f'Model type {model_type} does not support conditional text generation')
else:
lowercase__ : Union[str, Any] = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
if self.model.config.model_type == "git" and prompt is None:
lowercase__ : Union[str, Any] = None
return model_inputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , SCREAMING_SNAKE_CASE_)
and all(x is None for x in model_inputs["""input_ids"""])
):
lowercase__ : Optional[Any] = None
if generate_kwargs is None:
lowercase__ : Any = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
lowercase__ : Union[str, Any] = model_inputs.pop(self.model.main_input_name)
lowercase__ : Optional[Any] = self.model.generate(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[Any] = []
for output_ids in model_outputs:
lowercase__ : int = {
"""generated_text""": self.tokenizer.decode(
SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , )
}
records.append(SCREAMING_SNAKE_CASE_)
return records
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCamelCase__ : Optional[Any] = TypeVar("""KEY""")
lowerCamelCase__ : Any = TypeVar("""VAL""")
@dataclass(frozen=UpperCAmelCase_ , slots=UpperCAmelCase_ )
class _snake_case ( Generic[KEY, VAL] ):
__lowerCAmelCase : KEY
__lowerCAmelCase : VAL
class _snake_case ( _Item ):
def __init__( self):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def __bool__( self):
'''simple docstring'''
return False
lowerCamelCase__ : str = _DeletedItem()
class _snake_case ( MutableMapping[KEY, VAL] ):
def __init__( self , SCREAMING_SNAKE_CASE_ = 8 , SCREAMING_SNAKE_CASE_ = 0.7_5):
'''simple docstring'''
lowercase__ : int = initial_block_size
lowercase__ : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
lowercase__ : Union[str, Any] = capacity_factor
lowercase__ : Tuple = 0
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return hash(SCREAMING_SNAKE_CASE_) % len(self._buckets)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return (ind + 1) % len(self._buckets)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = self._buckets[ind]
if not stored:
lowercase__ : Optional[Any] = _Item(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self._len += 1
return True
elif stored.key == key:
lowercase__ : Optional[int] = _Item(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return True
else:
return False
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = len(self._buckets) * self._capacity_factor
return len(self) >= int(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
if len(self._buckets) <= self._initial_block_size:
return False
lowercase__ : Optional[Any] = len(self._buckets) * self._capacity_factor / 2
return len(self) < limit
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = self._buckets
lowercase__ : Optional[Any] = [None] * new_size
lowercase__ : Optional[Any] = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val)
def lowercase__ ( self):
'''simple docstring'''
self._resize(len(self._buckets) * 2)
def lowercase__ ( self):
'''simple docstring'''
self._resize(len(self._buckets) // 2)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self._get_bucket_index(SCREAMING_SNAKE_CASE_)
for _ in range(len(self._buckets)):
yield ind
lowercase__ : List[Any] = self._get_next_ind(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE_):
if self._try_set(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
break
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def __delitem__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE_):
lowercase__ : Any = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE_)
if item is _deleted:
continue
if item.key == key:
lowercase__ : List[str] = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE_)
def __len__( self):
'''simple docstring'''
return self._len
def __iter__( self):
'''simple docstring'''
yield from (item.key for item in self._buckets if item)
def __repr__( self):
'''simple docstring'''
lowercase__ : Any = """ ,""".join(
f'{item.key}: {item.val}' for item in self._buckets if item)
return f'HashMap({val_string})'
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Tuple = logging.get_logger(__name__)
lowerCamelCase__ : List[str] = {
"""facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = 'data2vec-audio'
def __init__( self , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE_=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=19 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="sum" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=(5_12, 5_12, 5_12, 5_12, 15_00) , SCREAMING_SNAKE_CASE_=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE_=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = hidden_size
lowercase__ : str = feat_extract_activation
lowercase__ : str = list(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = list(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = list(SCREAMING_SNAKE_CASE_)
lowercase__ : str = conv_bias
lowercase__ : Dict = num_conv_pos_embeddings
lowercase__ : int = num_conv_pos_embedding_groups
lowercase__ : Optional[int] = conv_pos_kernel_size
lowercase__ : Optional[Any] = len(self.conv_dim)
lowercase__ : List[Any] = num_hidden_layers
lowercase__ : List[str] = intermediate_size
lowercase__ : Tuple = hidden_act
lowercase__ : Tuple = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : str = attention_dropout
lowercase__ : int = activation_dropout
lowercase__ : Union[str, Any] = feat_proj_dropout
lowercase__ : Any = final_dropout
lowercase__ : str = layerdrop
lowercase__ : Any = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Optional[int] = vocab_size
lowercase__ : Any = use_weighted_layer_sum
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,'
f' `len(config.conv_kernel) = {len(self.conv_kernel)}`.')
