code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=9_9 , __lowerCAmelCase=0 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase="last" , __lowerCAmelCase=None , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :Dict = parent __magic_name__ :List[str] = batch_size __magic_name__ :Optional[Any] = seq_length __magic_name__ :Union[str, Any] = is_training __magic_name__ :Dict = use_input_lengths __magic_name__ :Tuple = use_token_type_ids __magic_name__ :Dict = use_labels __magic_name__ :List[str] = gelu_activation __magic_name__ :Dict = sinusoidal_embeddings __magic_name__ :List[Any] = causal __magic_name__ :Dict = asm __magic_name__ :Union[str, Any] = n_langs __magic_name__ :List[Any] = vocab_size __magic_name__ :int = n_special __magic_name__ :Tuple = hidden_size __magic_name__ :Optional[int] = num_hidden_layers __magic_name__ :Optional[Any] = num_attention_heads __magic_name__ :Any = hidden_dropout_prob __magic_name__ :List[str] = attention_probs_dropout_prob __magic_name__ :Any = max_position_embeddings __magic_name__ :Tuple = type_vocab_size __magic_name__ :Optional[int] = type_sequence_label_size __magic_name__ :Tuple = initializer_range __magic_name__ :Dict = num_labels __magic_name__ :Any = num_choices __magic_name__ :Optional[Any] = summary_type __magic_name__ :Dict = use_proj __magic_name__ :Tuple = scope def A ( self ): """simple docstring""" __magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ :int = None if self.use_input_lengths: __magic_name__ :List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __magic_name__ :Dict = None if self.use_token_type_ids: __magic_name__ :Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __magic_name__ :str = None __magic_name__ :Union[str, Any] = None __magic_name__ :int = None if self.use_labels: __magic_name__ :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ :Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __magic_name__ :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ :int = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A ( self ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Union[str, Any] = FlaubertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :str = model(__lowerCAmelCase , lengths=__lowerCAmelCase , langs=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = model(__lowerCAmelCase , langs=__lowerCAmelCase ) __magic_name__ :List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :str = FlaubertWithLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :List[str] = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Union[str, Any] = FlaubertForQuestionAnsweringSimple(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :int = model(__lowerCAmelCase ) __magic_name__ :Optional[int] = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Tuple = FlaubertForQuestionAnswering(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Optional[Any] = model(__lowerCAmelCase ) __magic_name__ :int = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , p_mask=__lowerCAmelCase , ) __magic_name__ :Optional[Any] = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , ) ((__magic_name__) , ) :Any = result_with_labels.to_tuple() __magic_name__ :str = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) ((__magic_name__) , ) :List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Union[str, Any] = FlaubertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :int = model(__lowerCAmelCase ) __magic_name__ :List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :List[str] = self.num_labels __magic_name__ :Any = FlaubertForTokenClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :List[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Dict = self.num_choices __magic_name__ :Any = FlaubertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ :Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ :List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ :Any = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) :int = config_and_inputs __magic_name__ :str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" __magic_name__ :int = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __magic_name__ :Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) __magic_name__ :Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = FlaubertModelTester(self ) __magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , emb_dim=3_7 ) def A ( self ): """simple docstring""" self.config_tester.run_common_tests() def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ :List[str] = FlaubertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow @require_torch_gpu def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __magic_name__ :List[str] = True __magic_name__ :Union[str, Any] = model_class(config=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Union[str, Any] = torch.jit.trace( __lowerCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''traced_model.pt''' ) ) __magic_name__ :Any = torch.jit.load(os.path.join(__lowerCAmelCase , '''traced_model.pt''' ) , map_location=__lowerCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__lowerCAmelCase ) , inputs_dict['''attention_mask'''].to(__lowerCAmelCase ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def A ( self ): """simple docstring""" __magic_name__ :int = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) __magic_name__ :int = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): __magic_name__ :List[str] = model(__lowerCAmelCase )[0] __magic_name__ :List[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCAmelCase ) __magic_name__ :Optional[Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 ) )
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class __lowerCamelCase : def __init__( self: Dict,A_: Optional[int],A_: Dict,A_: bool = True,A_: bool = False ): '''simple docstring''' __UpperCamelCase = scheduler __UpperCamelCase = optimizers if isinstance(A_,(list, tuple) ) else [optimizers] __UpperCamelCase = split_batches __UpperCamelCase = step_with_optimizer __UpperCamelCase = GradientState() def snake_case_ ( self: Optional[int],*A_: int,**A_: str ): '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*A_,**A_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*A_,**A_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __UpperCamelCase = AcceleratorState().num_processes for _ in range(A_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler,'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*A_,**A_ ) else: self.scheduler.step(*A_,**A_ ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return self.scheduler.get_last_lr() def snake_case_ ( self: Optional[int] ): '''simple docstring''' return self.scheduler.state_dict() def snake_case_ ( self: Optional[int],A_: Tuple ): '''simple docstring''' self.scheduler.load_state_dict(A_ ) def snake_case_ ( self: int ): '''simple docstring''' return self.scheduler.get_lr() def snake_case_ ( self: Optional[int],*A_: Union[str, Any],**A_: List[Any] ): '''simple docstring''' return self.scheduler.print_lr(*A_,**A_ )
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :List[str]=None ) -> Any: require_version(deps[pkg] , _snake_case )
2
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = BarthezTokenizer lowerCAmelCase_ = BarthezTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def UpperCAmelCase_ ( self )-> int: '''simple docstring''' super().setUp() UpperCamelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=A_ ) UpperCamelCase = tokenizer def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = '<pad>' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(A_ ) , 101122 ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] UpperCamelCase = [0, 57, 3018, 70307, 91, 2] UpperCamelCase = self.tokenizer( A_ , max_length=len(A_ ) , padding=A_ , truncation=A_ , return_tensors='pt' ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(A_ , A_ ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = tokenizer.tokenize(A_ ) UpperCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) UpperCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(A_ ) UpperCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=A_ , )
3
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger('''transformers.models.speecht5''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ): hf_model.apply_weight_norm() lowerCAmelCase = checkpoint['input_conv.weight_g'] lowerCAmelCase = checkpoint['input_conv.weight_v'] lowerCAmelCase = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase = checkpoint[F'upsamples.{i}.1.weight_g'] lowerCAmelCase = checkpoint[F'upsamples.{i}.1.weight_v'] lowerCAmelCase = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase = checkpoint['output_conv.1.weight_g'] lowerCAmelCase = checkpoint['output_conv.1.weight_v'] lowerCAmelCase = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: lowerCAmelCase = SpeechTaHifiGanConfig() lowerCAmelCase = SpeechTaHifiGan(_UpperCAmelCase ) lowerCAmelCase = torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = np.load(_UpperCAmelCase ) lowerCAmelCase = stats[0].reshape(-1 ) lowerCAmelCase = stats[1].reshape(-1 ) lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ).float() lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _lowerCAmelCase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _lowerCAmelCase = model(_lowercase )["""last_hidden_state"""] _lowerCAmelCase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. _lowerCAmelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
5
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } _lowerCamelCase = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ["input_ids", "attention_mask"] lowerCamelCase_ = RobertaTokenizer def __init__( self :List[Any] , __A :Tuple=None , __A :str=None , __A :Tuple=None , __A :Tuple="replace" , __A :List[Any]="<s>" , __A :Union[str, Any]="</s>" , __A :Any="</s>" , __A :Dict="<s>" , __A :Optional[Any]="<unk>" , __A :List[str]="<pad>" , __A :Any="<mask>" , __A :Dict=False , __A :Tuple=True , **__A :Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __A ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = getattr(__A , pre_tok_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = pre_tok_class(**__A ) SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = """post_processor""" SCREAMING_SNAKE_CASE__ = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE__ = tuple(state["""sep"""] ) if "cls" in state: SCREAMING_SNAKE_CASE__ = tuple(state["""cls"""] ) SCREAMING_SNAKE_CASE__ = False if state.get("""add_prefix_space""" , __A ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = True if state.get("""trim_offsets""" , __A ) != trim_offsets: SCREAMING_SNAKE_CASE__ = trim_offsets SCREAMING_SNAKE_CASE__ = True if changes_to_apply: SCREAMING_SNAKE_CASE__ = getattr(__A , state.pop("""type""" ) ) SCREAMING_SNAKE_CASE__ = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property def _snake_case ( self :str ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _snake_case ( self :List[str] , __A :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value SCREAMING_SNAKE_CASE__ = value def _snake_case ( self :str , *__A :int , **__A :Tuple ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ = kwargs.get("""is_split_into_words""" , __A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _snake_case ( self :Optional[Any] , *__A :List[Any] , **__A :Dict ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ = kwargs.get("""is_split_into_words""" , __A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _snake_case ( self :Dict , __A :Union[str, Any] , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _snake_case ( self :Optional[int] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
6
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a = pytest.mark.integration a = {'''comet'''} a = importlib.util.find_spec('''fairseq''') is not None a = {'''code_eval'''} a = os.name == '''nt''' a = {'''bertscore''', '''frugalscore''', '''perplexity'''} a = importlib.util.find_spec('''transformers''') is not None def _snake_case ( _snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' @wraps(_snake_case ) def wrapper(self : List[str] , _snake_case : str ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , _snake_case ) return wrapper def _snake_case ( _snake_case : Any ) -> List[str]: '''simple docstring''' @wraps(_snake_case ) def wrapper(self : Union[str, Any] , _snake_case : Optional[int] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , _snake_case ) return wrapper def _snake_case ( _snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' @wraps(_snake_case ) def wrapper(self : Union[str, Any] , _snake_case : List[str] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , _snake_case ) return wrapper def _snake_case ( ) -> Tuple: '''simple docstring''' _A = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @local class lowercase_ ( parameterized.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Optional[Any] = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str ): _A = '[...]' _A = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _UpperCAmelCase ) ).module_path ) _A = datasets.load.import_main_class(metric_module.__name__ , dataset=_UpperCAmelCase ) # check parameters _A = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_UpperCAmelCase , metric_module.__name__ ): with self.use_local_metrics(): try: _A = doctest.testmod(_UpperCAmelCase , verbose=_UpperCAmelCase , raise_on_error=_UpperCAmelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int] ): _A = '[...]' _A = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _UpperCAmelCase ) ).module_path ) # run doctest with self.use_local_metrics(): _A = doctest.testmod(_UpperCAmelCase , verbose=_UpperCAmelCase , raise_on_error=_UpperCAmelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_UpperCAmelCase ): yield else: yield @contextmanager def lowerCAmelCase_ ( self : str ): def load_local_metric(_UpperCAmelCase : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Optional[Any] ): return load_metric(os.path.join('metrics' , _UpperCAmelCase ) , *_UpperCAmelCase , **_UpperCAmelCase ) with patch('datasets.load_metric' ) as mock_load_metric: _A = load_local_metric yield @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , _UpperCAmelCase : str ): def wrapper(_UpperCAmelCase : str ): _A = contextmanager(_UpperCAmelCase ) _A = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def _snake_case ( _snake_case : int ) -> Any: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Dict ): assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: _A = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def _snake_case ( _snake_case : Tuple ) -> Tuple: '''simple docstring''' import torch def bert_cos_score_idf(_snake_case : Optional[Any] , _snake_case : Optional[Any] , *_snake_case : Union[str, Any] , **_snake_case : Optional[Any] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_snake_case ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: _A = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' def load_from_checkpoint(_snake_case : str ): class lowercase_ : '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ): assert len(_UpperCAmelCase ) == 2 _A = [0.19, 0.92] return scores, sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: _A = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: _A = load_from_checkpoint yield def _snake_case ( ) -> List[str]: '''simple docstring''' _A = load_metric(os.path.join('metrics' , 'seqeval' ) ) _A = 'ERROR' _A = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(_snake_case , match=re.escape(_snake_case ) ): metric.compute(predictions=[] , references=[] , scheme=_snake_case )
7
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 128 , _UpperCAmelCase = 256 , _UpperCAmelCase = 2000.0 , _UpperCAmelCase = 768 , _UpperCAmelCase = 12 , _UpperCAmelCase = 12 , _UpperCAmelCase = 64 , _UpperCAmelCase = 2048 , _UpperCAmelCase = 0.1 , ): '''simple docstring''' super().__init__() __A : Tuple = nn.Sequential( nn.Linear(_UpperCAmelCase , d_model * 4 , bias=_UpperCAmelCase) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_UpperCAmelCase) , nn.SiLU() , ) __A : Optional[Any] = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = False __A : Any = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) __A : Dict = nn.Dropout(p=_UpperCAmelCase) __A : Dict = nn.ModuleList() for lyr_num in range(_UpperCAmelCase): # FiLM conditional T5 decoder __A : str = DecoderLayer(d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase) self.decoders.append(_UpperCAmelCase) __A : Dict = TaLayerNorm(_UpperCAmelCase) __A : Optional[int] = nn.Dropout(p=_UpperCAmelCase) __A : int = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = torch.mul(query_input.unsqueeze(-1) , key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A ,__A ,__A : Tuple = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __A : Union[str, Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype) __A : List[str] = self.conditioning_emb(_UpperCAmelCase).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __A : Union[str, Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __A : List[Any] = torch.broadcast_to( torch.arange(_UpperCAmelCase , device=decoder_input_tokens.device) , (batch, seq_length) , ) __A : str = self.position_encoding(_UpperCAmelCase) __A : List[str] = self.continuous_inputs_projection(_UpperCAmelCase) inputs += position_encodings __A : str = self.dropout(_UpperCAmelCase) # decoder: No padding present. __A : int = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. __A : str = [(x, self.encoder_decoder_mask(_UpperCAmelCase , _UpperCAmelCase)) for x, y in encodings_and_masks] # cross attend style: concat encodings __A : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1) __A : Dict = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1) for lyr in self.decoders: __A : List[str] = lyr( _UpperCAmelCase , conditioning_emb=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )[0] __A : Optional[Any] = self.decoder_norm(_UpperCAmelCase) __A : Optional[int] = self.post_dropout(_UpperCAmelCase) __A : Optional[Any] = self.spec_out(_UpperCAmelCase) return spec_out class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1e-6): '''simple docstring''' super().__init__() __A : str = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , dropout_rate=_UpperCAmelCase)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase , )) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): '''simple docstring''' __A : Union[str, Any] = self.layer[0]( _UpperCAmelCase , conditioning_emb=_UpperCAmelCase , attention_mask=_UpperCAmelCase , ) if encoder_hidden_states is not None: __A : Optional[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0).to( encoder_hidden_states.dtype) __A : Dict = self.layer[1]( _UpperCAmelCase , key_value_states=_UpperCAmelCase , attention_mask=_UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer __A : List[Any] = self.layer[-1](_UpperCAmelCase , _UpperCAmelCase) return (hidden_states,) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : int = TaLayerNorm(_UpperCAmelCase) __A : int = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCAmelCase) __A : Optional[Any] = Attention(query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , out_bias=_UpperCAmelCase , scale_qk=_UpperCAmelCase) __A : Dict = nn.Dropout(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , ): '''simple docstring''' __A : List[str] = self.layer_norm(_UpperCAmelCase) if conditioning_emb is not None: __A : List[Any] = self.FiLMLayer(_UpperCAmelCase , _UpperCAmelCase) # Self-attention block __A : Any = self.attention(_UpperCAmelCase) __A : Any = hidden_states + self.dropout(_UpperCAmelCase) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Any = Attention(query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , out_bias=_UpperCAmelCase , scale_qk=_UpperCAmelCase) __A : List[str] = TaLayerNorm(_UpperCAmelCase , eps=_UpperCAmelCase) __A : List[Any] = nn.Dropout(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , ): '''simple docstring''' __A : Tuple = self.layer_norm(_UpperCAmelCase) __A : str = self.attention( _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , attention_mask=attention_mask.squeeze(1) , ) __A : List[Any] = hidden_states + self.dropout(_UpperCAmelCase) return layer_output class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Any = TaDenseGatedActDense(d_model=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase) __A : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCAmelCase) __A : int = TaLayerNorm(_UpperCAmelCase , eps=_UpperCAmelCase) __A : Optional[int] = nn.Dropout(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None): '''simple docstring''' __A : Optional[Any] = self.layer_norm(_UpperCAmelCase) if conditioning_emb is not None: __A : Optional[int] = self.film(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = self.DenseReluDense(_UpperCAmelCase) __A : Any = hidden_states + self.dropout(_UpperCAmelCase) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : List[str] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) __A : List[Any] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) __A : Optional[int] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) __A : Tuple = nn.Dropout(_UpperCAmelCase) __A : Tuple = NewGELUActivation() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = self.act(self.wi_a(_UpperCAmelCase)) __A : List[Any] = self.wi_a(_UpperCAmelCase) __A : int = hidden_gelu * hidden_linear __A : List[Any] = self.dropout(_UpperCAmelCase) __A : int = self.wo(_UpperCAmelCase) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=1e-6): '''simple docstring''' super().__init__() __A : Optional[int] = nn.Parameter(torch.ones(_UpperCAmelCase)) __A : Optional[Any] = eps def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = hidden_states.to(torch.floataa).pow(2).mean(-1 , keepdim=_UpperCAmelCase) __A : str = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __A : Optional[Any] = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(_UpperCAmelCase , 3.0)))) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Tuple = nn.Linear(_UpperCAmelCase , out_features * 2 , bias=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = self.scale_bias(_UpperCAmelCase) __A ,__A : str = torch.chunk(_UpperCAmelCase , 2 , -1) __A : Optional[Any] = x * (1 + scale) + shift return x
8
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() def _a ( self : str ): """simple docstring""" A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) A__ = 'A painting of a squirrel eating a burger' A__ = jax.device_count() A__ = num_samples * [prompt] A__ = sd_pipe.prepare_inputs(_snake_case ) A__ = replicate(_snake_case ) A__ = shard(_snake_case ) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(_snake_case , jax.device_count() ) A__ = sd_pipe(_snake_case , _snake_case , _snake_case , num_inference_steps=25 , jit=_snake_case )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ = images[0, 2_53:2_56, 2_53:2_56, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _a ( self : Optional[int] ): """simple docstring""" A__ = 'stabilityai/stable-diffusion-2' A__ , A__ = FlaxDPMSolverMultistepScheduler.from_pretrained(_snake_case , subfolder='scheduler' ) A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( _snake_case , scheduler=_snake_case , revision='bf16' , dtype=jnp.bfloataa , ) A__ = scheduler_params A__ = 'A painting of a squirrel eating a burger' A__ = jax.device_count() A__ = num_samples * [prompt] A__ = sd_pipe.prepare_inputs(_snake_case ) A__ = replicate(_snake_case ) A__ = shard(_snake_case ) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(_snake_case , jax.device_count() ) A__ = sd_pipe(_snake_case , _snake_case , _snake_case , num_inference_steps=25 , jit=_snake_case )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ = images[0, 2_53:2_56, 2_53:2_56, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
