code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase__ : Tuple = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase__ : Optional[Any] = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase__ : Tuple = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_1_2,
}
lowerCamelCase__ : Optional[Any] = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-question_encoder-multiset-base""": 5_1_2,
}
lowerCamelCase__ : Dict = {
"""facebook/dpr-reader-single-nq-base""": 5_1_2,
"""facebook/dpr-reader-multiset-base""": 5_1_2,
}
lowerCamelCase__ : Dict = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
lowerCamelCase__ : Any = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
lowerCamelCase__ : List[str] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES
__lowerCAmelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : List[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
__lowerCAmelCase : Any = DPRContextEncoderTokenizer
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES
__lowerCAmelCase : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
__lowerCAmelCase : List[str] = DPRQuestionEncoderTokenizer
lowerCamelCase__ : Any = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
lowerCamelCase__ : int = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
lowerCamelCase__ : Optional[int] = R"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase_ )
class _snake_case :
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
elif titles is None or texts is None:
lowercase__ : Union[str, Any] = titles if texts is None else texts
return super().__call__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[int] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else [titles]
lowercase__ : List[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else [texts]
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else [questions] * n_passages
assert len(SCREAMING_SNAKE_CASE_) == len(
SCREAMING_SNAKE_CASE_), f'There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_)} titles and {len(SCREAMING_SNAKE_CASE_)} texts.'
lowercase__ : Dict = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)["""input_ids"""]
lowercase__ : Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)["""input_ids"""]
lowercase__ : Union[str, Any] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
]
}
if return_attention_mask is not False:
lowercase__ : Optional[int] = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
lowercase__ : List[str] = attention_mask
return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 64 , SCREAMING_SNAKE_CASE_ = 4 , ):
'''simple docstring'''
lowercase__ : Dict = reader_input["""input_ids"""]
lowercase__ , lowercase__ , lowercase__ : str = reader_output[:3]
lowercase__ : List[Any] = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__)
lowercase__ : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
lowercase__ : Dict = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
lowercase__ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowercase__ : int = sequence_ids.index(self.pad_token_id)
else:
lowercase__ : Optional[int] = len(SCREAMING_SNAKE_CASE_)
lowercase__ : int = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(SCREAMING_SNAKE_CASE_) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Tuple = []
for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
lowercase__ : Optional[Any] = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x[1] , reverse=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]'
lowercase__ : Dict = end_index - start_index + 1
assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}'
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(SCREAMING_SNAKE_CASE_) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ):
__lowerCAmelCase : int = VOCAB_FILES_NAMES
__lowerCAmelCase : Optional[Any] = READER_PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : Any = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : Any = READER_PRETRAINED_INIT_CONFIGURATION
__lowerCAmelCase : Optional[Any] = ['input_ids', 'attention_mask']
__lowerCAmelCase : int = DPRReaderTokenizer
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : str = 'philschmid/bart-large-cnn-samsum'
__lowerCAmelCase : List[str] = (
'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '
'and returns a summary of the text.'