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : Any = mask_time_prob
lowercase__ : int = mask_time_length
lowercase__ : Union[str, Any] = mask_time_min_masks
lowercase__ : Optional[int] = mask_feature_prob
lowercase__ : Optional[int] = mask_feature_length
lowercase__ : Dict = mask_feature_min_masks
# ctc loss
lowercase__ : List[str] = ctc_loss_reduction
lowercase__ : str = ctc_zero_infinity
# adapter
lowercase__ : Union[str, Any] = add_adapter
lowercase__ : Tuple = adapter_kernel_size
lowercase__ : str = adapter_stride
lowercase__ : Any = num_adapter_layers
lowercase__ : str = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowercase__ : int = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowercase__ : Optional[int] = list(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = list(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = list(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = xvector_output_dim
@property
def lowercase__ ( self):
'''simple docstring'''
return math.prod(self.conv_stride)
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def UpperCamelCase ( lowercase_ , lowercase_=False ) -> Dict:
'''simple docstring'''
try:
lowercase__ : Any = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : str = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(lowercase_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'If set, {key} must be yes or no.' )
return _value
lowerCamelCase__ : Union[str, Any] = parse_flag_from_env("""RUN_SLOW""", default=False)
def UpperCamelCase ( lowercase_ ) -> Optional[Any]:
'''simple docstring'''
return unittest.skip("""Test was skipped""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> List[str]:
'''simple docstring'''
return unittest.skipUnless(_run_slow_tests , """test is slow""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Tuple:
'''simple docstring'''
return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> List[str]:
'''simple docstring'''
return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Optional[Any]:
'''simple docstring'''
return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Tuple:
'''simple docstring'''
return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(lowercase_ )
def UpperCamelCase ( lowercase_=None , lowercase_=None ) -> List[str]:
'''simple docstring'''
if test_case is None:
return partial(lowercase_ , version=lowercase_ )
return unittest.skipUnless(is_torch_version(""">=""" , lowercase_ ) , F'test requires torch version >= {version}' )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(lowercase_ )
lowerCamelCase__ : Any = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return unittest.skipUnless(
_atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(lowercase_ )
class _snake_case ( unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = True
@classmethod
def lowercase__ ( cls):
'''simple docstring'''
lowercase__ : Tuple = tempfile.mkdtemp()
@classmethod
def lowercase__ ( cls):
'''simple docstring'''
if os.path.exists(cls.tmpdir):
shutil.rmtree(cls.tmpdir)
def lowercase__ ( self):
'''simple docstring'''
if self.clear_on_setup:
for path in Path(self.tmpdir).glob("""**/*"""):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(SCREAMING_SNAKE_CASE_)
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = mocks if isinstance(SCREAMING_SNAKE_CASE_ , (tuple, list)) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop)
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Union[str, Any] = tensor[None].clone().to(state.device )
lowercase__ : List[str] = gather(lowercase_ ).cpu()
lowercase__ : List[Any] = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , lowercase_ ):
return False
return True
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = returncode
lowercase__ : Dict = stdout
lowercase__ : str = stderr
async def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
while True:
lowercase__ : str = await stream.readline()
if line:
callback(lowercase_ )
else:
break
async def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=False ) -> _RunOutput:
'''simple docstring'''
if echo:
print("""\nRunning: """ , """ """.join(lowercase_ ) )
lowercase__ : int = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=lowercase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase_ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Optional[Any] = []
lowercase__ : Optional[Any] = []