9
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ConditionalDetrFeatureExtractor"] lowercase_ = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __lowerCamelCase : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase : str = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __lowerCamelCase : List[Any] = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_60_00, 'return_attention_mask': False, 'do_normalize': True, } __lowerCamelCase : List[str] = tempfile.mkdtemp() __lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __lowerCamelCase : List[str] = 'hf-internal-testing/ngram-beam-search-decoder' def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> str: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> str: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Dict = self.get_feature_extractor() __lowerCamelCase : List[Any] = self.get_decoder() __lowerCamelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowerCamelCase : Dict = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self ) -> int: __lowerCamelCase : Dict = self.get_feature_extractor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : Any = self.get_decoder() __lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = floats_list((3, 10_00) ) __lowerCamelCase : Union[str, Any] = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.get_feature_extractor() __lowerCamelCase : Optional[int] = self.get_tokenizer() __lowerCamelCase : Optional[Any] = self.get_decoder() __lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = 'This is a test string' __lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_=(2, 10, 16) , SCREAMING_SNAKE_CASE_=77 ) -> List[Any]: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = self.get_feature_extractor() __lowerCamelCase : Union[str, Any] = self.get_tokenizer() __lowerCamelCase : Optional[Any] = self.get_decoder() __lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowerCamelCase : Optional[int] = processor.decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Optional[int] = self.get_feature_extractor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : List[Any] = self.get_decoder() __lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowerCamelCase : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __lowerCamelCase : str = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __lowerCamelCase : Dict = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : str = self.get_feature_extractor() __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Any = self.get_decoder() __lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self._get_dummy_logits() __lowerCamelCase : int = 15 __lowerCamelCase : Dict = -2_0.0 __lowerCamelCase : Optional[Any] = -4.0 __lowerCamelCase : List[Any] = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = decoded_processor_out.text __lowerCamelCase : Optional[int] = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __lowerCamelCase : List[Any] = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] __lowerCamelCase : Tuple = [d[0][2] for d in decoded_decoder_out] __lowerCamelCase : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[Any] = self.get_feature_extractor() __lowerCamelCase : int = self.get_tokenizer() __lowerCamelCase : int = self.get_decoder() __lowerCamelCase : Dict = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = self._get_dummy_logits() __lowerCamelCase : Union[str, Any] = 2.0 __lowerCamelCase : str = 5.0 __lowerCamelCase : int = -2_0.0 __lowerCamelCase : Optional[Any] = True __lowerCamelCase : str = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = decoded_processor_out.text __lowerCamelCase : int = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __lowerCamelCase : Union[str, Any] = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Tuple = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Any = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowerCamelCase : str = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __lowerCamelCase : Optional[int] = os.listdir(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = snapshot_download('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = processor.decoder.model_container[processor.decoder._model_key] __lowerCamelCase : int = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __lowerCamelCase : str = os.listdir(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Dict = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Tuple = floats_list((3, 10_00) ) __lowerCamelCase : Optional[Any] = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Optional[int] = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowerCamelCase : int = self._get_dummy_logits() __lowerCamelCase : Tuple = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = self.get_feature_extractor() __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : List[Any] = self.get_decoder() __lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def lowercase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Optional[Any] = self._get_dummy_logits()[0] __lowerCamelCase : Dict = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Union[str, Any] = self._get_dummy_logits() __lowerCamelCase : Tuple = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self ) -> Union[str, Any]: import torch __lowerCamelCase : Optional[Any] = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00 ) ) __lowerCamelCase : List[str] = iter(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = next(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __lowerCamelCase : Tuple = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowerCamelCase : List[Any] = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __lowerCamelCase : Optional[int] = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowerCamelCase : Optional[int] = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __lowerCamelCase : Optional[Any] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __lowerCamelCase : str = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __lowerCamelCase : Tuple = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __lowerCamelCase : Any = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowerCamelCase : str = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
13
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __UpperCAmelCase ( __a : List[str] ,__a : Dict ) -> List[str]: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _a : Tuple = flax_key_tuple[:-1] + ('''weight''',) _a : Union[str, Any] = torch.permute(__a ,(0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__a ): # linear layer _a : Optional[Any] = flax_key_tuple[:-1] + ('''weight''',) _a : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _a : Tuple = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __UpperCAmelCase ( __a : int ,__a : List[str] ,__a : List[str] ) -> Optional[int]: """simple docstring""" if "metadata" in layer: _a : Optional[Any] = layer.split('''metadata''' ) _a : Optional[int] = ''''''.join(split_layer[0] )[:-1] _a : Dict = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: _a : List[Any] = layer.split('''kvstore''' ) _a : List[str] = ''''''.join(split_layer[0] )[:-1] _a : str = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: _a : Tuple = layer.split('''/''' ) _a : Any = '''/'''.join(split_layer[:-1] ) _a : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _a : Tuple = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _a : str = '''file''' else: _a : Optional[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ) -> Optional[Any]: """simple docstring""" _a : int = rename_keys(__a ) _a : Any = {} for k, v in current_block.items(): _a : Dict = v _a : int = new_current_block torch.save(__a ,__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : int ,__a : str ,__a : int ,__a : str = WEIGHTS_NAME ) -> Any: """simple docstring""" _a : Optional[Any] = convert_file_size_to_int(__a ) _a : List[str] = [] _a : List[Any] = {} _a : int = 0 _a : List[Any] = 0 os.makedirs(__a ,exist_ok=__a ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' ,'''rb''' ) as fp: _a : List[Any] = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] _a : Union[str, Any] = flatten_dict(__a ,sep='''/''' ) _a : Optional[int] = {} for layer in checkpoint_info.keys(): _a , _a , _a : int = get_key_and_tensorstore_dict( __a ,__a ,__a ) if curr_real_layer_name in all_layers: _a : Any = content else: _a : Dict = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _a : Optional[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _a : Optional[Any] = torch.tensor(__a ) _a : List[str] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _a , _a : str = rename_base_flax_keys(tuple(key.split('''/''' ) ) ,__a ) _a : int = '''/'''.join(__a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _a : Union[str, Any] = os.path.join( __a ,weights_name.replace('''.bin''' ,F"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a ,__a ) sharded_state_dicts.append(current_block.keys() ) del current_block _a : List[Any] = {} _a : Optional[int] = 0 _a : Dict = raw_weights.to(getattr(__a ,__a ) ) current_block_size += weight_size total_size += weight_size # Add the last block _a : Dict = os.path.join(__a ,weights_name.replace('''.bin''' ,F"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a ,__a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _a : int = {} _a : Any = {} for idx, shard in enumerate(__a ): _a : int = weights_name.replace( '''.bin''' ,F"""-{idx+1:05d}-of-{len(__a ):05d}.bin""" ) # len(sharded_state_dicts):05d} _a : Optional[Any] = os.path.join(__a ,weights_name.replace('''.bin''' ,F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__a ,os.path.join(__a ,__a ) ) _a : Optional[Any] = shard for key in shard: _a : str = shard_file # Add the metadata _a : str = {'''total_size''': total_size} _a : str = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__a ,__a ) ,'''w''' ,encoding='''utf-8''' ) as f: _a : Optional[int] = json.dumps(__a ,indent=2 ,sort_keys=__a ) + '''\n''' f.write(__a ) return metadata, index if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) a__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _a : Optional[Any] = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) _a : Tuple = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' ,device_map='''auto''' ) _a : Any = TaTokenizer.from_pretrained('''t5-small''' ) _a : Optional[int] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' _a : str = tokenizer(__a ,return_tensors='''pt''' ).input_ids _a : Any = model.generate(__a ,decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
14
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
from __future__ import annotations A : Optional[Any] = [] def UpperCamelCase ( __magic_name__ : list[list[int]] , __magic_name__ : int , __magic_name__ : int ) -> bool: """simple docstring""" for i in range(len(__magic_name__ ) ): if board[row][i] == 1: return False for i in range(len(__magic_name__ ) ): if board[i][column] == 1: return False for i, j in zip(range(__magic_name__ , -1 , -1 ) , range(__magic_name__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__magic_name__ , -1 , -1 ) , range(__magic_name__ , len(__magic_name__ ) ) ): if board[i][j] == 1: return False return True def UpperCamelCase ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> bool: """simple docstring""" if row >= len(__magic_name__ ): solution.append(__magic_name__ ) printboard(__magic_name__ ) print() return True for i in range(len(__magic_name__ ) ): if is_safe(__magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = 1 solve(__magic_name__ , row + 1 ) lowercase__ = 0 return False def UpperCamelCase ( __magic_name__ : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__magic_name__ ) ): for j in range(len(__magic_name__ ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) A : str = 8 A : Union[str, Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
15
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Tuple=99 , __lowerCamelCase : Any=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : Tuple=37 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : str=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict=True , __lowerCamelCase : int="None" , __lowerCamelCase : Any=3 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : List[str]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = relative_attention SCREAMING_SNAKE_CASE = position_biased_input SCREAMING_SNAKE_CASE = pos_att_type SCREAMING_SNAKE_CASE = scope def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : int ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _snake_case ( self : Any , __lowerCamelCase : List[str] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = DebertaVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = DebertaVaForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = DebertaVaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = DebertaVaForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = DebertaVaForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = DebertaVaForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = DebertaVaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = DebertaVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def _snake_case ( self : List[Any] ): pass @slow def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) , f"{output[:, 1:4, 1:4]}" )
16
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup UpperCAmelCase_ : List[Any] = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def __SCREAMING_SNAKE_CASE ( a__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __A : Dict = BeautifulSoup(requests.get(url + location ).content ,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" ,attrs={"""data-tn-component""": """organicJob"""} ): __A : Optional[int] = job.find("""a""" ,attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() __A : str = job.find("""span""" ,{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
17
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[Any] = "xlm-prophetnet" __lowerCamelCase : Dict = ["past_key_values"] __lowerCamelCase : Tuple = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self , _lowerCAmelCase = 0.1 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 30522 , _lowerCAmelCase = 1024 , _lowerCAmelCase = 4096 , _lowerCAmelCase = 12 , _lowerCAmelCase = 16 , _lowerCAmelCase = 4096 , _lowerCAmelCase = 12 , _lowerCAmelCase = 16 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 512 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 32 , _lowerCAmelCase = 128 , _lowerCAmelCase = False , _lowerCAmelCase = 0.0 , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 1 , _lowerCAmelCase = 2 , **_lowerCAmelCase , ) -> str: _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = num_encoder_layers _lowerCAmelCase = num_encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = num_decoder_layers _lowerCAmelCase = num_decoder_attention_heads _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = init_std # Normal(0, this parameter) _lowerCAmelCase = activation_function # parameters for xlmprophetnet _lowerCAmelCase = ngram _lowerCAmelCase = num_buckets _lowerCAmelCase = relative_max_distance _lowerCAmelCase = disable_ngram_loss _lowerCAmelCase = eps # 3 Types of Dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = dropout _lowerCAmelCase = use_cache super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) @property def _snake_case ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _snake_case ( self , _lowerCAmelCase ) -> int: raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
18
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" if not isinstance(__snake_case, __snake_case ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__snake_case, __snake_case ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) _UpperCamelCase = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__snake_case ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
19
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
def _lowercase( __a : int = 100_0000 ): a__ =[i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __a ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
20
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") UpperCAmelCase_ : str = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ : List[str] = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ : List[Any] = "bert" else: raise ValueError("args.model_type should be \"bert\".") UpperCAmelCase_ : Optional[Any] = model.state_dict() UpperCAmelCase_ : List[str] = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ : str = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: UpperCAmelCase_ : Tuple = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] UpperCAmelCase_ : Any = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase_ : List[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] UpperCAmelCase_ : List[str] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] UpperCAmelCase_ : int = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] UpperCAmelCase_ : Optional[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] UpperCAmelCase_ : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] UpperCAmelCase_ : List[str] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] UpperCAmelCase_ : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] UpperCAmelCase_ : Dict = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 UpperCAmelCase_ : Any = state_dict["cls.predictions.decoder.weight"] UpperCAmelCase_ : Tuple = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ : int = state_dict[F"""cls.predictions.transform.dense.{w}"""] UpperCAmelCase_ : Optional[Any] = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
21
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : Dict = logging.get_logger(__name__) class A ( _a ): lowercase_ = ['pixel_values'] def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ ) _a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' ) _a = do_resize _a = do_rescale _a = do_normalize _a = do_center_crop _a = crop_size _a = size _a = resample _a = rescale_factor _a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "shortest_edge" in size: _a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _a = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray: """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = do_rescale if do_rescale is not None else self.do_rescale _a = do_normalize if do_normalize is not None else self.do_normalize _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ ) _a = resample if resample is not None else self.resample _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = size if size is not None else self.size _a = get_size_dict(lowerCAmelCase_ ) if not is_batched(lowerCAmelCase_ ): _a = [images] if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _a = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
22
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) UpperCAmelCase_ : Any = logging.getLogger(__name__) def _UpperCamelCase ()-> Union[str, Any]: '''simple docstring''' __snake_case = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=_lowerCamelCase , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=_lowerCamelCase , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=_lowerCamelCase , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=_lowerCamelCase , default='''data/dump''' , help='''The dump file prefix.''' ) __snake_case = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __snake_case = BertTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __snake_case = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __snake_case = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __snake_case = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __snake_case = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __snake_case = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __snake_case = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'''{len(_lowerCamelCase )} examples to process.''' ) __snake_case = [] __snake_case = 0 __snake_case = 1_00_00 __snake_case = time.time() for text in data: __snake_case = f'''{bos} {text.strip()} {sep}''' __snake_case = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) rslt.append(_lowerCamelCase ) iter += 1 if iter % interval == 0: __snake_case = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __snake_case = time.time() logger.info('''Finished binarization''' ) logger.info(f'''{len(_lowerCamelCase )} examples processed.''' ) __snake_case = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' __snake_case = tokenizer.vocab_size if vocab_size < (1 << 16): __snake_case = [np.uintaa(_lowerCamelCase ) for d in rslt] else: __snake_case = [np.intaa(_lowerCamelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(_lowerCamelCase , '''wb''' ) as handle: pickle.dump(rslt_ , _lowerCamelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
24
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : List[str] , *a : Optional[int] , **a : Dict ) -> None: """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , a , ) super().__init__(*a , **a )
25
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
'''simple docstring''' from statistics import mean, stdev def _a ( _lowerCamelCase , _lowerCamelCase = 3 ) -> list: """simple docstring""" __snake_case : Dict = min(_lowerCamelCase ) __snake_case : int = max(_lowerCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowerCamelCase ) for x in data] def _a ( _lowerCamelCase , _lowerCamelCase = 3 ) -> list: """simple docstring""" __snake_case : List[str] = mean(_lowerCamelCase ) __snake_case : Any = stdev(_lowerCamelCase ) # standardize data return [round((x - mu) / (sigma) , _lowerCamelCase ) for x in data]
26
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase__ ( self ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _A = 'xvjiarui/stable-diffusion-2-inpainting' _A, _A = FlaxStableDiffusionInpaintPipeline.from_pretrained(snake_case_ , safety_checker=snake_case_ ) _A = 'Face of a yellow cat, high resolution, sitting on a park bench' _A = jax.random.PRNGKey(0 ) _A = 50 _A = jax.device_count() _A = num_samples * [prompt] _A = num_samples * [init_image] _A = num_samples * [mask_image] _A, _A, _A = pipeline.prepare_inputs(snake_case_ , snake_case_ , snake_case_ ) # shard inputs and rng _A = replicate(snake_case_ ) _A = jax.random.split(snake_case_ , jax.device_count() ) _A = shard(snake_case_ ) _A = shard(snake_case_ ) _A = shard(snake_case_ ) _A = pipeline( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , jit=snake_case_ ) _A = output.images.reshape(snake_case_ , 512 , 512 , 3 ) _A = images[0, 253:256, 253:256, -1] _A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _A = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
27