)
__lowerCAmelCase : List[Any] = 'summarizer'
__lowerCAmelCase : List[str] = AutoTokenizer
__lowerCAmelCase : int = AutoModelForSeqaSeqLM
__lowerCAmelCase : Tuple = ['text']
__lowerCAmelCase : Union[str, Any] = ['text']
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , truncation=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.model.generate(**SCREAMING_SNAKE_CASE_)[0]
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.pre_processor.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_)
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
@property
def lowercase__ ( self):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ort.SessionOptions()
lowercase__ : Optional[Any] = False
return options
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""")
lowercase__ : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""")
lowercase__ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = """A red cat sitting on a park bench"""
lowercase__ : List[str] = np.random.RandomState(0)
lowercase__ : Tuple = pipe(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , )
lowercase__ : Dict = output.images
lowercase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
lowercase__ : List[str] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""")
lowercase__ : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""")
lowercase__ : Union[str, Any] = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""")
lowercase__ : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : str = """A red cat sitting on a park bench"""
lowercase__ : Optional[int] = np.random.RandomState(0)
lowercase__ : Optional[Any] = pipe(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , )
lowercase__ : Optional[int] = output.images
lowercase__ : Tuple = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
lowercase__ : Union[str, Any] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCamelCase__ : str = None
lowerCamelCase__ : int = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ : List[str] = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase__ : Union[str, Any] = {
"""facebook/nllb-large-en-ro""": 1_0_2_4,
"""facebook/nllb-200-distilled-600M""": 1_0_2_4,
}
# fmt: off
lowerCamelCase__ : Tuple = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : List[str] = VOCAB_FILES_NAMES
__lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : Tuple = ['input_ids', 'attention_mask']
__lowerCAmelCase : List[Any] = NllbTokenizer
__lowerCAmelCase : List[int] = []
__lowerCAmelCase : List[int] = []
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else mask_token
lowercase__ : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , src_lang=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , legacy_behaviour=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = vocab_file
lowercase__ : Any = False if not self.vocab_file else True
lowercase__ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens})
lowercase__ : Optional[Any] = {
lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowercase__ : int = src_lang if src_lang is not None else """eng_Latn"""
lowercase__ : Tuple = self.convert_tokens_to_ids(self._src_lang)
lowercase__ : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def lowercase__ ( self):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : Optional[int] = [self.sep_token_id]
lowercase__ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""")
lowercase__ : Tuple = src_lang
lowercase__ : Any = self(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tgt_lang_id
return inputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "eng_Latn" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "fra_Latn" , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Optional[int] = src_lang
lowercase__ : List[str] = tgt_lang
return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang)
def lowercase__ ( self):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
if self.legacy_behaviour:
lowercase__ : Optional[Any] = []
lowercase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
else:
lowercase__ : Optional[Any] = [self.cur_lang_code]
lowercase__ : Tuple = [self.eos_token_id]
lowercase__ : int = self.convert_ids_to_tokens(self.prefix_tokens)
lowercase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens)
lowercase__ : str = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
if self.legacy_behaviour:
lowercase__ : Dict = []
lowercase__ : Dict = [self.eos_token_id, self.cur_lang_code]
else:
lowercase__ : Tuple = [self.cur_lang_code]
lowercase__ : str = [self.eos_token_id]
lowercase__ : Dict = self.convert_ids_to_tokens(self.prefix_tokens)
lowercase__ : int = self.convert_ids_to_tokens(self.suffix_tokens)
lowercase__ : Optional[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""")
if not os.path.isdir(SCREAMING_SNAKE_CASE_):
logger.error(f'Vocabulary path ({save_directory}) should be a directory.')
return
lowercase__ : List[Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE_):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_)
return (out_vocab_file,)
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
import numpy as np
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ = 1E-12 , lowercase_ = 1_00 , ) -> tuple[float, np.ndarray]:
'''simple docstring'''
assert np.shape(lowercase_ )[0] == np.shape(lowercase_ )[1]
# Ensure proper dimensionality.
assert np.shape(lowercase_ )[0] == np.shape(lowercase_ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowercase_ ) == np.iscomplexobj(lowercase_ )
lowercase__ : Dict = np.iscomplexobj(lowercase_ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowercase_ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
lowercase__ : Optional[Any] = False
lowercase__ : Union[str, Any] = 0
lowercase__ : Tuple = 0
lowercase__ : Dict = 1E12
while not convergence:
# Multiple matrix by the vector.
lowercase__ : Tuple = np.dot(lowercase_ , lowercase_ )
# Normalize the resulting output vector.
lowercase__ : int = w / np.linalg.norm(lowercase_ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
lowercase__ : List[Any] = vector.conj().T if is_complex else vector.T
lowercase__ : Optional[Any] = np.dot(lowercase_ , np.dot(lowercase_ , lowercase_ ) )