def tee(lowercase_ , lowercase_ , lowercase_ , lowercase_="" ):
lowercase__ : Union[str, Any] = line.decode("""utf-8""" ).rstrip()
sink.append(lowercase_ )
if not quiet:
print(lowercase_ , lowercase_ , file=lowercase_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda lowercase_ : tee(lowercase_ , lowercase_ , sys.stdout , label="""stdout:""" ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda lowercase_ : tee(lowercase_ , lowercase_ , sys.stderr , label="""stderr:""" ) ) ),
] , timeout=lowercase_ , )
return _RunOutput(await p.wait() , lowercase_ , lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=1_80 , lowercase_=False , lowercase_=True ) -> _RunOutput:
'''simple docstring'''
lowercase__ : Dict = asyncio.get_event_loop()
lowercase__ : List[str] = loop.run_until_complete(
_stream_subprocess(lowercase_ , env=lowercase_ , stdin=lowercase_ , timeout=lowercase_ , quiet=lowercase_ , echo=lowercase_ ) )
lowercase__ : Dict = """ """.join(lowercase_ )
if result.returncode > 0:
lowercase__ : Optional[Any] = """\n""".join(result.stderr )
raise RuntimeError(
F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n'
F'The combined stderr from workers follows:\n{stderr}' )
return result
class _snake_case ( UpperCAmelCase_ ):
pass
def UpperCamelCase ( lowercase_ , lowercase_=False ) -> Union[str, Any]:
'''simple docstring'''
try:
lowercase__ : Optional[Any] = subprocess.check_output(lowercase_ , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(lowercase_ , """decode""" ):
lowercase__ : Tuple = output.decode("""utf-8""" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F'Command `{" ".join(lowercase_ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import argparse
from collections import defaultdict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : List[Any] = F'{file}_{class_name}_{test_name}'
done_test[_id] += 1
with open(lowercase_ , """r""" ) as f:
lowercase__ : Union[str, Any] = f.readlines()
lowercase__ : List[str] = F'class {class_name}('
lowercase__ : Optional[Any] = F'{4 * " "}def {test_name}('
lowercase__ : Any = F'{8 * " "}{correct_line.split()[0]}'
lowercase__ : Tuple = F'{16 * " "}{correct_line.split()[0]}'
lowercase__ : str = False
lowercase__ : List[Any] = False
lowercase__ : List[Any] = False
lowercase__ : Dict = False
lowercase__ : Tuple = 0
lowercase__ : List[Any] = 0
lowercase__ : Tuple = []
for line in lines:
if line.startswith(lowercase_ ):
lowercase__ : Optional[Any] = True
elif in_class and line.startswith(lowercase_ ):
lowercase__ : Optional[int] = True
elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )):
lowercase__ : Optional[Any] = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
lowercase__ : int = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
lowercase__ : Optional[int] = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F'{spaces * " "}{correct_line}' )
lowercase__ : str = False
else:
new_lines.append(lowercase_ )
with open(lowercase_ , """w""" ) as f:
for line in new_lines:
f.write(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=None ) -> int:
'''simple docstring'''
if fail is not None:
with open(lowercase_ , """r""" ) as f:
lowercase__ : List[str] = {l.strip() for l in f.readlines()}
else:
lowercase__ : int = None
with open(lowercase_ , """r""" ) as f:
lowercase__ : Optional[Any] = f.readlines()
lowercase__ : Union[str, Any] = defaultdict(lowercase_ )
for line in correct_lines:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""")
parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None)
lowerCamelCase__ : Optional[int] = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
from functools import lru_cache
def UpperCamelCase ( lowercase_ ) -> set:
'''simple docstring'''
lowercase__ : Any = 2
lowercase__ : List[str] = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(lowercase_ )
if n > 1:
factors.add(lowercase_ )
return factors
@lru_cache
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
return len(unique_prime_factors(lowercase_ ) )
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
return len(set(lowercase_ ) ) in (0, 1)
def UpperCamelCase ( lowercase_ ) -> list:
'''simple docstring'''
lowercase__ : Optional[Any] = 2
while True:
# Increment each value of a generated range
lowercase__ : int = [base + i for i in range(lowercase_ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
lowercase__ : Optional[Any] = [upf_len(lowercase_ ) for x in group]
checker.append(lowercase_ )