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : '''simple docstring''' @staticmethod def UpperCamelCase_ ( *A, **A ): '''simple docstring''' pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification', ) SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE : Optional[int] = image_classifier(A, candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A ), [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ], ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_classifier([image] * 5, candidate_labels=['A', 'B', 'C'], batch_size=2 ) self.assertEqual( nested_simplify(A ), [ [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], ], ) @require_tf def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification', framework='tf' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE : Optional[int] = image_classifier(A, candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(A ), [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], ) SCREAMING_SNAKE_CASE : Any = image_classifier([image] * 5, candidate_labels=['A', 'B', 'C'], batch_size=2 ) self.assertEqual( nested_simplify(A ), [ [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], [ {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, {'score': 0.3_33, 'label': ANY(A )}, ], ], ) @slow @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = pipeline( task='zero-shot-image-classification', model='openai/clip-vit-base-patch32', ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE : List[str] = image_classifier(A, candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(A ), [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ) SCREAMING_SNAKE_CASE : List[Any] = image_classifier([image] * 5, candidate_labels=['cat', 'plane', 'remote'], batch_size=2 ) self.assertEqual( nested_simplify(A ), [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5, ) @slow @require_tf def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = pipeline( task='zero-shot-image-classification', model='openai/clip-vit-base-patch32', framework='tf' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE : List[Any] = image_classifier(A, candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(A ), [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ) SCREAMING_SNAKE_CASE : Tuple = image_classifier([image] * 5, candidate_labels=['cat', 'plane', 'remote'], batch_size=2 ) self.assertEqual( nested_simplify(A ), [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5, )
28
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
from heapq import heappop, heappush import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : Dict = grid.shape UpperCAmelCase_ : str = [-1, 1, 0, 0] UpperCAmelCase_ : Dict = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_, UpperCAmelCase_ : Any = [(0, source)], set() UpperCAmelCase_ : int = np.full((rows, cols) , np.inf ) UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : List[str] = np.empty((rows, cols) , dtype=_lowercase ) UpperCAmelCase_ : Tuple = None while queue: ((UpperCAmelCase_), (UpperCAmelCase_)) : Dict = heappop(_lowercase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ : Optional[Any] = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = predecessors[x, y] path.append(_lowercase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_lowercase ) ): UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ : Tuple = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_lowercase , (dist + 1, (nx, ny)) ) UpperCAmelCase_ : str = dist + 1 UpperCAmelCase_ : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
30
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase__ : Any = 100 lowerCamelCase__ : Optional[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase_ ( __UpperCAmelCase : int = 50_00 ) -> int | None: for number_to_partition in range(1 , __UpperCAmelCase ): if len(partition(__UpperCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
31
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase=[32, 64, 128] , _UpperCamelCase=[1, 2, 1] , _UpperCamelCase=[2, 2, 4] , _UpperCamelCase=2 , _UpperCamelCase=2.0 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase="gelu" , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=10 , _UpperCamelCase=8 , _UpperCamelCase=["stage1", "stage2"] , _UpperCamelCase=[1, 2] , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = FocalNetBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetForMaskedImageModeling(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FocalNetForMaskedImageModeling(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FocalNetForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FocalNetForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __A : Union[str, Any] = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) __A : int = False __A : int = False __A : Dict = False __A : str = False __A : Tuple = False def UpperCamelCase( self ): _UpperCAmelCase = FocalNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 , has_text_modality=_UpperCamelCase ) def UpperCamelCase( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ): return def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # FocalNet has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reshaped_hidden_states[0].shape _UpperCAmelCase = ( reshaped_hidden_states[0].view(_UpperCamelCase , _UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) @slow def UpperCamelCase( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = FocalNetModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def UpperCamelCase( self ): _UpperCAmelCase = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(_UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.2166, -0.4368, 0.2191] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Optional[int] = (FocalNetBackbone,) if is_torch_available() else () __A : str = FocalNetConfig __A : Any = False def UpperCamelCase( self ): _UpperCAmelCase = FocalNetModelTester(self )
32
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : str = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'trajectory_transformer' __lowercase : List[Any] = ['past_key_values'] __lowercase : Dict = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self:List[Any] , _a:Any=1_00 , _a:List[str]=5 , _a:Optional[Any]=1 , _a:List[Any]=1 , _a:Optional[int]=2_49 , _a:Dict=6 , _a:int=17 , _a:Union[str, Any]=25 , _a:Optional[Any]=4 , _a:Union[str, Any]=4 , _a:int=1_28 , _a:Optional[Any]=0.1 , _a:Tuple=0.1 , _a:List[Any]=0.1 , _a:List[str]=0.0006 , _a:List[str]=5_12 , _a:Tuple=0.02 , _a:Optional[Any]=1e-12 , _a:Tuple=1 , _a:Dict=True , _a:str=1 , _a:Union[str, Any]=5_02_56 , _a:List[str]=5_02_56 , **_a:List[str] , ): snake_case__ = vocab_size snake_case__ = action_weight snake_case__ = reward_weight snake_case__ = value_weight snake_case__ = max_position_embeddings snake_case__ = block_size snake_case__ = action_dim snake_case__ = observation_dim snake_case__ = transition_dim snake_case__ = learning_rate snake_case__ = n_layer snake_case__ = n_head snake_case__ = n_embd snake_case__ = embd_pdrop snake_case__ = attn_pdrop snake_case__ = resid_pdrop snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = kaiming_initializer_range snake_case__ = use_cache super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
33
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = '▁' SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } SCREAMING_SNAKE_CASE_ = { 'google/pegasus-xsum': 512, } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PegasusTokenizer A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<pad>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<mask_2>" , lowerCamelCase_="<mask_1>" , lowerCamelCase_=None , lowerCamelCase_=1_0_3 , **lowerCamelCase_ , ) -> Optional[int]: UpperCamelCase = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_): raise TypeError( F'additional_special_tokens should be of type {type(lowerCamelCase_)}, but is' F' {type(lowerCamelCase_)}') UpperCamelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(lowerCamelCase_) , self.offset - 1) ] if len(set(lowerCamelCase_)) != len(lowerCamelCase_): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.') UpperCamelCase = additional_special_tokens_extended else: UpperCamelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset)] super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , pad_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , mask_token_sent=lowerCamelCase_ , offset=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[Any]: UpperCamelCase = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' F' {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}') return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowerCamelCase_) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase_) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_): copyfile(self.vocab_file , lowerCamelCase_) return (out_vocab_file,)
34
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = (CMStochasticIterativeScheduler,) lowerCamelCase : str = 10 def lowercase__ ( self : Optional[Any] , **_lowercase : int ): SCREAMING_SNAKE_CASE__ : str = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_lowercase ) return config def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = 10 SCREAMING_SNAKE_CASE__ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Any = self.scheduler_classes[0](**_lowercase ) scheduler.set_timesteps(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = scheduler.timesteps[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps[1] SCREAMING_SNAKE_CASE__ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE__ : str = 0.1 * sample SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : str ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowercase__ ( self : Tuple ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_lowercase ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = 1 scheduler.set_timesteps(_lowercase ) SCREAMING_SNAKE_CASE__ : int = scheduler.timesteps SCREAMING_SNAKE_CASE__ : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_lowercase ): # 1. scale model input SCREAMING_SNAKE_CASE__ : Any = scheduler.scale_model_input(_lowercase , _lowercase ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ : Dict = model(_lowercase , _lowercase ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ : Any = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : List[Any] = pred_prev_sample SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : List[Any] = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [1_06, 0] scheduler.set_timesteps(timesteps=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.timesteps SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = self.dummy_model() SCREAMING_SNAKE_CASE__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE__ : int = scheduler.scale_model_input(_lowercase , _lowercase ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ : int = model(_lowercase , _lowercase ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ : Tuple = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample SCREAMING_SNAKE_CASE__ : int = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Dict = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : str = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = [39, 30, 12, 15, 0] with self.assertRaises(_lowercase , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowercase ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Any = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE__ : Optional[int] = len(_lowercase ) with self.assertRaises(_lowercase , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowercase )
35
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __lowercase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ ,text_encoder=SCREAMING_SNAKE_CASE_ ,tokenizer=SCREAMING_SNAKE_CASE_ ,unet=SCREAMING_SNAKE_CASE_ ,scheduler=SCREAMING_SNAKE_CASE_ ,safety_checker=SCREAMING_SNAKE_CASE_ ,feature_extractor=SCREAMING_SNAKE_CASE_ ,) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 512 ,SCREAMING_SNAKE_CASE_ = 512 ,SCREAMING_SNAKE_CASE_ = 50 ,SCREAMING_SNAKE_CASE_ = 7.5 ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 1 ,SCREAMING_SNAKE_CASE_ = 0.0 ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = "pil" ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 1 ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : List[Any] = 1 elif isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Any = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(SCREAMING_SNAKE_CASE_ )}.""" ) # get prompt text embeddings snake_case : Any = self.tokenizer( SCREAMING_SNAKE_CASE_ ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) snake_case : int = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: snake_case : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case , snake_case , snake_case : Optional[int] = text_embeddings.shape snake_case : Any = text_embeddings.repeat(1 ,SCREAMING_SNAKE_CASE_ ,1 ) snake_case : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt ,SCREAMING_SNAKE_CASE_ ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case : List[str] if negative_prompt is None: snake_case : int = [""""""] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=""" F""" {type(SCREAMING_SNAKE_CASE_ )}.""" ) elif isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Dict = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: snake_case : Optional[Any] = negative_prompt snake_case : List[str] = text_input_ids.shape[-1] snake_case : List[str] = self.tokenizer( SCREAMING_SNAKE_CASE_ ,padding="""max_length""" ,max_length=SCREAMING_SNAKE_CASE_ ,truncation=SCREAMING_SNAKE_CASE_ ,return_tensors="""pt""" ,) snake_case : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case : Optional[Any] = uncond_embeddings.shape[1] snake_case : Union[str, Any] = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,1 ) snake_case : Any = uncond_embeddings.view(batch_size * num_images_per_prompt ,SCREAMING_SNAKE_CASE_ ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) snake_case : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case : Optional[int] = torch.randn( SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,device="""cpu""" ,dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) snake_case : Any = torch.randn(SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,device="""cpu""" ,dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: snake_case : List[Any] = torch.randn( SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,device=self.device ,dtype=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = torch.randn(SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,device=self.device ,dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) snake_case : str = latents_reference.to(self.device ) snake_case : Optional[int] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images snake_case : Optional[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 snake_case : List[Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 snake_case : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx snake_case : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy snake_case : List[str] = 0 if dx < 0 else dx snake_case : Any = 0 if dy < 0 else dy snake_case : Dict = max(-dx ,0 ) snake_case : Optional[Any] = max(-dy ,0 ) # import pdb # pdb.set_trace() snake_case : Optional[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case : List[str] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case : Optional[Any] = {} if accepts_eta: snake_case : int = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance snake_case : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : List[str] = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # predict the noise residual snake_case : str = self.unet(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: snake_case , snake_case : str = noise_pred.chunk(2 ) snake_case : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case : int = self.scheduler.step(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = 1 / 0.1_82_15 * latents snake_case : Any = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample snake_case : str = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: snake_case : Tuple = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) ,return_tensors="""pt""" ).to( self.device ) snake_case , snake_case : Optional[Any] = self.safety_checker( images=SCREAMING_SNAKE_CASE_ ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: snake_case : List[str] = None if output_type == "pil": snake_case : Tuple = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ ,nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
36
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") UpperCamelCase : str = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" _lowercase = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) _lowercase = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) _lowercase = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _lowercase = field( default=A__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) _lowercase = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowercase = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowercase = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'A csv or a json file containing the training data.'} ) _lowercase = field( default=A__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) _lowercase = field(default=A__ , metadata={'help': 'A csv or a json file containing the test data.'} ) def _UpperCamelCase( self : int ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: a__ : Dict = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." a__ : int = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class A__ : """simple docstring""" _lowercase = field( default=A__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _lowercase = field( default=A__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) _lowercase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowercase = field( default=A__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__, a__, a__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__, a__, a__ : Optional[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) a__ : Tuple = training_args.get_process_log_level() logger.setLevel(__a ) datasets.utils.logging.set_verbosity(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. a__ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a__ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. a__ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. a__ : str = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: a__ : Any = data_args.train_file.split("." )[-1] a__ : Dict = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." a__ : Tuple = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(f'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files a__ : List[str] = load_dataset("csv" , data_files=__a , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files a__ : Tuple = load_dataset("json" , data_files=__a , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels a__ : Dict = raw_datasets["train"].features["label"].names a__ : Optional[Any] = len(__a ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer a__ : Union[str, Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__a , ) a__ : Any = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: a__ : Optional[Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch a__ : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. a__ : Dict = {"Refused": 0, "Entailed": 1} a__ : List[Any] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) a__ : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__a ): # Tokenize the texts def _convert_table_text_to_pandas(__a ): a__ : List[str] = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] a__ : List[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd a__ : str = examples["statement"] a__ : Tuple = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) a__ : str = tokenizer(__a , __a , padding=__a , max_length=__a , truncation=__a ) a__ : Tuple = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): a__ : str = raw_datasets.map( __a , batched=__a , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) a__ : Optional[Any] = raw_datasets["train"] if data_args.max_train_samples is not None: a__ : Optional[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) a__ : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: a__ : int = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) a__ : Dict = raw_datasets["test"] if data_args.max_predict_samples is not None: a__ : Union[str, Any] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__a ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__a ): a__ : Dict = p.predictions[0] if isinstance(p.predictions , __a ) else p.predictions a__ : Optional[Any] = np.argmax(__a , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: a__ : Optional[int] = default_data_collator elif training_args.fpaa: a__ : int = DataCollatorWithPadding(__a , pad_to_multiple_of=8 ) else: a__ : Any = None # Initialize our Trainer a__ : Optional[Any] = Trainer( model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__a , tokenizer=__a , data_collator=__a , ) # Training if training_args.do_train: a__ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: a__ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: a__ : Tuple = last_checkpoint a__ : Union[str, Any] = trainer.train(resume_from_checkpoint=__a ) a__ : int = train_result.metrics a__ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__a ) ) a__ : Optional[int] = min(__a , len(__a ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , __a ) trainer.save_metrics("train" , __a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Any = trainer.evaluate(eval_dataset=__a ) a__ : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a ) a__ : Optional[int] = min(__a , len(__a ) ) trainer.log_metrics("eval" , __a ) trainer.save_metrics("eval" , __a ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. a__ : Optional[Any] = predict_dataset.remove_columns("label" ) a__ : List[str] = trainer.predict(__a , metric_key_prefix="predict" ).predictions a__ : Dict = np.argmax(__a , axis=1 ) a__ : Union[str, Any] = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(__a , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(__a ): a__ : Union[str, Any] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) a__ : Any = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**__a ) else: trainer.create_model_card(**__a ) def UpperCamelCase_ ( __a ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
37