# Check convergence.
lowercase__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
lowercase__ : Any = True
lowercase__ : List[str] = lambda_
if is_complex:
lowercase__ : Tuple = np.real(lambda_ )
return lambda_, vector
def UpperCamelCase ( ) -> None:
'''simple docstring'''
lowercase__ : Dict = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
lowercase__ : Any = np.array([41, 4, 20] )
lowercase__ : Optional[int] = real_input_matrix.astype(np.complexaaa )
lowercase__ : Tuple = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
lowercase__ : Any = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
lowercase__ : Tuple = real_input_matrix
lowercase__ : Optional[Any] = real_vector
elif problem_type == "complex":
lowercase__ : Optional[int] = complex_input_matrix
lowercase__ : int = complex_vector
# Our implementation.
lowercase__ , lowercase__ : Tuple = power_iteration(lowercase_ , lowercase_ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
lowercase__ , lowercase__ : Dict = np.linalg.eigh(lowercase_ )
# Last eigenvalue is the maximum one.
lowercase__ : List[Any] = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
lowercase__ : Any = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowercase_ ) - np.abs(lowercase_ ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
def UpperCamelCase ( lowercase_ = 50 ) -> int:
'''simple docstring'''
lowercase__ : List[Any] = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
warnings.warn(
"""The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use FlavaImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} )
__lowerCAmelCase : ClassVar[Features] = Features({'audio': Audio()} )
__lowerCAmelCase : ClassVar[Features] = Features({'labels': ClassLabel} )
__lowerCAmelCase : str = "audio"
__lowerCAmelCase : str = "labels"
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.')
if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE_):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.')
lowercase__ : Union[str, Any] = copy.deepcopy(self)
lowercase__ : Optional[int] = self.label_schema.copy()
lowercase__ : Tuple = features[self.label_column]
lowercase__ : Optional[Any] = label_schema
return task_template
@property
def lowercase__ ( self):
'''simple docstring'''
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
from __future__ import annotations
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
return len(set(lowercase_ ) ) == len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : List[str] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = 'ctrl'
__lowerCAmelCase : Optional[int] = ['past_key_values']
__lowerCAmelCase : Optional[Any] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE_=24_65_34 , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=12_80 , SCREAMING_SNAKE_CASE_=81_92 , SCREAMING_SNAKE_CASE_=48 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-6 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Optional[Any] = vocab_size
lowercase__ : Tuple = n_positions
lowercase__ : Tuple = n_embd
lowercase__ : str = n_layer
lowercase__ : int = n_head
lowercase__ : List[Any] = dff
lowercase__ : str = resid_pdrop
lowercase__ : str = embd_pdrop
lowercase__ : List[str] = layer_norm_epsilon
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Union[str, Any] = use_cache
super().__init__(**SCREAMING_SNAKE_CASE_)
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
lowercase__ : Optional[int] = 1
lowercase__ : Dict = 1
while repunit:
lowercase__ : List[Any] = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def UpperCamelCase ( lowercase_ = 1_00_00_00 ) -> int:
'''simple docstring'''
lowercase__ : Union[str, Any] = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(lowercase_ ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
lowerCamelCase__ : int = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ : int = {
"""vocab_file""": {
"""squeezebert/squeezebert-uncased""": (
"""https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"""
),
"""squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""",
"""squeezebert/squeezebert-mnli-headless""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""squeezebert/squeezebert-uncased""": (
"""https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"""
),
"""squeezebert/squeezebert-mnli""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"""
),
"""squeezebert/squeezebert-mnli-headless""": (
"""https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase__ : Dict = {
"""squeezebert/squeezebert-uncased""": 5_1_2,
"""squeezebert/squeezebert-mnli""": 5_1_2,