# If all numbers in the list are equal, return the group variable.
if equality(lowercase_ ):
return group
# Increment our base variable by 1
base += 1
def UpperCamelCase ( lowercase_ = 4 ) -> int:
'''simple docstring'''
lowercase__ : Any = run(lowercase_ )
return results[0] if len(lowercase_ ) else None
if __name__ == "__main__":
print(solution())
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = StableDiffusionDiffEditPipeline
__lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'}
__lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'}
__lowerCAmelCase : Any = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__lowerCAmelCase : Optional[Any] = frozenset([] )
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Union[str, Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[int] = DDIMInverseScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_zero=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0)
lowercase__ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0)
lowercase__ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
lowercase__ : int = CLIPTextModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
lowercase__ : Any = {
"""unet""": unet,
"""scheduler""": scheduler,
"""inverse_scheduler""": inverse_scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0):
'''simple docstring'''
lowercase__ : Union[str, Any] = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_)).to(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_)).to(SCREAMING_SNAKE_CASE_)
if str(SCREAMING_SNAKE_CASE_).startswith("""mps"""):
lowercase__ : Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
else:
lowercase__ : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {
"""prompt""": """a dog and a newt""",
"""mask_image""": mask,
"""image_latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 2,
"""inpaint_strength""": 1.0,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0):
'''simple docstring'''
lowercase__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_)).to(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1)[0]
lowercase__ : str = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_)).convert("""RGB""")
if str(SCREAMING_SNAKE_CASE_).startswith("""mps"""):
lowercase__ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
else:
lowercase__ : List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {
"""image""": image,
"""source_prompt""": """a cat and a frog""",
"""target_prompt""": """a dog and a newt""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""num_maps_per_mask""": 2,
"""mask_encode_strength""": 1.0,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0):
'''simple docstring'''
lowercase__ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_)).to(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1)[0]
lowercase__ : Union[str, Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_)).convert("""RGB""")
if str(SCREAMING_SNAKE_CASE_).startswith("""mps"""):
lowercase__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
else:
lowercase__ : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""image""": image,
"""prompt""": """a cat and a frog""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""inpaint_strength""": 1.0,
"""guidance_scale""": 6.0,
"""decode_latents""": True,
"""output_type""": """numpy""",
}
return inputs
def lowercase__ ( self):
'''simple docstring'''
if not hasattr(self.pipeline_class , """_optional_components"""):
return
lowercase__ : Any = self.get_dummy_components()
lowercase__ : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components})
lowercase__ : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE_)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE_)
pipe_loaded.to(SCREAMING_SNAKE_CASE_)
pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) is None , f'`{optional_component}` did not stay set to None after loading.' , )
lowercase__ : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = pipe_loaded(**SCREAMING_SNAKE_CASE_)[0]
lowercase__ : Tuple = np.abs(output - output_loaded).max()
self.assertLess(SCREAMING_SNAKE_CASE_ , 1E-4)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = """cpu"""
lowercase__ : Optional[Any] = self.get_dummy_components()
lowercase__ : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = pipe.generate_mask(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16))
lowercase__ : Optional[int] = np.array([0] * 9)
lowercase__ : Union[str, Any] = np.abs(mask_slice.flatten() - expected_slice).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-3)
self.assertEqual(mask[0, -3, -4] , 0)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = """cpu"""
lowercase__ : List[Any] = self.get_dummy_components()
lowercase__ : Any = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = pipe.invert(**SCREAMING_SNAKE_CASE_).images
lowercase__ : Optional[int] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3))
lowercase__ : Any = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
lowercase__ : Dict = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-3)
def lowercase__ ( self):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=5E-3)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = """cpu"""
lowercase__ : Dict = self.get_dummy_components()
lowercase__ : Dict = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""}
lowercase__ : List[str] = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : int = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = pipe.invert(**SCREAMING_SNAKE_CASE_).images
lowercase__ : Optional[Any] = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3))
lowercase__ : List[str] = np.array(
[0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , )
lowercase__ : List[str] = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-3)
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def lowercase__ ( cls):
'''simple docstring'''
lowercase__ : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""")
lowercase__ : Dict = raw_image.convert("""RGB""").resize((7_68, 7_68))
lowercase__ : Any = raw_image
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = torch.manual_seed(0)
lowercase__ : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-1""" , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa)
lowercase__ : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config)
lowercase__ : str = DDIMInverseScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = """a bowl of fruit"""
lowercase__ : str = """a bowl of pears"""
lowercase__ : str = pipe.generate_mask(
image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Union[str, Any] = pipe.invert(
prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_).latents
lowercase__ : List[Any] = pipe(
prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0]
lowercase__ : List[Any] = (
np.array(
load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/diffedit/pears.png""").resize((7_68, 7_68)))
/ 2_55
)
assert np.abs((expected_image - image).max()) < 5E-1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = torch.manual_seed(0)
lowercase__ : Optional[Any] = StableDiffusionDiffEditPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-1""" , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa)
lowercase__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
lowercase__ : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = """a bowl of fruit"""
lowercase__ : List[str] = """a bowl of pears"""
lowercase__ : Optional[Any] = pipe.generate_mask(
image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )
lowercase__ : List[Any] = pipe.invert(
prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , ).latents
lowercase__ : Union[str, Any] = pipe(
prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0]
lowercase__ : Dict = (
np.array(
load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/diffedit/pears.png""").resize((7_68, 7_68)))
/ 2_55
)
assert np.abs((expected_image - image).max()) < 5E-1
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : List[Any] = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = 'mobilenet_v1'
def __init__( self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_="relu6" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.9_9_9 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=0.0_0_1 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if depth_multiplier <= 0:
raise ValueError("""depth_multiplier must be greater than zero.""")