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : str = parent snake_case__ : Dict = 1_3 snake_case__ : Any = 7 snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = True snake_case__ : Optional[int] = True snake_case__ : str = True snake_case__ : Optional[Any] = 9_9 snake_case__ : Dict = 3_8_4 snake_case__ : Optional[Any] = 2 snake_case__ : List[str] = 4 snake_case__ : Union[str, Any] = 3_7 snake_case__ : Optional[Any] = """gelu""" snake_case__ : Optional[Any] = 0.1 snake_case__ : Optional[Any] = 0.1 snake_case__ : List[Any] = 5_1_2 snake_case__ : Tuple = 1_6 snake_case__ : Tuple = 2 snake_case__ : List[str] = 0.02 snake_case__ : Tuple = 3 snake_case__ : List[str] = 4 snake_case__ : Optional[Any] = 1_2_8 snake_case__ : str = 2 snake_case__ : Union[str, Any] = 9 snake_case__ : Optional[int] = 1 snake_case__ : List[Any] = None def __UpperCamelCase ( self ): snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : int = None if self.use_input_mask: snake_case__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[Any] = None if self.use_token_type_ids: snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : List[str] = None snake_case__ : Dict = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = TFConvBertModel(config=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : int = [input_ids, input_mask] snake_case__ : Any = model(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = TFConvBertForMaskedLM(config=__SCREAMING_SNAKE_CASE ) snake_case__ : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = self.num_labels snake_case__ : int = TFConvBertForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = self.num_choices snake_case__ : List[Any] = TFConvBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) snake_case__ : List[Any] = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) snake_case__ : List[Any] = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case__ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = self.num_labels snake_case__ : List[Any] = TFConvBertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : str = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = TFConvBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Any = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Union[str, Any] = config_and_inputs snake_case__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Dict = TFConvBertModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = True snake_case__ : List[Any] = True if hasattr(__SCREAMING_SNAKE_CASE , """use_cache""" ): snake_case__ : Optional[Any] = True snake_case__ : str = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : Dict = getattr(self.model_tester , """key_length""" , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Tuple = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = len(model(__SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE , saved_model=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = os.path.join(__SCREAMING_SNAKE_CASE , """saved_model""" , """1""" ) snake_case__ : List[str] = tf.keras.models.load_model(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: snake_case__ : Optional[int] = outputs["""encoder_hidden_states"""] snake_case__ : str = outputs["""encoder_attentions"""] else: snake_case__ : List[str] = outputs["""hidden_states"""] snake_case__ : Tuple = outputs["""attentions"""] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCamelCase ( self ): snake_case__ : Tuple = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[Any] = True snake_case__ : Dict = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : Optional[Any] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : List[str] = getattr(self.model_tester , """key_length""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = getattr(self.model_tester , """key_length""" , __SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(__SCREAMING_SNAKE_CASE ): snake_case__ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) snake_case__ : int = outputs.decoder_attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case__ : Optional[Any] = True snake_case__ : Dict = False snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(__SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ : str = True snake_case__ : List[str] = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine snake_case__ : List[Any] = True snake_case__ : Any = True snake_case__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , __SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self ): snake_case__ : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) snake_case__ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : int = model(__SCREAMING_SNAKE_CASE )[0] snake_case__ : Any = [1, 6, 7_6_8] self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 )
38
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase_ = '''__DUMMY_TRANSFORMERS_USER__''' lowerCAmelCase_ = '''Dummy User''' lowerCAmelCase_ = '''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''' lowerCAmelCase_ = '''https://hub-ci.huggingface.co''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowerCAmelCase_ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , SCREAMING_SNAKE_CASE__ ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (): return HfApi(endpoint=SCREAMING_SNAKE_CASE__ ) @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def _cleanup_repo(SCREAMING_SNAKE_CASE__ ): hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE__ ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE__ ) return _temporary_repo @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''repo_txt_data-{int(time.time() * 10E3 )}''' snake_case_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data/text_data.txt''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' snake_case_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data.zip''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' snake_case_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data.zip''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return hf_private_dataset_repo_zipped_img_data_
39
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str: UpperCamelCase : List[str] = [0] * len(snake_case__ ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase : Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
40
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase__ = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : str ,lowercase__ : int ,lowercase__ : Optional[Any]="<unk>" ,lowercase__ : str="<s>" ,lowercase__ : List[Any]="</s>" ,lowercase__ : Dict="<pad>" ,lowercase__ : int="[SEP]" ,lowercase__ : str="[MASK]" ,lowercase__ : Tuple="[CLS]" ,lowercase__ : Optional[Dict[str, Any]] = None ,**lowercase__ : str ,): __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else bos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else eos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else unk_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else pad_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else cls_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase__ ,eos_token=lowercase__ ,unk_token=lowercase__ ,pad_token=lowercase__ ,sep_token=lowercase__ ,mask_token=lowercase__ ,cls_token=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase__ ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : str ,lowercase__ : Optional[int] ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ): return self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Dict ): return self.sp_model.piece_to_id(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ): __lowercase = self.sp_model.IdToPiece(lowercase__ ) return token def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Tuple ): __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(lowercase__ ) __lowercase = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[int] ,lowercase__ : bool = False ,lowercase__ : bool = None ,lowercase__ : bool = True ,**lowercase__ : Optional[Any] ,): __lowercase = kwargs.pop('''use_source_tokenizer''' ,lowercase__ ) __lowercase = self.convert_ids_to_tokens(lowercase__ ,skip_special_tokens=lowercase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase = [] __lowercase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase__ ) ) __lowercase = [] sub_texts.append(lowercase__ ) else: current_sub_text.append(lowercase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __lowercase = re.sub(r''' (\[(MASK|SEP)\])''' ,r'''\1''' ,''' '''.join(lowercase__ ) ) else: __lowercase = ''''''.join(lowercase__ ) __lowercase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase = self.clean_up_tokenization(lowercase__ ) return clean_text else: return text def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
41
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str: lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(__UpperCamelCase ,quotient + remainder ) + random(__UpperCamelCase ,__UpperCamelCase ) + random(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: pass # Put your code here... def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCamelCase_ = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' ,password_generator(__UpperCamelCase ) ) print( 'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
42
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
43
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Tuple = emb.weight.shape _lowerCamelCase : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) _lowerCamelCase : int = emb.weight.data return lin_layer def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = torch.load(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : List[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] _lowerCamelCase : Optional[Any] = mam_aaa["model"] remove_ignore_keys_(_lowerCAmelCase ) _lowerCamelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0] _lowerCamelCase : str = MaMaaaConfig( vocab_size=_lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _lowerCamelCase : Optional[int] = state_dict["decoder.embed_tokens.weight"] _lowerCamelCase : List[Any] = MaMaaaForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Optional[Any] = parser.parse_args() UpperCAmelCase_ : List[str] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
44
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Collection[float] | None = None ): if components is None: UpperCamelCase__ :Tuple = [] UpperCamelCase__ :Optional[Any] = list(lowerCamelCase__ ) def __len__( self :List[Any] ): return len(self.__components ) def __str__( self :List[Any] ): return "(" + ",".join(map(lowerCamelCase__ , self.__components ) ) + ")" def __add__( self :List[Any] , lowerCamelCase__ :Vector ): UpperCamelCase__ :Optional[int] = len(self ) if size == len(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = [self.__components[i] + other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self :Any , lowerCamelCase__ :Vector ): UpperCamelCase__ :List[Any] = len(self ) if size == len(lowerCamelCase__ ): UpperCamelCase__ :Dict = [self.__components[i] - other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self :str , lowerCamelCase__ :float ): ... @overload def __mul__( self :Union[str, Any] , lowerCamelCase__ :Vector ): ... def __mul__( self :List[Any] , lowerCamelCase__ :float | Vector ): if isinstance(lowerCamelCase__ , (float, int) ): UpperCamelCase__ :int = [c * other for c in self.__components] return Vector(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(self ) == len(lowerCamelCase__ ): UpperCamelCase__ :Tuple = len(self ) UpperCamelCase__ :List[str] = [self.__components[i] * other.component(lowerCamelCase__ ) for i in range(lowerCamelCase__ )] return sum(lowerCamelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __a ( self :Dict ): return Vector(self.__components ) def __a ( self :Optional[Any] , lowerCamelCase__ :int ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __a ( self :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :float ): assert -len(self.__components ) <= pos < len(self.__components ) UpperCamelCase__ :List[Any] = value def __a ( self :Optional[Any] ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) UpperCamelCase__ :List[Any] = [c**2 for c in self.__components] return math.sqrt(sum(lowerCamelCase__ ) ) def __a ( self :Any , lowerCamelCase__ :Vector , lowerCamelCase__ :bool = False ): UpperCamelCase__ :Tuple = self * other UpperCamelCase__ :Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def A ( lowercase__ : int ) -> Vector: assert isinstance(lowercase__ , lowercase__ ) return Vector([0] * dimension ) def A ( lowercase__ : int , lowercase__ : int ) -> Vector: assert isinstance(lowercase__ , lowercase__ ) and (isinstance(lowercase__ , lowercase__ )) UpperCamelCase__ :List[Any] = [0] * dimension UpperCamelCase__ :int = 1 return Vector(lowercase__ ) def A ( lowercase__ : float , lowercase__ : Vector , lowercase__ : Vector ) -> Vector: assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and (isinstance(lowercase__ , (int, float) )) ) return x * scalar + y def A ( lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> Vector: random.seed(lowercase__ ) UpperCamelCase__ :Tuple = [random.randint(lowercase__ , lowercase__ ) for _ in range(lowercase__ )] return Vector(lowercase__ ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[str] , lowerCamelCase__ :list[list[float]] , lowerCamelCase__ :int , lowerCamelCase__ :int ): UpperCamelCase__ :List[Any] = matrix UpperCamelCase__ :Dict = w UpperCamelCase__ :int = h def __str__( self :Tuple ): UpperCamelCase__ :Tuple = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self :List[str] , lowerCamelCase__ :Matrix ): if self.__width == other.width() and self.__height == other.height(): UpperCamelCase__ :Any = [] for i in range(self.__height ): UpperCamelCase__ :Dict = [ self.__matrix[i][j] + other.component(lowerCamelCase__ , lowerCamelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCamelCase__ ) return Matrix(lowerCamelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self :List[Any] , lowerCamelCase__ :Matrix ): if self.__width == other.width() and self.__height == other.height(): UpperCamelCase__ :List[Any] = [] for i in range(self.__height ): UpperCamelCase__ :Optional[int] = [ self.__matrix[i][j] - other.component(lowerCamelCase__ , lowerCamelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCamelCase__ ) return Matrix(lowerCamelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self :Dict , lowerCamelCase__ :float ): ... @overload def __mul__( self :Optional[int] , lowerCamelCase__ :Vector ): ... def __mul__( self :Optional[Any] , lowerCamelCase__ :float | Vector ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # matrix-vector if len(lowerCamelCase__ ) == self.__width: UpperCamelCase__ :List[Any] = zero_vector(self.__height ) for i in range(self.__height ): UpperCamelCase__ :Union[str, Any] = [ self.__matrix[i][j] * other.component(lowerCamelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCamelCase__ , sum(lowerCamelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCamelCase__ , (int, float) ): # matrix-scalar UpperCamelCase__ :str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCamelCase__ , self.__width , self.__height ) return None def __a ( self :Dict ): return self.__height def __a ( self :int ): return self.__width def __a ( self :List[str] , lowerCamelCase__ :int , lowerCamelCase__ :int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __a ( self :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :float ): if 0 <= x < self.__height and 0 <= y < self.__width: UpperCamelCase__ :List[str] = value else: raise Exception("""change_component: indices out of bounds""" ) def __a ( self :int , lowerCamelCase__ :int , lowerCamelCase__ :int ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) UpperCamelCase__ :Any = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCamelCase__ ) ): UpperCamelCase__ :Any = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __a ( self :str , lowerCamelCase__ :int , lowerCamelCase__ :int ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCamelCase__ , lowerCamelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __a ( self :int ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCamelCase__ :str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCamelCase__ ) for y in range(self.__width ) ] return sum(lowerCamelCase__ ) def A ( lowercase__ : int ) -> Matrix: UpperCamelCase__ :list[list[float]] = [[0] * n for _ in range(lowercase__ )] return Matrix(lowercase__ , lowercase__ , lowercase__ ) def A ( lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> Matrix: random.seed(lowercase__ ) UpperCamelCase__ :list[list[float]] = [ [random.randint(lowercase__ , lowercase__ ) for _ in range(lowercase__ )] for _ in range(lowercase__ ) ] return Matrix(lowercase__ , lowercase__ , lowercase__ )
45
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _lowerCAmelCase : Optional[int] = '''<<<<<<< This should probably be modified because it mentions: ''' _lowerCAmelCase : str = '''======= >>>>>>> ''' _lowerCAmelCase : Dict = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _lowerCAmelCase : Dict = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A_ ( _a ): @staticmethod def _lowercase ( __lowerCAmelCase: ArgumentParser ): '''simple docstring''' _lowerCamelCase : List[str] = parser.add_parser( "convert" ,help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." ,) train_parser.add_argument( "--tfds_path" ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." ,) train_parser.add_argument( "--datasets_directory" ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self: str ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : str = get_logger("datasets-cli/converting" ) _lowerCamelCase : Any = tfds_path _lowerCamelCase : Dict = datasets_directory def _lowercase ( self: Tuple ): '''simple docstring''' if os.path.isdir(self._tfds_path ): _lowerCamelCase : Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _lowerCamelCase : Tuple = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) _lowerCamelCase : int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) _lowerCamelCase : Tuple = [] _lowerCamelCase : List[Any] = [] _lowerCamelCase : str = {} if os.path.isdir(self._tfds_path ): _lowerCamelCase : Tuple = os.listdir(__lowerCAmelCase ) else: _lowerCamelCase : str = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) _lowerCamelCase : Tuple = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) if not os.path.isfile(__lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowerCAmelCase ,encoding="utf-8" ) as f: _lowerCamelCase : Optional[Any] = f.readlines() _lowerCamelCase : int = [] _lowerCamelCase : List[Any] = False _lowerCamelCase : List[str] = False _lowerCamelCase : List[str] = [] for line in lines: _lowerCamelCase : Union[str, Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _lowerCamelCase : Optional[Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here _lowerCamelCase : Optional[int] = "" continue elif "from absl import logging" in out_line: _lowerCamelCase : Dict = "from datasets import logging\n" elif "getLogger" in out_line: _lowerCamelCase : Union[str, Any] = out_line.replace("getLogger" ,"get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Any = list(filter(lambda __lowerCAmelCase : e in out_line ,__lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCAmelCase ) + "\n" ) out_lines.append(__lowerCAmelCase ) out_lines.append(__lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: _lowerCamelCase : Dict = re.sub(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _lowerCamelCase : Any = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" ,__lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) _lowerCamelCase : str = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _lowerCamelCase : Optional[int] = True out_lines.append(__lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _lowerCamelCase : Union[str, Any] = f_name.replace(".py" ,"" ) _lowerCamelCase : Optional[Any] = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCAmelCase ) if needs_manual_update: with_manual_update.append(__lowerCAmelCase ) with open(__lowerCAmelCase ,"w" ,encoding="utf-8" ) as f: f.writelines(__lowerCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: _lowerCamelCase : Dict = os.path.basename(__lowerCAmelCase ) _lowerCamelCase : Any = imports_to_builder_map[f_name.replace(".py" ,"" )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__lowerCAmelCase ,__lowerCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
46
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) def A ( UpperCamelCase_ : Union[tf.Tensor, np.ndarray] ) -> List[int]: '''simple docstring''' if isinstance(UpperCamelCase_ , np.ndarray ): return list(tensor.shape ) lowerCAmelCase__ = tf.shape(UpperCamelCase_ ) if tensor.shape == tf.TensorShape(UpperCamelCase_ ): return dynamic lowerCAmelCase__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCamelCase_ )] def A ( UpperCamelCase_ : tf.Tensor , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[str] = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCamelCase_ , name=UpperCamelCase_ ) def A ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=1E-5 , UpperCamelCase_ : Dict=-1 ) -> int: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized lowerCAmelCase__ ,lowerCAmelCase__ = tf.nn.moments(UpperCamelCase_ , axes=[axis] , keepdims=UpperCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCAmelCase__ = [1] * inputs.shape.rank lowerCAmelCase__ = shape_list(UpperCamelCase_ )[axis] lowerCAmelCase__ = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) # Compute layer normalization using the batch_normalization # function. lowerCAmelCase__ = tf.nn.batch_normalization( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , offset=UpperCamelCase_ , scale=UpperCamelCase_ , variance_epsilon=UpperCamelCase_ , ) return outputs def A ( UpperCamelCase_ : int , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : str=-1 ) -> Union[str, Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCAmelCase__ = tf.shape(UpperCamelCase_ ) lowerCAmelCase__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowerCAmelCase__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) def A ( UpperCamelCase_ : tf.Tensor ) -> tf.Tensor: '''simple docstring''' if not isinstance(UpperCamelCase_ , tf.Tensor ): lowerCAmelCase__ = tf.convert_to_tensor(UpperCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCAmelCase__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCAmelCase__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCAmelCase__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A ( UpperCamelCase_ : tf.Tensor , UpperCamelCase_ : int , UpperCamelCase_ : str = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( UpperCamelCase_ , tf.cast(UpperCamelCase_ , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCamelCase_ )}) must be smaller than the embedding """ F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def A ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCAmelCase__ = [x for x in data if len(UpperCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) lowerCAmelCase__ = np.asarray(UpperCamelCase_ ) lowerCAmelCase__ = 1 lowerCAmelCase__ = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowerCAmelCase__ = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = chunk_data else: lowerCAmelCase__ = data def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> Optional[Any]: '''simple docstring''' if name in group.attrs: lowerCAmelCase__ = [n.decode("utf8" ) if hasattr(UpperCamelCase_ , "decode" ) else n for n in group.attrs[name]] else: lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(UpperCamelCase_ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def A ( UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' def _expand_single_ad_tensor(UpperCamelCase_ : Optional[Any] ): if isinstance(UpperCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCamelCase_ )
48