"""squeezebert/squeezebert-mnli-headless""": 5_1_2,
}
lowerCamelCase__ : List[str] = {
"""squeezebert/squeezebert-uncased""": {"""do_lower_case""": True},
"""squeezebert/squeezebert-mnli""": {"""do_lower_case""": True},
"""squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True},
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES
__lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION
__lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : Dict = SqueezeBertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("""lowercase""" , SCREAMING_SNAKE_CASE_) != do_lower_case
or normalizer_state.get("""strip_accents""" , SCREAMING_SNAKE_CASE_) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , SCREAMING_SNAKE_CASE_) != tokenize_chinese_chars
):
lowercase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop("""type"""))
lowercase__ : Optional[Any] = do_lower_case
lowercase__ : List[Any] = strip_accents
lowercase__ : List[str] = tokenize_chinese_chars
lowercase__ : Any = normalizer_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = do_lower_case
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : Dict = [self.sep_token_id]
lowercase__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_)
return tuple(SCREAMING_SNAKE_CASE_)
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
from manim import *
class _snake_case ( UpperCAmelCase_ ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = Rectangle(height=0.5 , width=0.5)
lowercase__ : Tuple = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0)
lowercase__ : List[Any] = [mem.copy() for i in range(6)]
lowercase__ : Tuple = [mem.copy() for i in range(6)]
lowercase__ : List[str] = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0)
lowercase__ : Tuple = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0)
lowercase__ : List[Any] = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0)
lowercase__ : Dict = Text("""CPU""" , font_size=24)
lowercase__ : List[str] = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_)
cpu.move_to([-2.5, -0.5, 0])
self.add(SCREAMING_SNAKE_CASE_)
lowercase__ : str = [mem.copy() for i in range(1)]
lowercase__ : Any = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0)
lowercase__ : Optional[int] = Text("""GPU""" , font_size=24)
lowercase__ : Union[str, Any] = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_)
gpu.align_to(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
gpu.set_x(gpu.get_x() - 1)
self.add(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = [mem.copy() for i in range(6)]
lowercase__ : str = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0)
lowercase__ : Optional[Any] = Text("""Model""" , font_size=24)
lowercase__ : Tuple = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_)
model.move_to([3, -1.0, 0])
self.play(
Create(SCREAMING_SNAKE_CASE_ , run_time=1) , Create(SCREAMING_SNAKE_CASE_ , run_time=1) , Create(SCREAMING_SNAKE_CASE_ , run_time=1) , )
lowercase__ : Optional[Any] = MarkupText(
f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , )
lowercase__ : Any = Square(side_length=2.2)
key.move_to([-5, 2, 0])
lowercase__ : Optional[int] = MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0])
step_a.move_to([2, 2, 0])
self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=2.5) , Write(SCREAMING_SNAKE_CASE_) , Write(SCREAMING_SNAKE_CASE_))
self.add(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = []
lowercase__ : Union[str, Any] = []
lowercase__ : str = []
for i, rect in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0.0).set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.7)
cpu_target.move_to(SCREAMING_SNAKE_CASE_)
cpu_target.generate_target()
lowercase__ : Union[str, Any] = 0.4_6 / 4
lowercase__ : Tuple = 0.4_6 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=SCREAMING_SNAKE_CASE_)
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1)
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=SCREAMING_SNAKE_CASE_ , buff=0.0)
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=SCREAMING_SNAKE_CASE_ , buff=0.0)
cpu_targs.append(SCREAMING_SNAKE_CASE_)
first_animations.append(rect.animate(run_time=0.5).set_stroke(SCREAMING_SNAKE_CASE_))
second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE_ , run_time=1.5))
self.play(*SCREAMING_SNAKE_CASE_)
self.play(*SCREAMING_SNAKE_CASE_)
self.wait()
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {
"""post_extract_proj""": """feature_projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.upsample.0""": """encoder.upsample.projection""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """layer_norm""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