lowercase__ : List[Any] = num_channels
lowercase__ : Optional[Any] = image_size
lowercase__ : Union[str, Any] = depth_multiplier
lowercase__ : Optional[Any] = min_depth
lowercase__ : Tuple = hidden_act
lowercase__ : Any = tf_padding
lowercase__ : int = classifier_dropout_prob
lowercase__ : Optional[int] = initializer_range
lowercase__ : Tuple = layer_norm_eps
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Tuple = version.parse('1.11' )
@property
def lowercase__ ( self):
'''simple docstring'''
return OrderedDict([("""pixel_values""", {0: """batch"""})])
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("""logits""", {0: """batch"""})])
else:
return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})])
@property
def lowercase__ ( self):
'''simple docstring'''
return 1E-4
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowerCamelCase__ : Optional[Any] = """platform"""
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Dict:
'''simple docstring'''
if attention_mask is None:
lowercase__ : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase__ : Any = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase__ : str = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase__ : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase__ : int = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : List[str] = parent
lowercase__ : Tuple = batch_size
lowercase__ : Union[str, Any] = seq_length
lowercase__ : Tuple = is_training
lowercase__ : Any = use_labels
lowercase__ : Tuple = vocab_size
lowercase__ : List[str] = hidden_size
lowercase__ : Any = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : List[Any] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[Any] = attention_probs_dropout_prob
lowercase__ : int = max_position_embeddings
lowercase__ : str = eos_token_id
lowercase__ : Tuple = pad_token_id
lowercase__ : Union[str, Any] = bos_token_id
lowercase__ : int = initializer_range
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowercase__ : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowercase__ : Dict = shift_tokens_right(SCREAMING_SNAKE_CASE_ , 1 , 2)
lowercase__ : str = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return config, inputs_dict
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[Any] = 20
lowercase__ : Tuple = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = model.encode(inputs_dict["""input_ids"""])
lowercase__ , lowercase__ : Union[str, Any] = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase__ : str = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Dict = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase__ : Optional[Any] = model.decode(
decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : List[str] = model.decode(
decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : List[str] = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = model.encode(inputs_dict["""input_ids"""])
lowercase__ , lowercase__ : Dict = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase__ : int = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase__ : str = model.decode(
decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Any = model.decode(
decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , decoder_position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model.decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = 99
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowercase__ : Tuple = input_ids.shape[0]
lowercase__ : List[Any] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ : List[str] = self._get_config_and_data()
lowercase__ : Optional[Any] = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = lm_model(input_ids=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowercase__ : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
lowercase__ : Tuple = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
lowercase__ : Optional[int] = lm_model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
lowercase__ : int = shift_tokens_right(SCREAMING_SNAKE_CASE_ , 1 , 2)
lowercase__ : Optional[int] = np.equal(SCREAMING_SNAKE_CASE_ , 1).astype(np.floataa).sum()
lowercase__ : int = np.equal(SCREAMING_SNAKE_CASE_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(SCREAMING_SNAKE_CASE_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class _snake_case ( UpperCAmelCase_ , unittest.TestCase , UpperCAmelCase_ ):
__lowerCAmelCase : Optional[Any] = True
__lowerCAmelCase : List[Any] = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
__lowerCAmelCase : Tuple = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = FlaxBlenderbotSmallModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase__ : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : int = model_class(SCREAMING_SNAKE_CASE_)
@jax.jit
def encode_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
return model.encode(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
with self.subTest("""JIT Enabled"""):