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCamelCase : int = datasets.utils.logging.get_logger(__name__) UpperCamelCase : List[str] = ['names', 'prefix'] UpperCamelCase : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] UpperCamelCase : Optional[int] = ['encoding_errors', 'on_bad_lines'] UpperCamelCase : Optional[int] = ['date_format'] @dataclass class UpperCamelCase__ (datasets.BuilderConfig ): '''simple docstring''' _UpperCamelCase = "," _UpperCamelCase = None _UpperCamelCase = "infer" _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = False _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = "." _UpperCamelCase = None _UpperCamelCase = '"' _UpperCamelCase = 0 _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 0 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = None _UpperCamelCase = 10000 _UpperCamelCase = None _UpperCamelCase = "strict" _UpperCamelCase = "error" _UpperCamelCase = None def UpperCamelCase_ ( self ): if self.delimiter is not None: lowerCamelCase__ = self.delimiter if self.column_names is not None: lowerCamelCase__ = self.column_names @property def UpperCamelCase_ ( self ): lowerCamelCase__ = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,_lowerCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCamelCase__ (datasets.ArrowBasedBuilder ): '''simple docstring''' _UpperCamelCase = CsvConfig def UpperCamelCase_ ( self ): return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCamelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase ,(str, list, tuple) ): lowerCamelCase__ = data_files if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] lowerCamelCase__ = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"""files""": files} )] lowerCamelCase__ = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] lowerCamelCase__ = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase ,gen_kwargs={"""files""": files} ) ) return splits def UpperCamelCase_ ( self ,_lowerCAmelCase ): if self.config.features is not None: lowerCamelCase__ = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCAmelCase ) for feature in self.config.features.values() ): # cheaper cast lowerCamelCase__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=_lowerCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowerCamelCase__ = table_cast(_lowerCAmelCase ,_lowerCAmelCase ) return pa_table def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowerCamelCase__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCAmelCase ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): lowerCamelCase__ = pd.read_csv(_lowerCAmelCase ,iterator=_lowerCAmelCase ,dtype=_lowerCAmelCase ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCAmelCase ): lowerCamelCase__ = pa.Table.from_pandas(_lowerCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise
50
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __snake_case ( SCREAMING_SNAKE_CASE_ : str = "" ) -> dict[str, float]: """simple docstring""" UpperCAmelCase = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' UpperCAmelCase = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCAmelCase = soup.find_all('''td''' , attrs='''titleColumn''' ) UpperCAmelCase = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) } def __snake_case ( SCREAMING_SNAKE_CASE_ : str = "IMDb_Top_250_Movies.csv" ) -> None: """simple docstring""" UpperCAmelCase = get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE_ , '''w''' , newline='''''' ) as out_file: UpperCAmelCase = csv.writer(SCREAMING_SNAKE_CASE_ ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
51
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def __A ( a_ :np.ndarray) -> np.ndarray: __a , __a , __a : Dict = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def __A ( a_ :np.ndarray) -> np.ndarray: return (gray > 1_27) & (gray <= 2_55) def __A ( a_ :np.ndarray , a_ :np.ndarray) -> np.ndarray: __a : Any = np.zeros_like(a_) __a : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)) # Copy image to padded image __a : Any = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): __a : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __a : Tuple = int(summation > 0) return output if __name__ == "__main__": # read original image A = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' A = np.array(Image.open(lena_path)) # kernel to be applied A = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) A = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image A = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
52
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = XLMProphetNetTokenizer a_ = False a_ = True def lowercase ( self : List[str] ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = '[PAD]' __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowerCAmelCase_ ) , 1_0_1_2 ) def lowercase ( self : Any ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def lowercase ( self : Optional[Any] ) -> Optional[Any]: return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def lowercase ( self : str ) -> Optional[int]: __lowerCAmelCase = 'Hello World!' __lowerCAmelCase = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowercase ( self : Union[str, Any] ) -> Optional[Any]: # fmt: off __lowerCAmelCase = {'input_ids': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
53
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase : Union[str, Any] =logging.get_logger(__name__) if is_vision_available(): import PIL class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: Union[str, Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: bool = True , **_lowerCAmelCase: str , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =resample UpperCAmelCase_ =do_center_crop UpperCAmelCase_ =crop_size UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ =do_convert_rgb def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[Any] , ) -> Optional[int]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: int = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase: Tuple , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="size" , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ =crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="crop_size" , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ =[convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase_ =[self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
import random def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" __A = a[left_index] __A = left_index + 1 for j in range(left_index + 1 , a_ ): if a[j] < pivot: __A , __A = a[i], a[j] i += 1 __A , __A = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" if left < right: __A = random.randint(a_ , right - 1 ) __A , __A = ( a[left], a[pivot], ) # switches the pivot with the left most bound __A = partition(a_ , a_ , a_ ) quick_sort_random( a_ , a_ , a_ ) # recursive quicksort to the left of the pivot point quick_sort_random( a_ , pivot_index + 1 , a_ ) # recursive quicksort to the right of the pivot point def UpperCAmelCase ( ) -> int: """simple docstring""" __A = input("Enter numbers separated by a comma:\n" ).strip() __A = [int(a_ ) for item in user_input.split("," )] quick_sort_random(a_ , 0 , len(a_ ) ) print(a_ ) if __name__ == "__main__": main()
55
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
'''simple docstring''' def _a (lowercase__ : list , lowercase__ : list , lowercase__ : int ) -> int: """simple docstring""" if len(lowercase__ ) != len(lowercase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __snake_case = [p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order __snake_case = sorted(lowercase__ ) # declaring useful variables __snake_case = len(lowercase__ ) __snake_case = 0 __snake_case = 0 __snake_case = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __snake_case = sorted_profit_by_weight[length - i - 1] __snake_case = profit_by_weight.index(lowercase__ ) __snake_case = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) _a : str = [int(x) for x in input("Input profits separated by spaces: ").split()] _a : str = [int(x) for x in input("Input weights separated by spaces: ").split()] _a : Any = int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
56
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ : Any = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> List[Any]: if attention_mask is None: UpperCamelCase_: Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCamelCase_: Dict = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCamelCase_: Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=0.0_2 , ): UpperCamelCase_: Any = parent UpperCamelCase_: List[Any] = batch_size UpperCamelCase_: List[Any] = seq_length UpperCamelCase_: Optional[int] = is_training UpperCamelCase_: Optional[int] = use_labels UpperCamelCase_: List[str] = vocab_size UpperCamelCase_: Any = hidden_size UpperCamelCase_: Tuple = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: Union[str, Any] = intermediate_size UpperCamelCase_: Optional[Any] = hidden_act UpperCamelCase_: Tuple = hidden_dropout_prob UpperCamelCase_: Tuple = attention_probs_dropout_prob UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: str = eos_token_id UpperCamelCase_: Optional[Any] = pad_token_id UpperCamelCase_: List[str] = bos_token_id UpperCamelCase_: List[str] = initializer_range def _a ( self ): UpperCamelCase_: Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCamelCase_: Union[str, Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCamelCase_: Dict = shift_tokens_right(_lowerCamelCase , 1 , 2 ) UpperCamelCase_: Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCamelCase , ) UpperCamelCase_: Union[str, Any] = prepare_blenderbot_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[str] = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = 2_0 UpperCamelCase_: Tuple = model_class_name(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = model.encode(inputs_dict['input_ids'] ) UpperCamelCase_ ,UpperCamelCase_: Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCamelCase_: Any = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) UpperCamelCase_: int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_: Optional[int] = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) UpperCamelCase_: Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase_: Any = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCamelCase , ) UpperCamelCase_: List[Any] = model.decode(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = 2_0 UpperCamelCase_: List[str] = model_class_name(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = model.encode(inputs_dict['input_ids'] ) UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCamelCase_: Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCamelCase_: Dict = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase_: int = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) UpperCamelCase_: Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase_: Any = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) UpperCamelCase_: Optional[int] = model.decode(_lowerCamelCase , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase ) UpperCamelCase_: List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Any =99 def _a ( self ): UpperCamelCase_: Union[str, Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) UpperCamelCase_: str = input_ids.shape[0] UpperCamelCase_: str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _a ( self ): UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: str = self._get_config_and_data() UpperCamelCase_: Optional[Any] = FlaxBlenderbotForConditionalGeneration(_lowerCamelCase ) UpperCamelCase_: Any = lm_model(input_ids=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) UpperCamelCase_: Optional[int] = FlaxBlenderbotForConditionalGeneration(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) UpperCamelCase_: Tuple = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) UpperCamelCase_: Tuple = lm_model(input_ids=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ) UpperCamelCase_: Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: Union[str, Any] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) UpperCamelCase_: Tuple = shift_tokens_right(_lowerCamelCase , 1 , 2 ) UpperCamelCase_: Union[str, Any] = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() UpperCamelCase_: Optional[int] = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" a : Optional[Any] =True a : Union[str, Any] =( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) a : Optional[int] =(FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _a ( self ): UpperCamelCase_: Optional[int] = FlaxBlenderbotModelTester(self ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_: Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) @jax.jit def encode_jitted(_lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): return model.encode(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase ) with self.subTest('JIT Enabled' ): UpperCamelCase_: Optional[int] = encode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase_: Dict = encode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) UpperCamelCase_: Dict = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) UpperCamelCase_: List[str] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return model.decode( decoder_input_ids=_lowerCamelCase , decoder_attention_mask=_lowerCamelCase , encoder_outputs=_lowerCamelCase , ) with self.subTest('JIT Enabled' ): UpperCamelCase_: List[Any] = decode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase_: Dict = decode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self ): for model_class_name in self.all_model_classes: UpperCamelCase_: Dict = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCamelCase_: Optional[Any] = np.ones((1, 1) ) * model.config.eos_token_id UpperCamelCase_: List[Any] = model(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def _a ( self ): UpperCamelCase_: Optional[int] = {'num_beams': 1, 'early_stopping': True, 'min_length': 1_5, 'max_length': 2_5} UpperCamelCase_: List[Any] = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} UpperCamelCase_: Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_lowerCamelCase ) UpperCamelCase_: Optional[int] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) UpperCamelCase_: int = ['Sam'] UpperCamelCase_: str = tokenizer(_lowerCamelCase , return_tensors='jax' ) UpperCamelCase_: Union[str, Any] = model.generate(**_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Any = 'Sam is a great name. It means "sun" in Gaelic.' UpperCamelCase_: Any = tokenizer.batch_decode(_lowerCamelCase , **_lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
57
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
"""simple docstring""" __lowerCAmelCase : dict[tuple[int, int, int], int] = {} def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on snake_case_ : Optional[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one snake_case_ : Optional[int] = _calculate(days - 1 , __UpperCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 snake_case_ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter snake_case_ : int = _calculate(days - 1 , __UpperCamelCase , 0 ) snake_case_ : Tuple = state_late + state_absent + state_ontime snake_case_ : List[Any] = prizestrings return prizestrings def __lowerCAmelCase ( __UpperCamelCase : int = 3_0 ): '''simple docstring''' return _calculate(__UpperCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
58
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A = logging.get_logger(__name__) __A = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "dpt" def __init__(self : Optional[int] , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Any=1E-1_2 , UpperCAmelCase_ : Tuple=384 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=[2, 5, 8, 11] , UpperCAmelCase_ : List[str]="project" , UpperCAmelCase_ : Dict=[4, 2, 1, 0.5] , UpperCAmelCase_ : Dict=[96, 192, 384, 768] , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : List[Any]=-1 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=0.4 , UpperCAmelCase_ : str=255 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=[1, 1_024, 24, 24] , UpperCAmelCase_ : Dict=[0, 1] , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Optional[Any] , ) ->Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =hidden_size lowerCamelCase__: List[str] =is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone.") lowerCamelCase__: str ={ "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } lowerCamelCase__: Union[str, Any] =BitConfig(**UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): logger.info("Initializing the config with a `BiT` backbone.") lowerCamelCase__: Optional[Any] =BitConfig(**UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""") lowerCamelCase__: Optional[int] =backbone_featmap_shape lowerCamelCase__: Optional[Any] =neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.") else: lowerCamelCase__: List[Any] =None lowerCamelCase__: Optional[int] =None lowerCamelCase__: Optional[Any] =[] lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: List[str] =num_attention_heads lowerCamelCase__: Any =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: Optional[int] =hidden_dropout_prob lowerCamelCase__: Dict =attention_probs_dropout_prob lowerCamelCase__: Any =initializer_range lowerCamelCase__: Optional[int] =layer_norm_eps lowerCamelCase__: Dict =image_size lowerCamelCase__: str =patch_size lowerCamelCase__: Any =num_channels lowerCamelCase__: Dict =qkv_bias lowerCamelCase__: Dict =backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']") lowerCamelCase__: int =readout_type lowerCamelCase__: str =reassemble_factors lowerCamelCase__: int =neck_hidden_sizes lowerCamelCase__: Dict =fusion_hidden_size lowerCamelCase__: List[str] =head_in_index lowerCamelCase__: Dict =use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCamelCase__: Dict =use_auxiliary_head lowerCamelCase__: List[str] =auxiliary_loss_weight lowerCamelCase__: Union[str, Any] =semantic_loss_ignore_index lowerCamelCase__: int =semantic_classifier_dropout def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: lowerCamelCase__: List[Any] =self.backbone_config.to_dict() lowerCamelCase__: Union[str, Any] =self.__class__.model_type return output
59
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( _a ): lowerCamelCase_ : str = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ : Dict = '''FlavaImageProcessor''' lowerCamelCase_ : List[str] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__(self , __magic_name__=None , __magic_name__=None , **__magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __magic_name__ , ) snake_case_ : Optional[Any] = kwargs.pop('''feature_extractor''' ) snake_case_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__magic_name__ , __magic_name__ ) snake_case_ : Tuple = self.image_processor def __call__(self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ) -> Dict: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case_ : Optional[int] = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: snake_case_ : Any = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Tuple = self.tokenizer.model_input_names snake_case_ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase (self ) -> str: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __magic_name__ , ) return self.image_processor_class @property def lowerCamelCase (self ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __magic_name__ , ) return self.image_processor
60
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = MobileBertTokenizer snake_case__ = MobileBertTokenizerFast snake_case__ = True snake_case__ = True snake_case__ = filter_non_english snake_case__ = "google/mobilebert-uncased" def a ( self : Optional[Any] ) -> List[str]: super().setUp() lowerCAmelCase__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase__ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: lowerCAmelCase__ = "UNwant\u00E9d,running" lowerCAmelCase__ = "unwanted, running" return input_text, output_text def a ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [9, 6, 7, 12, 10, 11] ) def a ( self : List[str] ) -> Union[str, Any]: if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = "UNwant\u00E9d,running" lowerCAmelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # With lower casing lowerCAmelCase__ = self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.get_rust_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "UNwant\u00E9d,running" lowerCAmelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Any: lowerCAmelCase__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def a ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def a ( self : int ) -> List[str]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def a ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def a ( self : int ) -> Union[str, Any]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def a ( self : List[Any] ) -> Dict: lowerCAmelCase__ = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def a ( self : Dict ) -> Any: lowerCAmelCase__ = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def a ( self : Dict ) -> List[str]: lowerCAmelCase__ = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def a ( self : Optional[int] ) -> int: lowerCAmelCase__ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase__ = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = i lowerCAmelCase__ = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def a ( self : str ) -> Dict: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def a ( self : str ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def a ( self : Optional[Any] ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def a ( self : Union[str, Any] ) -> Tuple: lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def a ( self : List[Any] ) -> Tuple: lowerCAmelCase__ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a ( self : Dict ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowerCAmelCase__ = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , "do_lower_case" ) else False lowerCAmelCase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def a ( self : Tuple ) -> Dict: lowerCAmelCase__ = ["的", "人", "有"] lowerCAmelCase__ = "".join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase__ = True lowerCAmelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = False lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase__ = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
61
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path snake_case = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( lowercase=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=lowerCAmelCase ) ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = None UpperCamelCase_ : Union[str, Any] = None def _A ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ): with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : List[str] = dataset_module_factory(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : DatasetBuilder = builder_cls( cache_dir=UpperCAmelCase_ , config_name=UpperCAmelCase_ , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE : int = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase_ ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE : int = cached_path(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ) self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" SCREAMING_SNAKE_CASE : str = dataset_module_factory("wikipedia" , cache_dir=lowercase ) SCREAMING_SNAKE_CASE : Tuple = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE : DatasetBuilder = builder_cls( cache_dir=lowercase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE : Any = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE : Optional[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = dataset_module_factory("wikipedia" , cache_dir=lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=lowercase ) SCREAMING_SNAKE_CASE : DatasetBuilder = builder_cls( cache_dir=lowercase , config_name="20220301.frr" , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE : List[Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase , lowercase ) assert "train" in ds assert isinstance(ds["train"] , lowercase ) assert next(iter(ds["train"] ) )