for attribute in key.split(""".""" ):
lowercase__ : Union[str, Any] = getattr(lowercase_ , lowercase_ )
if weight_type is not None:
lowercase__ : str = getattr(lowercase_ , lowercase_ ).shape
else:
lowercase__ : Any = hf_pointer.shape
assert hf_shape == value.shape, (
F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
F' {value.shape} for {full_name}'
)
if weight_type == "weight":
lowercase__ : Union[str, Any] = value
elif weight_type == "weight_g":
lowercase__ : str = value
elif weight_type == "weight_v":
lowercase__ : str = value
elif weight_type == "bias":
lowercase__ : Optional[int] = value
else:
lowercase__ : Any = value
logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : List[Any] = []
lowercase__ : Union[str, Any] = fairseq_model.state_dict()
lowercase__ : Any = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
lowercase__ : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == """group""" , )
lowercase__ : str = True
else:
for key, mapped_key in MAPPING.items():
lowercase__ : Optional[int] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
lowercase__ : Tuple = True
if "*" in mapped_key:
lowercase__ : Optional[Any] = name.split(lowercase_ )[0].split(""".""" )[-2]
lowercase__ : Optional[Any] = mapped_key.replace("""*""" , lowercase_ )
if "weight_g" in name:
lowercase__ : Optional[int] = """weight_g"""
elif "weight_v" in name:
lowercase__ : Dict = """weight_v"""
elif "weight" in name:
lowercase__ : List[str] = """weight"""
elif "bias" in name:
lowercase__ : str = """bias"""
else:
lowercase__ : List[Any] = None
set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
continue
if not is_used:
unused_weights.append(lowercase_ )
logger.warning(F'Unused weights: {unused_weights}' )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = full_name.split("""conv_layers.""" )[-1]
lowercase__ : int = name.split(""".""" )
lowercase__ : Union[str, Any] = int(items[0] )
lowercase__ : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
lowercase__ : str = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
lowercase__ : Tuple = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
lowercase__ : Union[str, Any] = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
lowercase__ : Optional[Any] = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : Optional[Any] = SEWConfig()
if is_finetuned:
lowercase__ : Any = model.wav_encoder.wav_model.cfg
else:
lowercase__ : Dict = model.cfg
lowercase__ : Optional[Any] = fs_config.conv_bias
lowercase__ : Tuple = eval(fs_config.conv_feature_layers )
lowercase__ : List[str] = [x[0] for x in conv_layers]
lowercase__ : Dict = [x[1] for x in conv_layers]
lowercase__ : Tuple = [x[2] for x in conv_layers]
lowercase__ : List[str] = """gelu"""
lowercase__ : Union[str, Any] = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
lowercase__ : Union[str, Any] = 0.0
lowercase__ : Tuple = fs_config.activation_fn.name
lowercase__ : Tuple = fs_config.encoder_embed_dim
lowercase__ : List[str] = 0.02
lowercase__ : Optional[Any] = fs_config.encoder_ffn_embed_dim
lowercase__ : Optional[Any] = 1E-5
lowercase__ : List[Any] = fs_config.encoder_layerdrop
lowercase__ : Any = fs_config.encoder_attention_heads
lowercase__ : Any = fs_config.conv_pos_groups
lowercase__ : Dict = fs_config.conv_pos
lowercase__ : List[Any] = len(lowercase_ )
lowercase__ : Union[str, Any] = fs_config.encoder_layers
lowercase__ : Optional[Any] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
lowercase__ : Optional[Any] = model.cfg
lowercase__ : Union[str, Any] = fs_config.final_dropout
lowercase__ : int = fs_config.layerdrop
lowercase__ : int = fs_config.activation_dropout
lowercase__ : Optional[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
lowercase__ : Tuple = fs_config.attention_dropout
lowercase__ : Any = fs_config.dropout_input
lowercase__ : Any = fs_config.dropout
lowercase__ : Dict = fs_config.mask_channel_length
lowercase__ : Optional[int] = fs_config.mask_channel_prob
lowercase__ : Any = fs_config.mask_length
lowercase__ : Dict = fs_config.mask_prob
lowercase__ : Dict = """Wav2Vec2FeatureExtractor"""
lowercase__ : List[Any] = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True ) -> int:
'''simple docstring'''
if is_finetuned:
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
lowercase__ : Optional[Any] = SEWConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = convert_config(model[0] , lowercase_ )
lowercase__ : Dict = model[0].eval()
lowercase__ : Any = True if config.feat_extract_norm == """layer""" else False