lowercase__ : str = encode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase__ : int = encode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(jitted_output.shape , output.shape)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase__ : str = model_class(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase__ : Dict = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
return model.decode(
decoder_input_ids=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , encoder_outputs=SCREAMING_SNAKE_CASE_ , )
with self.subTest("""JIT Enabled"""):
lowercase__ : int = decode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase__ : Optional[Any] = decode_jitted(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase__ : Any = np.ones((1, 1)) * model.config.eos_token_id
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> list:
'''simple docstring'''
for i in range(len(lowercase_ ) - 1 , 0 , -1 ):
lowercase__ : Union[str, Any] = False
for j in range(lowercase_ , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : Tuple = unsorted[j - 1], unsorted[j]
lowercase__ : str = True
for j in range(lowercase_ ):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : List[Any] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip()
lowerCamelCase__ : Dict = [int(item) for item in user_input.split(""",""")]
print(f'''{cocktail_shaker_sort(unsorted) = }''')
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
lowerCamelCase__ : Dict = """\
Text data.
Second line of data."""
lowerCamelCase__ : List[Any] = """file"""
@pytest.fixture(scope="""session""" )
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : List[Any] = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""")
lowercase__ : Optional[int] = bytes(lowercase_ , """utf-8""" )
with zstd.open(lowercase_ , """wb""" ) as f:
f.write(lowercase_ )
return path
@pytest.fixture
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , lowercase_ ) , """w""" ) as f:
f.write(lowercase_ )
return FILE_PATH
@pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Dict = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path}
lowercase__ : Tuple = input_paths[compression_format]
lowercase__ : int = tmp_path / """cache"""
lowercase__ : int = DownloadConfig(cache_dir=lowercase_ , extract_compressed_file=lowercase_ )
lowercase__ : Optional[int] = cached_path(lowercase_ , download_config=lowercase_ )
with open(lowercase_ ) as f:
lowercase__ : str = f.read()
with open(lowercase_ ) as f:
lowercase__ : Dict = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("""default_extracted""" , [True, False] )
@pytest.mark.parametrize("""default_cache_dir""" , [True, False] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[int] = """custom_cache"""
lowercase__ : Optional[Any] = """custom_extracted_dir"""
lowercase__ : List[str] = tmp_path / """custom_extracted_path"""
if default_extracted:
lowercase__ : str = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""")
else:
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowercase_ )
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowercase_ ) )
lowercase__ : Optional[int] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
lowercase__ : Union[str, Any] = xz_file
lowercase__ : Union[str, Any] = (
DownloadConfig(extract_compressed_file=lowercase_ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase_ )
)
lowercase__ : Dict = cached_path(lowercase_ , download_config=lowercase_ )
assert Path(lowercase_ ).parent.parts[-2:] == expected
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : List[str] = str(Path(lowercase_ ).resolve() )
assert cached_path(lowercase_ ) == text_file
# relative path
lowercase__ : Optional[Any] = str(Path(lowercase_ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(lowercase_ ) == text_file
def UpperCamelCase ( lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : str = str(tmp_path.resolve() / """__missing_file__.txt""" )
with pytest.raises(lowercase_ ):
cached_path(lowercase_ )
# relative path
lowercase__ : Optional[Any] = """./__missing_file__.txt"""
with pytest.raises(lowercase_ ):
cached_path(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[int] = get_from_cache(F'tmp://{tmpfs_file}' )
with open(lowercase_ ) as f:
lowercase__ : Union[str, Any] = f.read()
assert output_file_content == FILE_CONTENT
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ )
def UpperCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
with pytest.raises(lowercase_ ):
cached_path("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ )
def UpperCamelCase ( lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowercase_ ):
http_get("""https://huggingface.co""" , temp_file=lowercase_ )
with pytest.raises(lowercase_ ):
http_head("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowercase_ ):
ftp_get("""ftp://huggingface.co""" , temp_file=lowercase_ )
with pytest.raises(lowercase_ ):
ftp_head("""ftp://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(lowercase_ ):