62
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[str] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
63
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase_ : int = datasets.utils.logging.get_logger(__name__) lowercase_ : Tuple = ['names', 'prefix'] lowercase_ : str = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase_ : Optional[int] = ['encoding_errors', 'on_bad_lines'] lowercase_ : List[Any] = ['date_format'] @dataclass class _lowerCamelCase ( datasets.BuilderConfig ): __a = "," __a = None __a = "infer" __a = None __a = None __a = None __a = None __a = None __a = True __a = None __a = None __a = None __a = None __a = False __a = None __a = None __a = None __a = True __a = True __a = False __a = True __a = None __a = "." __a = None __a = '"' __a = 0 __a = None __a = None __a = None __a = None __a = True __a = True __a = 0 __a = True __a = False __a = None __a = 10000 __a = None __a = "strict" __a = "error" __a = None def UpperCamelCase_ ( self ) -> Dict: if self.delimiter is not None: SCREAMING_SNAKE_CASE__: Optional[Any]= self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.column_names @property def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: str= { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCamelCase ( datasets.ArrowBasedBuilder ): __a = CsvConfig def UpperCamelCase_ ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> str: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) SCREAMING_SNAKE_CASE__: Optional[int]= dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE__: Any= data_files if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Tuple= [files] SCREAMING_SNAKE_CASE__: str= [dl_manager.iter_files(lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE__: List[Any]= [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Union[str, Any]= [files] SCREAMING_SNAKE_CASE__: Optional[int]= [dl_manager.iter_files(lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def UpperCamelCase_ ( self , lowerCAmelCase ) -> pa.Table: if self.config.features is not None: SCREAMING_SNAKE_CASE__: int= self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE__: Optional[int]= pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE__: Optional[int]= table_cast(lowerCAmelCase , lowerCAmelCase ) return pa_table def UpperCamelCase_ ( self , lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__: str= self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE__: str= ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE__: List[Any]= pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase ): SCREAMING_SNAKE_CASE__: int= pa.Table.from_pandas(lowerCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(lowerCAmelCase )}: {e}' ) raise
64
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] ,A : Union[str, Any] ,A : Dict=7 ,A : Optional[int]=3 ,A : List[str]=18 ,A : Union[str, Any]=30 ,A : Tuple=400 ,A : Dict=True ,A : List[str]=None ,A : str=True ,A : Optional[Any]=False ,A : Optional[Any]=True ,A : List[str]=True ,A : Optional[int]=[0.5, 0.5, 0.5] ,A : List[str]=[0.5, 0.5, 0.5] ,): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : Optional[int] = max_resolution UpperCAmelCase__ : str = do_resize UpperCAmelCase__ : Tuple = size if size is not None else {"""height""": 18, """width""": 20} UpperCAmelCase__ : List[str] = do_thumbnail UpperCAmelCase__ : Optional[int] = do_align_axis UpperCAmelCase__ : Union[str, Any] = do_pad UpperCAmelCase__ : Tuple = do_normalize UpperCAmelCase__ : Optional[Any] = image_mean UpperCAmelCase__ : List[Any] = image_std def __lowercase ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = DonutImageProcessor if is_vision_available() else None def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = DonutImageProcessingTester(self ) @property def __lowercase ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"""do_resize""" ) ) self.assertTrue(hasattr(A ,"""size""" ) ) self.assertTrue(hasattr(A ,"""do_thumbnail""" ) ) self.assertTrue(hasattr(A ,"""do_align_long_axis""" ) ) self.assertTrue(hasattr(A ,"""do_pad""" ) ) self.assertTrue(hasattr(A ,"""do_normalize""" ) ) self.assertTrue(hasattr(A ,"""image_mean""" ) ) self.assertTrue(hasattr(A ,"""image_std""" ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 20} ) UpperCAmelCase__ : str = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order UpperCAmelCase__ : str = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{"""height""": 84, """width""": 42} ) def __lowercase ( self : Dict ): '''simple docstring''' pass @is_flaky() def __lowercase ( self : int ): '''simple docstring''' # Initialize image_processing UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched UpperCAmelCase__ : Tuple = image_processing(A ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) @is_flaky() def __lowercase ( self : List[str] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched UpperCAmelCase__ : Optional[int] = image_processing(A ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) @is_flaky() def __lowercase ( self : Any ): '''simple docstring''' # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input UpperCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched UpperCAmelCase__ : List[Any] = image_processing(A ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,)
65
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["PoolFormerFeatureExtractor"] UpperCamelCase = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def SCREAMING_SNAKE_CASE__ ( snake_case__ :Dict , snake_case__ :Union[str, Any] , snake_case__ :Union[str, Any] , snake_case__ :int ) -> Optional[int]: _lowercase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowercase = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } _lowercase = F"""{src_lang}-{tgt_lang}""" _lowercase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=snake_case__ , exist_ok=snake_case__ ) _lowercase = os.path.join(snake_case__ , 'README.md' ) print(F"""Generating {path}""" ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(snake_case__ ) # make sure we are under the root of the project snake_case = Path(__file__).resolve().parent.parent.parent snake_case = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
67
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
from __future__ import annotations def lowercase__ ( A_: int ) -> bool: """simple docstring""" __UpperCAmelCase =str(A_ ) return len(A_ ) == 9 and set(A_ ) == set("""123456789""" ) def lowercase__ ( ) -> int | None: """simple docstring""" for base_num in range(9999 , 4999 , -1 ): __UpperCAmelCase =100002 * base_num if is_9_pandigital(A_ ): return candidate for base_num in range(333 , 99 , -1 ): __UpperCAmelCase =1002003 * base_num if is_9_pandigital(A_ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
68
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' from itertools import product def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> list[int]: __snake_case = sides_number __snake_case = max_face_number * dice_number __snake_case = [0] * (max_total + 1) __snake_case = 1 __snake_case = range(_UpperCAmelCase , max_face_number + 1 ) for dice_numbers in product(_UpperCAmelCase , repeat=_UpperCAmelCase ): __snake_case = sum(_UpperCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ) -> float: __snake_case = total_frequency_distribution( sides_number=4 , dice_number=9 ) __snake_case = total_frequency_distribution( sides_number=6 , dice_number=6 ) __snake_case = 0 __snake_case = 9 __snake_case = 4 * 9 __snake_case = 6 for peter_total in range(_UpperCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __snake_case = (4**9) * (6**6) __snake_case = peter_wins_count / total_games_number __snake_case = round(_UpperCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
69
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class A: '''simple docstring''' UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def a__ ( self : List[Any] ) -> torch.Tensor: """simple docstring""" lowerCamelCase_ = torch.arange(self.height * self.width ) lowerCamelCase_ = torch.stack( [ pixel_indices % self.width, torch.div(A_ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , *lowerCamelCase_ = self.shape lowerCamelCase_ = int(np.prod(A_ ) ) lowerCamelCase_ = self.get_image_coords() lowerCamelCase_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCamelCase_ = self.get_camera_rays(A_ ) lowerCamelCase_ = rays.view(A_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def a__ ( self : int , A_ : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCamelCase_ = coords.view(A_ , -1 , 2 ) lowerCamelCase_ = self.resolution() lowerCamelCase_ = self.fov() lowerCamelCase_ = (flat.float() / (res - 1)) * 2 - 1 lowerCamelCase_ = fracs * torch.tan(fov / 2 ) lowerCamelCase_ = fracs.view(A_ , -1 , 2 ) lowerCamelCase_ = ( self.z.view(A_ , 1 , 3 ) + self.x.view(A_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(A_ , 1 , 3 ) * fracs[:, :, 1:] ) lowerCamelCase_ = directions / directions.norm(dim=-1 , keepdim=A_ ) lowerCamelCase_ = torch.stack( [ torch.broadcast_to(self.origin.view(A_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(A_ , *A_ , 2 , 3 ) def a__ ( self : Any , A_ : int , A_ : int ) -> "DifferentiableProjectiveCamera": """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=A_ , height=A_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowerCamelCase_ = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCamelCase_ = -z * 4 lowerCamelCase_ = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] ) lowerCamelCase_ = np.cross(lowercase , lowercase ) origins.append(lowercase ) xs.append(lowercase ) ys.append(lowercase ) zs.append(lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
70
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' import collections import os import re from pathlib import Path _lowerCamelCase = """src/transformers""" # Matches is_xxx_available() _lowerCamelCase = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} _lowerCamelCase = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowerCamelCase = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available _lowerCamelCase = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") _lowerCamelCase = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowerCamelCase = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", _lowerCamelCase = re.compile(R"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], _lowerCamelCase = re.compile(R"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo _lowerCamelCase = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: _lowerCamelCase = re.compile(R"""^\s*try:""") # Catches a line with else: _lowerCamelCase = re.compile(R"""^\s*else:""") def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None: return None UpperCAmelCase_ : Union[str, Any] = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ : Tuple = f.readlines() UpperCAmelCase_ : int = 0 while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase_ : str = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: UpperCAmelCase_ : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0] UpperCAmelCase_ : List[Any] = re.findall(r"\[([^\]]+)\]" , _SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue UpperCAmelCase_ : Optional[Any] = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: UpperCAmelCase_ : Any = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase_ : Tuple = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase_ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): UpperCAmelCase_ : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None: UpperCAmelCase_ : Dict = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) UpperCAmelCase_ : Union[str, Any] = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None: UpperCAmelCase_ : str = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) UpperCAmelCase_ : Union[str, Any] = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase_ : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase_ : Union[str, Any] = [] while ( line_index < len(_SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): UpperCAmelCase_ : Optional[Any] = lines[line_index] UpperCAmelCase_ : List[Any] = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase_ : str = {"none": objects} # Let's continue with backend-specific objects while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase_ : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): UpperCAmelCase_ : Any = lines[line_index] UpperCAmelCase_ : List[str] = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase_ : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" def find_duplicates(_SCREAMING_SNAKE_CASE : Any ): return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase_ : Union[str, Any] = [] for key in import_dict_objects.keys(): UpperCAmelCase_ : List[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) UpperCAmelCase_ : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase_ : Optional[Any] = "base imports" if key == "none" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def a__ ( ) -> str: """simple docstring""" UpperCAmelCase_ : Optional[int] = [] for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ): if "__init__.py" in files: UpperCAmelCase_ : Tuple = os.path.join(_SCREAMING_SNAKE_CASE , "__init__.py" ) UpperCAmelCase_ : Dict = parse_init(_SCREAMING_SNAKE_CASE ) if objects is not None: UpperCAmelCase_ : str = analyze_results(*_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: UpperCAmelCase_ : Dict = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("\n".join(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError("\n\n".join(_SCREAMING_SNAKE_CASE ) ) def a__ ( ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(_SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob("*.py" ) ) ) == 0: continue UpperCAmelCase_ : Dict = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Dict = short_path.replace(os.path.sep , "." ) submodules.append(_SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase_ : List[Any] = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Union[str, Any] = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(_SCREAMING_SNAKE_CASE ) return submodules _lowerCamelCase = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def a__ ( ) -> str: """simple docstring""" from transformers.utils import direct_transformers_import UpperCAmelCase_ : Optional[int] = direct_transformers_import(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_SCREAMING_SNAKE_CASE , "__init__.py" ) , "r" ) as f: UpperCAmelCase_ : Dict = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" , _SCREAMING_SNAKE_CASE ) ) ) UpperCAmelCase_ : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_SCREAMING_SNAKE_CASE ) > 0: UpperCAmelCase_ : str = "\n".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" F'''{list_of_modules}\n''' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
71
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins _UpperCAmelCase : Dict = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Dict ) -> Tuple: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def UpperCamelCase ( lowercase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Optional[int] ) -> str: '''simple docstring''' lowercase =tmp_path_factory.getbasetemp() / '''cache''' lowercase =test_hf_cache_home / '''datasets''' lowercase =test_hf_cache_home / '''metrics''' lowercase =test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) lowercase =test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) lowercase =test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def UpperCamelCase ( ) -> Dict: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def UpperCamelCase ( lowercase_ : List[Any] ) -> Any: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def UpperCamelCase ( lowercase_ : str ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
72
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) SCREAMING_SNAKE_CASE = torch.permute(_UpperCAmelCase , (0, 2, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase): # linear layer SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) SCREAMING_SNAKE_CASE = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): if "metadata" in layer: SCREAMING_SNAKE_CASE = layer.split('metadata') SCREAMING_SNAKE_CASE = ''.join(split_layer[0])[:-1] SCREAMING_SNAKE_CASE = [tuple(('metadata' + split_layer[1]).split('/'))] elif "kvstore" in layer: SCREAMING_SNAKE_CASE = layer.split('kvstore') SCREAMING_SNAKE_CASE = ''.join(split_layer[0])[:-1] SCREAMING_SNAKE_CASE = [tuple(('kvstore' + split_layer[1]).split('/'))] else: SCREAMING_SNAKE_CASE = layer.split('/') SCREAMING_SNAKE_CASE = '/'.join(split_layer[:-1]) SCREAMING_SNAKE_CASE = (split_layer[-1],) if "kvstore/path" in layer: SCREAMING_SNAKE_CASE = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: SCREAMING_SNAKE_CASE = 'file' else: SCREAMING_SNAKE_CASE = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = rename_keys(_UpperCAmelCase) SCREAMING_SNAKE_CASE = {} for k, v in current_block.items(): SCREAMING_SNAKE_CASE = v SCREAMING_SNAKE_CASE = new_current_block torch.save(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME): SCREAMING_SNAKE_CASE = convert_file_size_to_int(_UpperCAmelCase) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb') as fp: SCREAMING_SNAKE_CASE = serialization.msgpack_restore(fp.read())['optimizer']['target'] SCREAMING_SNAKE_CASE = flatten_dict(_UpperCAmelCase , sep='/') SCREAMING_SNAKE_CASE = {} for layer in checkpoint_info.keys(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_key_and_tensorstore_dict( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) if curr_real_layer_name in all_layers: SCREAMING_SNAKE_CASE = content else: SCREAMING_SNAKE_CASE = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file SCREAMING_SNAKE_CASE = ts.open(unflatten_dict(all_layers[key])).result().read().result() SCREAMING_SNAKE_CASE = torch.tensor(_UpperCAmelCase) SCREAMING_SNAKE_CASE = raw_weights.numel() * dtype_byte_size(raw_weights.dtype) # use the renaming pattern from the small conversion scripts SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rename_base_flax_keys(tuple(key.split('/')) , _UpperCAmelCase) SCREAMING_SNAKE_CASE = '/'.join(_UpperCAmelCase) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: SCREAMING_SNAKE_CASE = os.path.join( _UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin''')) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase) sharded_state_dicts.append(current_block.keys()) del current_block SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = raw_weights.to(getattr(_UpperCAmelCase , _UpperCAmelCase)) current_block_size += weight_size total_size += weight_size # Add the last block SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin''')) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase) sharded_state_dicts.append(current_block.keys()) # If we only have one shard, we return it if len(_UpperCAmelCase) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(_UpperCAmelCase): SCREAMING_SNAKE_CASE = weights_name.replace( '.bin' , F'''-{idx+1:05d}-of-{len(_UpperCAmelCase):05d}.bin''') # len(sharded_state_dicts):05d} SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''')) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) SCREAMING_SNAKE_CASE = shard for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {'total_size': total_size} SCREAMING_SNAKE_CASE = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase) , 'w' , encoding='utf-8') as f: SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n' f.write(_UpperCAmelCase) return metadata, index if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) a_ : Any = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase__ (): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained('google/switch-base-8') config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted') SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto') SCREAMING_SNAKE_CASE = TaTokenizer.from_pretrained('t5-small') SCREAMING_SNAKE_CASE = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors='pt').input_ids SCREAMING_SNAKE_CASE = model.generate(_UpperCAmelCase , decoder_start_token_id=0) print(tokenizer.decode(out[0]))
73
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def a__ ( snake_case ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def a__ ( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = '''mock-s3-bucket''' __SCREAMING_SNAKE_CASE : int = F'''s3://{mock_bucket}''' __SCREAMING_SNAKE_CASE : Dict = extract_path_from_uri(snake_case ) assert dataset_path.startswith('''s3://''' ) is False __SCREAMING_SNAKE_CASE : List[str] = '''./local/path''' __SCREAMING_SNAKE_CASE : str = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = is_remote_filesystem(snake_case ) assert is_remote is True __SCREAMING_SNAKE_CASE : int = fsspec.filesystem('''file''' ) __SCREAMING_SNAKE_CASE : str = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , snake_case ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} __SCREAMING_SNAKE_CASE : List[str] = input_paths[compression_fs_class.protocol] if input_path is None: __SCREAMING_SNAKE_CASE : Any = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) __SCREAMING_SNAKE_CASE : str = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.basename(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(snake_case , '''r''' , encoding='''utf-8''' ) as f, open(snake_case , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} __SCREAMING_SNAKE_CASE : Dict = compressed_file_paths[protocol] __SCREAMING_SNAKE_CASE : int = '''dataset.jsonl''' __SCREAMING_SNAKE_CASE : int = F'''{protocol}://{member_file_path}::{compressed_file_path}''' __SCREAMING_SNAKE_CASE, *__SCREAMING_SNAKE_CASE : Dict = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = hf_api.dataset_info(snake_case , token=snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(snake_case ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
74
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCamelCase__ = '''src/transformers''' UpperCamelCase__ = '''docs/source/en''' UpperCamelCase__ = '''.''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase__ : Optional[Any] = f.readlines() # Find the start prompt. UpperCAmelCase__ : Union[str, Any] = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 UpperCAmelCase__ : str = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCamelCase__ = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. UpperCamelCase__ = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') UpperCamelCase__ = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCamelCase__ = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def a__ ( lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : Optional[int] = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , lowerCAmelCase__ ) return [m.group(0 ) for m in matches] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = 2 if text == '''✅''' or text == '''❌''' else len(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = (width - text_length) // 2 UpperCAmelCase__ : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def a__ ( ) -> Dict: UpperCAmelCase__ : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase__ : int = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } UpperCAmelCase__ : Union[str, Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. UpperCAmelCase__ : str = collections.defaultdict(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = collections.defaultdict(lowerCAmelCase__ ) UpperCAmelCase__ : Dict = collections.defaultdict(lowerCAmelCase__ ) UpperCAmelCase__ : Any = collections.defaultdict(lowerCAmelCase__ ) UpperCAmelCase__ : int = collections.defaultdict(lowerCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = None if attr_name.endswith('''Tokenizer''' ): UpperCAmelCase__ : List[Any] = slow_tokenizers UpperCAmelCase__ : Tuple = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): UpperCAmelCase__ : Dict = fast_tokenizers UpperCAmelCase__ : Tuple = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase__ ) is not None: UpperCAmelCase__ : List[Any] = tf_models UpperCAmelCase__ : Tuple = _re_tf_models.match(lowerCAmelCase__ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase__ ) is not None: UpperCAmelCase__ : Optional[Any] = flax_models UpperCAmelCase__ : str = _re_flax_models.match(lowerCAmelCase__ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase__ ) is not None: UpperCAmelCase__ : int = pt_models UpperCAmelCase__ : List[str] = _re_pt_models.match(lowerCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): UpperCAmelCase__ : Tuple = True break # Try again after removing the last word in the name UpperCAmelCase__ : List[Any] = ''''''.join(camel_case_split(lowerCAmelCase__ )[:-1] ) # Let's build that table! UpperCAmelCase__ : List[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) UpperCAmelCase__ : str = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). UpperCAmelCase__ : Tuple = [len(lowerCAmelCase__ ) + 2 for c in columns] UpperCAmelCase__ : Any = max([len(lowerCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se UpperCAmelCase__ : Union[str, Any] = '''|''' + '''|'''.join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for c, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" UpperCAmelCase__ : Dict = {True: '''✅''', False: '''❌'''} for name in model_names: UpperCAmelCase__ : Tuple = model_name_to_prefix[name] UpperCAmelCase__ : int = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for l, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + "|\n" return table def a__ ( lowerCAmelCase__=False ) -> Union[str, Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) UpperCAmelCase__ : int = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase__ , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCamelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
75
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class UpperCAmelCase_ ( snake_case ): UpperCamelCase =["pixel_values"] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> None: super().__init__(**UpperCamelCase_ ) __lowercase : List[str] = size if size is not None else {'''shortest_edge''': 2_56} __lowercase : Dict = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __lowercase : Optional[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowercase : Dict = get_size_dict(UpperCamelCase_ ) __lowercase : Dict = do_resize __lowercase : Optional[Any] = size __lowercase : List[Any] = resample __lowercase : Dict = do_center_crop __lowercase : Any = crop_size __lowercase : List[str] = do_rescale __lowercase : List[str] = rescale_factor __lowercase : Optional[Any] = do_normalize __lowercase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> np.ndarray: __lowercase : List[Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowercase : List[Any] = get_resize_output_image_size(UpperCamelCase_ , size=size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> np.ndarray: __lowercase : Union[str, Any] = get_size_dict(UpperCamelCase_ ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ ) -> np.ndarray: return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> np.ndarray: return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ) -> Optional[Any]: __lowercase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Tuple = size if size is not None else self.size __lowercase : Optional[Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[str] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(UpperCamelCase_ ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : Any = image_std if image_std is not None else self.image_std __lowercase : Any = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowercase : Optional[int] = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __lowercase : Tuple = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: __lowercase : Any = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: __lowercase : str = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __lowercase : Optional[int] = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __lowercase : str = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowercase : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
76
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
77
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class __A : def __init__(self : str , __a : Any ): UpperCAmelCase_ = data UpperCAmelCase_ = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowercase (__a : List[str] , __a : str ): return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowercase (self : List[str] ): UpperCAmelCase_ = B"\x80" + B"\x00" * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def _lowercase (self : Optional[int] ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowercase (self : Union[str, Any] , __a : Optional[int] ): UpperCAmelCase_ = list(struct.unpack(">16L" , __a ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.padding() UpperCAmelCase_ = self.split_blocks() for block in self.blocks: UpperCAmelCase_ = self.expand_block(__a ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ = (b & c) | ((~b) & d) UpperCAmelCase_ = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ = b ^ c ^ d UpperCAmelCase_ = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ = (b & c) | (b & d) | (c & d) UpperCAmelCase_ = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ = b ^ c ^ d UpperCAmelCase_ = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = ( self.rotate(__a , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__a , 30 ), c, d, ) UpperCAmelCase_ = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = B"Test String" assert SHAaHash(snake_case_ ).final_hash() == hashlib.shaa(snake_case_ ).hexdigest() # noqa: S324 def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: UpperCAmelCase_ = f.read() else: UpperCAmelCase_ = bytes(snake_case_ , "utf-8" ) print(SHAaHash(snake_case_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
78
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
import math class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase=0 ): # a graph with Node 0,1,...,N-1 UpperCAmelCase__ : Union[str, Any] = n UpperCAmelCase__ : Union[str, Any] = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight UpperCAmelCase__ : Optional[Any] = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Dict = w def __UpperCAmelCase ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCAmelCase__ : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
79
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : int , _lowerCAmelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> List[str]: """simple docstring""" super().__init__() __lowercase = nn.ModuleList(_lowerCAmelCase ) def _a ( self : Dict , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Union[torch.Tensor, float, int] , _lowerCAmelCase : torch.Tensor , _lowerCAmelCase : List[torch.tensor] , _lowerCAmelCase : List[float] , _lowerCAmelCase : Optional[torch.Tensor] = None , _lowerCAmelCase : Optional[torch.Tensor] = None , _lowerCAmelCase : Optional[torch.Tensor] = None , _lowerCAmelCase : Optional[Dict[str, Any]] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , ) -> Union[ControlNetOutput, Tuple]: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase , self.nets ) ): __lowercase , __lowercase = controlnet( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) # merge samples if i == 0: __lowercase , __lowercase = down_samples, mid_sample else: __lowercase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_lowerCAmelCase , _lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _a ( self : List[Any] , _lowerCAmelCase : Union[str, os.PathLike] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Callable = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , ) -> str: """simple docstring""" __lowercase = 0 __lowercase = save_directory for controlnet in self.nets: controlnet.save_pretrained( _lowerCAmelCase , is_main_process=_lowerCAmelCase , save_function=_lowerCAmelCase , safe_serialization=_lowerCAmelCase , variant=_lowerCAmelCase , ) idx += 1 __lowercase = model_path_to_save + F'_{idx}' @classmethod def _a ( cls : List[Any] , _lowerCAmelCase : Optional[Union[str, os.PathLike]] , **_lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = 0 __lowercase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowercase = pretrained_model_path while os.path.isdir(_lowerCAmelCase ): __lowercase = ControlNetModel.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) controlnets.append(_lowerCAmelCase ) idx += 1 __lowercase = pretrained_model_path + F'_{idx}' logger.info(F'{len(_lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.' ) if len(_lowerCAmelCase ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(_lowerCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(_lowerCAmelCase )
80
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _snake_case : Optional[Any] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = ["pixel_values"] def __init__( self : List[Any] , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : int = 8 , **lowerCamelCase : Tuple , ) -> None: super().__init__(**lowerCamelCase ) __snake_case : Dict = do_rescale __snake_case : Dict = rescale_factor __snake_case : Optional[Any] = do_pad __snake_case : Tuple = pad_size def __snake_case ( self : Dict , lowerCamelCase : np.ndarray , lowerCamelCase : float , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Optional[int] ) -> np.ndarray: return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : int , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ) -> Tuple: __snake_case , __snake_case : List[str] = get_image_size(lowerCamelCase ) __snake_case : Optional[Any] = (old_height // size + 1) * size - old_height __snake_case : List[Any] = (old_width // size + 1) * size - old_width return pad(lowerCamelCase , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=lowerCamelCase ) def __snake_case ( self : Tuple , lowerCamelCase : ImageInput , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[float] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase : Union[str, Any] , ) -> List[str]: __snake_case : int = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : str = do_pad if do_pad is not None else self.do_pad __snake_case : Any = pad_size if pad_size is not None else self.pad_size __snake_case : int = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. __snake_case : str = [to_numpy_array(lowerCamelCase ) for image in images] if do_rescale: __snake_case : Optional[int] = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_pad: __snake_case : Optional[Any] = [self.pad(lowerCamelCase , size=lowerCamelCase ) for image in images] __snake_case : int = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __snake_case : Union[str, Any] = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
81
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
"""simple docstring""" import gc import threading import time import psutil import torch class lowercase__ : '''simple docstring''' def __init__( self : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = psutil.Process() UpperCAmelCase_ = False def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = -1 while True: UpperCAmelCase_ = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = threading.Thread(target=self.peak_monitor ) UpperCAmelCase_ = True self.thread.start() def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = False self.thread.join() return self.cpu_memory_peak lowerCamelCase = PeakCPUMemory() def a__ ( ): # Time UpperCAmelCase_ = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase_ = torch.cuda.memory_allocated(lowerCAmelCase__ ) torch.cuda.reset_peak_memory_stats() return measures def a__ ( lowerCAmelCase__ ): # Time UpperCAmelCase_ = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase_ = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 UpperCAmelCase_ = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase_ = (torch.cuda.memory_allocated(lowerCAmelCase__ ) - start_measures[str(lowerCAmelCase__ )]) / 2**20 UpperCAmelCase_ = (torch.cuda.max_memory_allocated(lowerCAmelCase__ ) - start_measures[str(lowerCAmelCase__ )]) / 2**20 return measures def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): print(f"""{description}:""" ) print(f"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(lowerCAmelCase__ )]:.2f}MiB""" ) UpperCAmelCase_ = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
82
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.txt'''} lowerCAmelCase__ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowerCAmelCase__ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowerCAmelCase__ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class __snake_case ( _lowercase): snake_case__ : List[str] = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_INIT_CONFIGURATION snake_case__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[int] = ConvBertTokenizer def __init__( self : Dict , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=True , __lowerCAmelCase : Dict="[UNK]" , __lowerCAmelCase : Any="[SEP]" , __lowerCAmelCase : Dict="[PAD]" , __lowerCAmelCase : Any="[CLS]" , __lowerCAmelCase : Tuple="[MASK]" , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , tokenize_chinese_chars=__lowerCAmelCase , strip_accents=__lowerCAmelCase , **__lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowerCAmelCase ) != tokenize_chinese_chars ): _lowerCamelCase : int = getattr(__lowerCAmelCase , normalizer_state.pop('''type''' ) ) _lowerCamelCase : Tuple = do_lower_case _lowerCamelCase : str = strip_accents _lowerCamelCase : List[str] = tokenize_chinese_chars _lowerCamelCase : Dict = normalizer_class(**__lowerCAmelCase ) _lowerCamelCase : str = do_lower_case def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" _lowerCamelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): """simple docstring""" _lowerCamelCase : List[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase )
83
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
from __future__ import annotations import os from typing import Any import requests UpperCAmelCase = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCAmelCase = BASE_URL + '''/user''' # https://github.com/settings/tokens UpperCAmelCase = os.environ.get('''USER_TOKEN''', '''''') def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = { 'Authorization': F'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
84
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ : str = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
import warnings from ..trainer import Trainer from ..utils import logging __a :Union[str, Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Union[str, Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , UpperCAmelCase , ) super().__init__(args=UpperCAmelCase , **UpperCAmelCase )
86
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCamelCase_ : '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=99 , UpperCAmelCase__ : Optional[Any]=13 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Union[str, Any]=9 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Any=32 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : str=37 , UpperCAmelCase__ : Union[str, Any]=8 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Dict=0.002 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : str=None , ) ->Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = encoder_seq_length A__ = decoder_seq_length # For common tests A__ = self.decoder_seq_length A__ = is_training A__ = use_attention_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = d_ff A__ = relative_attention_num_buckets A__ = dropout_rate A__ = initializer_factor A__ = eos_token_id A__ = pad_token_id A__ = decoder_start_token_id A__ = None A__ = decoder_layers def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' return TaConfig.from_pretrained('''google/umt5-base''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]=None , ) ->Optional[Any]: '''simple docstring''' if attention_mask is None: A__ = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: A__ = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: A__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase__) if decoder_head_mask is None: A__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__) if cross_attn_head_mask is None: A__ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) A__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input A__ = input_ids.clamp(self.pad_token_id + 1) A__ = decoder_input_ids.clamp(self.pad_token_id + 1) A__ = self.get_config() A__ = config.num_attention_heads A__ = self.prepare_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) return config, input_dict def SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: '''simple docstring''' A__ , A__ = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[Any]: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , ) ->Optional[Any]: '''simple docstring''' A__ = UMTaModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model( input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , ) A__ = model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__) A__ = result.last_hidden_state A__ = result.past_key_values A__ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase__) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , ) ->Optional[Any]: '''simple docstring''' A__ = UMTaModel(config=UpperCAmelCase__).get_decoder().to(UpperCAmelCase__).eval() # first forward pass A__ = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__) A__ = model(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__) self.parent.assertTrue(len(UpperCAmelCase__) == len(UpperCAmelCase__)) self.parent.assertTrue(len(UpperCAmelCase__) == len(UpperCAmelCase__) + 1) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1) A__ = model(UpperCAmelCase__)['''last_hidden_state'''] A__ = model(UpperCAmelCase__ , past_key_values=UpperCAmelCase__)['''last_hidden_state'''] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1]).item() A__ = output_from_no_past[:, -1, random_slice_idx].detach() A__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , ) ->Union[str, Any]: '''simple docstring''' A__ = UMTaModel(config=UpperCAmelCase__).to(UpperCAmelCase__).half().eval() A__ = model(**UpperCAmelCase__)['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(UpperCAmelCase__).any().item()) @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def SCREAMING_SNAKE_CASE ( self : int) ->Dict: '''simple docstring''' A__ = UMTaModelTester(self) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() A__ = UMTaModel(config_and_inputs[0]).to(UpperCAmelCase__) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] A__ = self.model_tester.prepare_config_and_inputs() A__ = config_and_inputs[0] A__ = UMTaForConditionalGeneration(UpperCAmelCase__).eval() model.to(UpperCAmelCase__) A__ = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase__), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__), } for attn_name, (name, mask) in zip(UpperCAmelCase__ , head_masking.items()): A__ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": A__ = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__) A__ = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , **UpperCAmelCase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step A__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''') def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[Any]: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''') def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=UpperCAmelCase__).to(UpperCAmelCase__) A__ = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=UpperCAmelCase__ , legacy=UpperCAmelCase__) A__ = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] A__ = tokenizer(UpperCAmelCase__ , return_tensors='''pt''' , padding=UpperCAmelCase__).input_ids # fmt: off A__ = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ]) # fmt: on torch.testing.assert_allclose(UpperCAmelCase__ , UpperCAmelCase__) A__ = model.generate(input_ids.to(UpperCAmelCase__)) A__ = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] A__ = tokenizer.batch_decode(UpperCAmelCase__) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
87
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE : int = "hf-internal-testing/tiny-random-bert" SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") SCREAMING_SNAKE_CASE : List[Any] = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = cached_file(lowerCamelCase, lowerCamelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCamelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCamelCase, lowerCamelCase))) with open(os.path.join(lowerCamelCase, 'refs', 'main')) as f: _lowercase : Optional[int] = f.read() self.assertEqual(lowerCamelCase, os.path.join(lowerCamelCase, 'snapshots', lowerCamelCase, lowerCamelCase)) self.assertTrue(os.path.isfile(lowerCamelCase)) # File is cached at the same place the second time. _lowercase : Any = cached_file(lowerCamelCase, lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) # Using a specific revision to test the full commit hash. _lowercase : Dict = cached_file(lowerCamelCase, lowerCamelCase, revision='9b8c223') self.assertEqual(lowerCamelCase, os.path.join(lowerCamelCase, 'snapshots', lowerCamelCase, lowerCamelCase)) def UpperCamelCase ( self) -> Any: """simple docstring""" with self.assertRaisesRegex(lowerCamelCase, 'is not a valid model identifier'): _lowercase : Tuple = cached_file('tiny-random-bert', lowerCamelCase) with self.assertRaisesRegex(lowerCamelCase, 'is not a valid git identifier'): _lowercase : Optional[Any] = cached_file(lowerCamelCase, lowerCamelCase, revision='aaaa') with self.assertRaisesRegex(lowerCamelCase, 'does not appear to have a file named'): _lowercase : List[str] = cached_file(lowerCamelCase, 'conf') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex(lowerCamelCase, 'does not appear to have a file named'): _lowercase : str = cached_file(lowerCamelCase, 'conf') with open(os.path.join(lowerCamelCase, 'refs', 'main')) as f: _lowercase : List[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase, '.no_exist', lowerCamelCase, 'conf'))) _lowercase : List[Any] = cached_file(lowerCamelCase, 'conf', _raise_exceptions_for_missing_entries=lowerCamelCase) self.assertIsNone(lowerCamelCase) _lowercase : Optional[Any] = cached_file(lowerCamelCase, 'conf', local_files_only=lowerCamelCase, _raise_exceptions_for_missing_entries=lowerCamelCase) self.assertIsNone(lowerCamelCase) _lowercase : Dict = mock.Mock() _lowercase : Any = 5_00 _lowercase : Optional[int] = {} _lowercase : Optional[int] = HTTPError _lowercase : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request', return_value=lowerCamelCase) as mock_head: _lowercase : Dict = cached_file(lowerCamelCase, 'conf', _raise_exceptions_for_connection_errors=lowerCamelCase) self.assertIsNone(lowerCamelCase) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase ( self) -> Dict: """simple docstring""" self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only', lowerCamelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only', lowerCamelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only', lowerCamelCase)) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.assertIsNone(get_file_from_repo('bert-base-cased', 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCamelCase, 'is not a valid model identifier'): get_file_from_repo('bert-base-case', lowerCamelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCamelCase, 'is not a valid git identifier'): get_file_from_repo('bert-base-cased', lowerCamelCase, revision='ahaha') _lowercase : int = get_file_from_repo('bert-base-cased', lowerCamelCase) # The name is the cached name which is not very easy to test, so instead we load the content. _lowercase : Tuple = json.loads(open(lowerCamelCase, 'r').read()) self.assertEqual(config['hidden_size'], 7_68) def UpperCamelCase ( self) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Tuple = Path(lowerCamelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(lowerCamelCase, 'a.txt'), str(lowerCamelCase)) self.assertIsNone(get_file_from_repo(lowerCamelCase, 'b.txt'))