fsspec_get("""s3://huggingface.co""" , temp_file=lowercase_ )
with pytest.raises(lowercase_ ):
fsspec_head("""s3://huggingface.co""" )
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__()
if hasattr(scheduler.config , """steps_offset""") and scheduler.config.steps_offset != 1:
lowercase__ : Any = (
f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'
f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '
"""to update the config accordingly as leaving `steps_offset` might led to incorrect results"""
""" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"""
""" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"""
""" file"""
)
deprecate("""steps_offset!=1""" , """1.0.0""" , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = dict(scheduler.config)
lowercase__ : Optional[int] = 1
lowercase__ : Tuple = FrozenDict(SCREAMING_SNAKE_CASE_)
if hasattr(scheduler.config , """skip_prk_steps""") and scheduler.config.skip_prk_steps is False:
lowercase__ : Any = (
f'The configuration file of this scheduler: {scheduler} has not set the configuration'
""" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"""
""" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"""
""" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"""
""" Hub, it would be very nice if you could open a Pull request for the"""
""" `scheduler/scheduler_config.json` file"""
)
deprecate("""skip_prk_steps not set""" , """1.0.0""" , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = dict(scheduler.config)
lowercase__ : int = True
lowercase__ : List[Any] = FrozenDict(SCREAMING_SNAKE_CASE_)
if safety_checker is None:
logger.warning(
f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""")
self.register_modules(
segmentation_model=SCREAMING_SNAKE_CASE_ , segmentation_processor=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ = "auto"):
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowercase__ : Union[str, Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.enable_attention_slicing(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""")
lowercase__ : Union[str, Any] = torch.device("""cuda""")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowercase__ ( self):
'''simple docstring'''
if self.device != torch.device("""meta""") or not hasattr(self.unet , """_hf_hook"""):
return self.device
for module in self.unet.modules():
if (
hasattr(SCREAMING_SNAKE_CASE_ , """_hf_hook""")
and hasattr(module._hf_hook , """execution_device""")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Dict = self.segmentation_processor(
text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""").to(self.device)
lowercase__ : Dict = self.segmentation_model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
lowercase__ : Optional[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_)[0].resize(image.size)
# Run inpainting pipeline with the generated mask
lowercase__ : Dict = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , )
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCamelCase__ : Any = version.parse(importlib_metadata.version("""nltk"""))
if NLTK_VERSION >= version.Version("""3.6.4"""):
from nltk import word_tokenize
lowerCamelCase__ : Union[str, Any] = """\
@inproceedings{banarjee2005,
title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},
author = {Banerjee, Satanjeev and Lavie, Alon},
booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},
month = jun,
year = {2005},
address = {Ann Arbor, Michigan},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/W05-0909},
pages = {65--72},
}
"""
lowerCamelCase__ : List[Any] = """\
METEOR, an automatic metric for machine translation evaluation
that is based on a generalized concept of unigram matching between the
machine-produced translation and human-produced reference translations.
Unigrams can be matched based on their surface forms, stemmed forms,
and meanings; furthermore, METEOR can be easily extended to include more
advanced matching strategies. Once all generalized unigram matches
between the two strings have been found, METEOR computes a score for
this matching using a combination of unigram-precision, unigram-recall, and
a measure of fragmentation that is designed to directly capture how
well-ordered the matched words in the machine translation are in relation
to the reference.
METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic
data and 0.331 on the Chinese data. This is shown to be an improvement on
using simply unigram-precision, unigram-recall and their harmonic F1
combination.
"""
lowerCamelCase__ : Dict = """
Computes METEOR score of translated segments against one or more references.
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
alpha: Parameter for controlling relative weights of precision and recall. default: 0.9
beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3
gamma: Relative weight assigned to fragmentation penalty. default: 0.5
Returns:
'meteor': meteor score.