89
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
'''simple docstring''' def _snake_case ( A ) -> Any: lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator lowerCAmelCase__ = len(A ) if (len(A ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(A ) , '''Postfix'''.center(A ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(A ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(A ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(A ) == 0: stack.append(A ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(A ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(A ) # push x to stack print( x.center(8 ) , (''''''.join(A )).ljust(A ) , (''''''.join(A )).ljust(A ) , sep=''' | ''' , ) # Output in tabular format while len(A ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(A )).ljust(A ) , (''''''.join(A )).ljust(A ) , sep=''' | ''' , ) # Output in tabular format return "".join(A ) # return Postfix as str def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(A ) ): if infix[i] == "(": lowerCAmelCase__ = ''')''' # change "(" to ")" elif infix[i] == ")": lowerCAmelCase__ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(A ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input('''\nEnter an Infix Equation = ''') # Input an Infix equation __UpperCAmelCase = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
90
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
91
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'beit' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any=8192 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : str=3072 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : str=224 , UpperCAmelCase__ : Optional[Any]=16 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[Any]=[3, 5, 7, 11] , UpperCAmelCase__ : List[str]=[1, 2, 3, 6] , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=0.4 , UpperCAmelCase__ : List[Any]=256 , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Optional[int]=255 , **UpperCAmelCase__ : Tuple , ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) lowercase : List[str] =vocab_size lowercase : str =hidden_size lowercase : Any =num_hidden_layers lowercase : List[str] =num_attention_heads lowercase : List[Any] =intermediate_size lowercase : Optional[int] =hidden_act lowercase : Optional[int] =hidden_dropout_prob lowercase : Any =attention_probs_dropout_prob lowercase : List[str] =initializer_range lowercase : int =layer_norm_eps lowercase : str =image_size lowercase : Union[str, Any] =patch_size lowercase : Tuple =num_channels lowercase : List[Any] =use_mask_token lowercase : Optional[int] =use_absolute_position_embeddings lowercase : Any =use_relative_position_bias lowercase : int =use_shared_relative_position_bias lowercase : str =layer_scale_init_value lowercase : int =drop_path_rate lowercase : Optional[int] =use_mean_pooling # decode head attributes (semantic segmentation) lowercase : Dict =out_indices lowercase : int =pool_scales # auxiliary head attributes (semantic segmentation) lowercase : Optional[Any] =use_auxiliary_head lowercase : Optional[int] =auxiliary_loss_weight lowercase : Optional[int] =auxiliary_channels lowercase : Any =auxiliary_num_convs lowercase : Tuple =auxiliary_concat_input lowercase : List[Any] =semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 1E-4
92
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __A = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __A = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Optional[Any] = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_SCREAMING_SNAKE_CASE )[0] @deprecated(_SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' ) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream: lowerCAmelCase__ :List[Any] = _readaa(_SCREAMING_SNAKE_CASE ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowerCAmelCase__ :List[Any] = _readaa(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = _readaa(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = _readaa(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = bytestream.read(rows * cols * num_images ) lowerCAmelCase__ :List[str] = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) lowerCAmelCase__ :int = data.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) return data @deprecated(_SCREAMING_SNAKE_CASE , 'Please use tf.one_hot on tensors.' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Dict = labels_dense.shape[0] lowerCAmelCase__ :List[str] = numpy.arange(_SCREAMING_SNAKE_CASE ) * num_classes lowerCAmelCase__ :Optional[Any] = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase__ :Union[str, Any] = 1 return labels_one_hot @deprecated(_SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 ) ->Tuple: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream: lowerCAmelCase__ :Union[str, Any] = _readaa(_SCREAMING_SNAKE_CASE ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowerCAmelCase__ :Union[str, Any] = _readaa(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = bytestream.read(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return labels class _lowerCAmelCase : """simple docstring""" @deprecated( __UpperCAmelCase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=dtypes.floataa , __UpperCAmelCase=True , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = random_seed.get_seed(__UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase__ :List[Any] = dtypes.as_dtype(__UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowerCAmelCase__ :Any = 1_0_0_0_0 lowerCAmelCase__ :Union[str, Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase__ :Dict = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase__ :Dict = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase__ :List[Any] = images.astype(numpy.floataa ) lowerCAmelCase__ :Optional[int] = numpy.multiply(__UpperCAmelCase , 1.0 / 2_55.0 ) lowerCAmelCase__ :Union[str, Any] = images lowerCAmelCase__ :Any = labels lowerCAmelCase__ :Any = 0 lowerCAmelCase__ :Union[str, Any] = 0 @property def snake_case ( self ): '''simple docstring''' return self._images @property def snake_case ( self ): '''simple docstring''' return self._labels @property def snake_case ( self ): '''simple docstring''' return self._num_examples @property def snake_case ( self ): '''simple docstring''' return self._epochs_completed def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' if fake_data: lowerCAmelCase__ :List[str] = [1] * 7_8_4 lowerCAmelCase__ :Any = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__UpperCAmelCase )], [fake_label for _ in range(__UpperCAmelCase )], ) lowerCAmelCase__ :List[str] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase__ :Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) lowerCAmelCase__ :str = self.images[perma] lowerCAmelCase__ :Optional[int] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase__ :int = self._num_examples - start lowerCAmelCase__ :Any = self._images[start : self._num_examples] lowerCAmelCase__ :Dict = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase__ :Any = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = self.images[perm] lowerCAmelCase__ :Optional[int] = self.labels[perm] # Start next epoch lowerCAmelCase__ :Any = 0 lowerCAmelCase__ :Dict = batch_size - rest_num_examples lowerCAmelCase__ :Optional[Any] = self._index_in_epoch lowerCAmelCase__ :Tuple = self._images[start:end] lowerCAmelCase__ :int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase__ :Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_SCREAMING_SNAKE_CASE , 'Please write your own downloading logic.' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" if not gfile.Exists(_SCREAMING_SNAKE_CASE ): gfile.MakeDirs(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not gfile.Exists(_SCREAMING_SNAKE_CASE ): urllib.request.urlretrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # noqa: S310 with gfile.GFile(_SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase__ :Optional[Any] = f.size() print('Successfully downloaded' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'bytes.' ) return filepath @deprecated( _SCREAMING_SNAKE_CASE , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=dtypes.floataa , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5000 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=DEFAULT_SOURCE_URL , ) ->Tuple: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = fake() lowerCAmelCase__ :Optional[int] = fake() lowerCAmelCase__ :List[str] = fake() return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE ) if not source_url: # empty string check lowerCAmelCase__ :List[str] = DEFAULT_SOURCE_URL lowerCAmelCase__ :List[str] = 'train-images-idx3-ubyte.gz' lowerCAmelCase__ :Dict = 'train-labels-idx1-ubyte.gz' lowerCAmelCase__ :Dict = 't10k-images-idx3-ubyte.gz' lowerCAmelCase__ :Tuple = 't10k-labels-idx1-ubyte.gz' lowerCAmelCase__ :Dict = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_images_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase__ :List[str] = _extract_images(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_labels_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase__ :Tuple = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_images_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase__ :int = _extract_images(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_labels_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase__ :Dict = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE ) if not 0 <= validation_size <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = ( 'Validation size should be between 0 and ' F"{len(_SCREAMING_SNAKE_CASE )}. Received: {validation_size}." ) raise ValueError(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = train_images[:validation_size] lowerCAmelCase__ :Any = train_labels[:validation_size] lowerCAmelCase__ :Union[str, Any] = train_images[validation_size:] lowerCAmelCase__ :Union[str, Any] = train_labels[validation_size:] lowerCAmelCase__ :Any = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowerCAmelCase__ :Optional[int] = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Tuple = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE )
93
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" from ... import PretrainedConfig lowerCamelCase_ = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCamelCase_ (__A ): __magic_name__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ = '''nezha''' def __init__( self : str , lowerCAmelCase_ : str=21_128 , lowerCAmelCase_ : Dict=768 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=3_072 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : List[str]=512 , lowerCAmelCase_ : Union[str, Any]=64 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Union[str, Any]=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : List[str]=True , **lowerCAmelCase_ : str , ) -> Union[str, Any]: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : List[Any] = max_relative_position UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : Dict = classifier_dropout UpperCAmelCase_ : Union[str, Any] = use_cache
95
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : str ) -> List[Any]: __magic_name__: Dict = logging.get_logger() # the current default level is logging.WARNING __magic_name__: List[Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__snake_case ) def lowerCamelCase__ ( self : Any ) -> str: __magic_name__: str = logging.get_verbosity() __magic_name__: int = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) __magic_name__: int = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(__snake_case ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCamelCase__ ( self : Optional[int] ) -> Any: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __magic_name__: str = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) __magic_name__: List[str] = os.getenv("""TRANSFORMERS_VERBOSITY""" , __snake_case ) __magic_name__: Any = logging.log_levels[env_level_str] __magic_name__: Optional[Any] = logging.get_verbosity() self.assertEqual( __snake_case , __snake_case , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level __magic_name__: Optional[Any] = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCamelCase__ ( self : str ) -> Optional[int]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __magic_name__: Tuple = logging.logging.getLogger() with CaptureLogger(__snake_case ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCamelCase__ ( self : Tuple ) -> int: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __magic_name__: Union[str, Any] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) __magic_name__: Any = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(__snake_case ) as cl: logger.warning_advice(__snake_case ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__snake_case ) as cl: logger.warning_advice(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) def a ( ) -> Any: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
96
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Union[str, Any] = 'gptsan-japanese' a :Dict = [ 'past_key_values', ] a :List[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple=3_6_0_0_0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_2_8_0 , SCREAMING_SNAKE_CASE_ : Dict=1_0_2_4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=8_1_9_2 , SCREAMING_SNAKE_CASE_ : str=4_0_9_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE_ : Any=1_0 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : str=1_6 , SCREAMING_SNAKE_CASE_ : int=1_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=1e-5 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]="float32" , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Any=0.0_02 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=3_5_9_9_8 , SCREAMING_SNAKE_CASE_ : str=3_5_9_9_5 , SCREAMING_SNAKE_CASE_ : Any=3_5_9_9_9 , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> int: lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = d_ff lowercase_ = d_ext lowercase_ = d_spout lowercase_ = num_switch_layers lowercase_ = num_ext_layers lowercase_ = num_switch_layers + num_ext_layers lowercase_ = num_heads lowercase_ = num_experts lowercase_ = expert_capacity lowercase_ = dropout_rate lowercase_ = layer_norm_epsilon lowercase_ = router_bias lowercase_ = router_jitter_noise lowercase_ = router_dtype lowercase_ = router_ignore_padding_tokens lowercase_ = output_hidden_states lowercase_ = output_attentions lowercase_ = initializer_factor lowercase_ = output_router_logits lowercase_ = use_cache super().__init__( separator_token_id=SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
97
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
'''simple docstring''' def a__ ( lowercase : int ) -> bool: """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _UpperCamelCase = 4 _UpperCamelCase = (1 << p) - 1 for _ in range(p - 2 ): _UpperCamelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
98
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def a (lowerCAmelCase__ ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def a (lowerCAmelCase__ ): __a = {} __a = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __a = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: __a = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __a = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __a = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) __a = value.float() return upgrade @torch.no_grad() def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=True ): from dall_e import Encoder __a = Encoder() if os.path.exists(lowerCAmelCase__ ): __a = torch.load(lowerCAmelCase__ ) else: __a = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: __a = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: __a = FlavaImageCodebookConfig() __a = FlavaImageCodebook(lowerCAmelCase__ ).eval() __a = encoder.state_dict() __a = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) __a = hf_model.state_dict() __a = count_parameters(lowerCAmelCase__ ) __a = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
99
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> Optional[int]: if attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __snake_case : '''simple docstring''' lowerCamelCase__ : Union[str, Any] = OPTConfig lowerCamelCase__ : str = {} lowerCamelCase__ : List[Any] = """gelu""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=16 , A_=2 , A_=4 , A_=4 , A_="gelu" , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , A_=16 , A_=16 , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = word_embed_proj_dim SCREAMING_SNAKE_CASE__ = False def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=A_ , **self.config_updates , ) SCREAMING_SNAKE_CASE__ = prepare_opt_inputs_dict(A_ , A_ ) return config, inputs_dict def lowercase_ ( self , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFOPTModel(config=A_ ) SCREAMING_SNAKE_CASE__ = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids[:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict['''attention_mask'''][:1, :] SCREAMING_SNAKE_CASE__ = 1 # first forward pass SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , use_cache=A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ )[0] SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1E-3 ) @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ : List[str] = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ : Optional[int] = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ : int = False lowerCamelCase__ : str = False lowerCamelCase__ : str = False lowerCamelCase__ : Tuple = 1_0 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=A_ ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(A_ , A_ ): if hasattr(A_ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(A_ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings SCREAMING_SNAKE_CASE__ = model_class(config=A_ ) SCREAMING_SNAKE_CASE__ = _get_word_embedding_weight(A_ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE__ = _get_word_embedding_weight(A_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(A_ ) SCREAMING_SNAKE_CASE__ = _get_word_embedding_weight(A_ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE__ = _get_word_embedding_weight(A_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , A_ ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE__ = False self.assertTrue(A_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , A_ ) SCREAMING_SNAKE_CASE__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE__ = False self.assertTrue(A_ ) def __snake_case ( lowerCAmelCase_ ) -> List[str]: return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 9_9 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) SCREAMING_SNAKE_CASE__ = input_ids.shape[0] SCREAMING_SNAKE_CASE__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) SCREAMING_SNAKE_CASE__ = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) SCREAMING_SNAKE_CASE__ = tf.not_equal(A_ , model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE__ = model(input_ids=A_ , attention_mask=A_ ).last_hidden_state SCREAMING_SNAKE_CASE__ = (1, 11, 5_12) self.assertEqual(output.shape , A_ ) SCREAMING_SNAKE_CASE__ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , A_ , atol=4E-3 ) ) SCREAMING_SNAKE_CASE__ = tf.function(A_ , jit_compile=A_ ) SCREAMING_SNAKE_CASE__ = xla_generate(A_ , A_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , A_ , atol=4E-2 ) ) @require_tf @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE__ = '''facebook/opt-350m''' def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE__ = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE__ = tokenizer(A_ , return_tensors='''tf''' , padding=A_ , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) SCREAMING_SNAKE_CASE__ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(A_ , A_ , atol=1E-4 ) ) SCREAMING_SNAKE_CASE__ = tf.function(A_ , jit_compile=A_ ) SCREAMING_SNAKE_CASE__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(A_ , A_ , atol=1E-4 ) ) @require_tf @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' @property def lowercase_ ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''facebook/opt-125m''' SCREAMING_SNAKE_CASE__ = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = TFOPTForCausalLM.from_pretrained(A_ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE__ = tokenizer(A_ , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(A_ , max_length=10 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''facebook/opt-350m''' SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = TFOPTForCausalLM.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = '''left''' # use different length sentences to test batching SCREAMING_SNAKE_CASE__ = [ '''Hello, my dog is a little''', '''Today, I''', ] SCREAMING_SNAKE_CASE__ = tokenizer(A_ , return_tensors='''tf''' , padding=A_ ) SCREAMING_SNAKE_CASE__ = inputs['''input_ids'''] SCREAMING_SNAKE_CASE__ = model.generate(input_ids=A_ , attention_mask=inputs['''attention_mask'''] ) SCREAMING_SNAKE_CASE__ = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(input_ids=A_ ) SCREAMING_SNAKE_CASE__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) SCREAMING_SNAKE_CASE__ = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(input_ids=A_ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''facebook/opt-350m''' SCREAMING_SNAKE_CASE__ = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = GPTaTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = TFOPTForCausalLM.from_pretrained(A_ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE__ = tokenizer(A_ , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE__ = model.generate(A_ , max_length=10 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ )
100
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0