Examples:
>>> meteor = datasets.load_metric('meteor')
>>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]
>>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]
>>> results = meteor.compute(predictions=predictions, references=references)
>>> print(round(results[\"meteor\"], 4))
0.6944
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def lowercase__ ( self):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence"""),
"""references""": datasets.Value("""string""" , id="""sequence"""),
}) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[
"""https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""",
"""https://en.wikipedia.org/wiki/METEOR""",
] , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
import nltk
nltk.download("""wordnet""")
if NLTK_VERSION >= version.Version("""3.6.5"""):
nltk.download("""punkt""")
if NLTK_VERSION >= version.Version("""3.6.6"""):
nltk.download("""omw-1.4""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.9 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=0.5):
'''simple docstring'''
if NLTK_VERSION >= version.Version("""3.6.5"""):
lowercase__ : Dict = [
meteor_score.single_meteor_score(
word_tokenize(SCREAMING_SNAKE_CASE_) , word_tokenize(SCREAMING_SNAKE_CASE_) , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , gamma=SCREAMING_SNAKE_CASE_)
for ref, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
]
else:
lowercase__ : List[Any] = [
meteor_score.single_meteor_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , gamma=SCREAMING_SNAKE_CASE_)
for ref, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
]
return {"meteor": np.mean(SCREAMING_SNAKE_CASE_)}
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ):
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE_ = 7_68 , ):
'''simple docstring'''
super().__init__()
lowercase__ : int = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE_))
lowercase__ : Any = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE_))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ):
'''simple docstring'''
lowercase__ : Any = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE_).to(SCREAMING_SNAKE_CASE_))
lowercase__ : List[Any] = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE_).to(SCREAMING_SNAKE_CASE_))
return self
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = (embeds - self.mean) * 1.0 / self.std
return embeds
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = (embeds * self.std) + self.mean
return embeds
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Any = {"""vocab_file""": """sentencepiece.bpe.model"""}
lowerCamelCase__ : Tuple = {
"""vocab_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""",
}
}
lowerCamelCase__ : int = {
"""camembert-base""": 5_1_2,
}
lowerCamelCase__ : int = """▁"""
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES
__lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : str = ['input_ids', 'attention_mask']
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=["<s>NOTUSED", "</s>NOTUSED"] , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else mask_token
lowercase__ : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
lowercase__ : int = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3}
lowercase__ : Union[str, Any] = len(self.fairseq_tokens_to_ids)
lowercase__ : Any = len(self.sp_model) + len(self.fairseq_tokens_to_ids)
lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase__ : Tuple = [self.cls_token_id]
lowercase__ : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_)
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_)) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_)) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_)) + [1]
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : List[Any] = [self.sep_token_id]
lowercase__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def lowercase__ ( self):
'''simple docstring'''
return len(self.fairseq_tokens_to_ids) + len(self.sp_model)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = []
lowercase__ : Optional[Any] = """"""
lowercase__ : List[Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_) + token
lowercase__ : List[str] = True
lowercase__ : List[Any] = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = False
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_)
return out_string.strip()
def __getstate__( self):
'''simple docstring'''
lowercase__ : List[str] = self.__dict__.copy()
lowercase__ : int = None
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs"""):
lowercase__ : Union[str, Any] = {}
lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_):
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
return
lowercase__ : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_)
elif not os.path.isfile(self.vocab_file):
with open(SCREAMING_SNAKE_CASE_ , """wb""") as fi:
lowercase__ : Tuple = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_)
return (out_vocab_file,)
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
def UpperCamelCase ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )]
lowerCamelCase__ : str = generate_large_matrix()
lowerCamelCase__ : Dict = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCamelCase ( lowercase_ ) -> None:
'''simple docstring'''
assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid )
assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[int] = 0
lowercase__ : Optional[int] = len(lowercase_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowercase__ : Optional[int] = (left + right) // 2
lowercase__ : Union[str, Any] = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowercase__ : int = mid + 1
else:
lowercase__ : Any = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : List[Any] = 0
lowercase__ : int = len(grid[0] )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = find_negative_index(grid[i][:bound] )
total += bound
return (len(lowercase_ ) * len(grid[0] )) - total
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Tuple = 0
for row in grid:
for i, number in enumerate(lowercase_ ):
if number < 0:
total += len(lowercase_ ) - i
break
return total
def UpperCamelCase ( ) -> None:
'''simple docstring'''
from timeit import timeit
print("""Running benchmarks""" )
lowercase__ : Optional[int] = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowercase__ : Tuple = timeit(F'{func}(grid=grid)' , setup=lowercase_ , number=5_00 )
print(F'{func}() took {time:0.4f} seconds' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.