lowercase__ : List[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , )
if is_finetuned:
if dict_path:
lowercase__ : Optional[int] = Dictionary.load(lowercase_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowercase__ : List[Any] = target_dict.pad_index
lowercase__ : int = target_dict.bos_index
lowercase__ : Optional[Any] = target_dict.pad_index
lowercase__ : List[str] = target_dict.bos_index
lowercase__ : Optional[int] = target_dict.eos_index
lowercase__ : Union[str, Any] = len(target_dict.symbols )
lowercase__ : Optional[int] = os.path.join(lowercase_ , """vocab.json""" )
if not os.path.isdir(lowercase_ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase_ ) )
return
os.makedirs(lowercase_ , exist_ok=lowercase_ )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , lowercase_ )
lowercase__ : Optional[Any] = WavaVecaCTCTokenizer(
lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase_ , )
lowercase__ : Union[str, Any] = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ )
processor.save_pretrained(lowercase_ )
lowercase__ : List[str] = SEWForCTC(lowercase_ )
else:
lowercase__ : str = SEWModel(lowercase_ )
feature_extractor.save_pretrained(lowercase_ )
recursively_load_weights(lowercase_ , lowercase_ , lowercase_ )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Any = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase__ : Optional[int] = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCamelCase__ : Tuple = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCamelCase__ : List[str] = TaTokenizerFast
lowerCamelCase__ : int = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCamelCase__ : Tuple = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCamelCase__ : List[str] = {
"""configuration_roberta_prelayernorm""": [
"""ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""RobertaPreLayerNormConfig""",
"""RobertaPreLayerNormOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaPreLayerNormForCausalLM""",
"""RobertaPreLayerNormForMaskedLM""",
"""RobertaPreLayerNormForMultipleChoice""",
"""RobertaPreLayerNormForQuestionAnswering""",
"""RobertaPreLayerNormForSequenceClassification""",
"""RobertaPreLayerNormForTokenClassification""",
"""RobertaPreLayerNormModel""",
"""RobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[str] = [
"""TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaPreLayerNormForCausalLM""",
"""TFRobertaPreLayerNormForMaskedLM""",
"""TFRobertaPreLayerNormForMultipleChoice""",
"""TFRobertaPreLayerNormForQuestionAnswering""",
"""TFRobertaPreLayerNormForSequenceClassification""",
"""TFRobertaPreLayerNormForTokenClassification""",
"""TFRobertaPreLayerNormMainLayer""",
"""TFRobertaPreLayerNormModel""",
"""TFRobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[Any] = [
"""FlaxRobertaPreLayerNormForCausalLM""",
"""FlaxRobertaPreLayerNormForMaskedLM""",
"""FlaxRobertaPreLayerNormForMultipleChoice""",
"""FlaxRobertaPreLayerNormForQuestionAnswering""",
"""FlaxRobertaPreLayerNormForSequenceClassification""",
"""FlaxRobertaPreLayerNormForTokenClassification""",
"""FlaxRobertaPreLayerNormModel""",
"""FlaxRobertaPreLayerNormPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[str] = """huggingface/label-files"""
lowercase__ : Optional[int] = """imagenet-1k-id2label.json"""
lowercase__ : int = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) )
lowercase__ : int = {int(lowercase_ ): v for k, v in idalabel.items()}
lowercase__ : List[str] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowercase__ : int = BitConfig(
conv_layer=lowercase_ , num_labels=10_00 , idalabel=lowercase_ , labelaid=lowercase_ , )
return config
def UpperCamelCase ( lowercase_ ) -> Tuple:
'''simple docstring'''
if "stem.conv" in name:
lowercase__ : Optional[int] = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowercase__ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowercase__ : List[str] = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowercase__ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowercase__ : Optional[int] = """bit.encoder.""" + name
return name
def UpperCamelCase ( ) -> Dict:
'''simple docstring'''
lowercase__ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase__ : Union[str, Any] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw )
return im
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=False ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : Tuple = get_config(lowercase_ )
# load original model from timm
lowercase__ : str = create_model(lowercase_ , pretrained=lowercase_ )
timm_model.eval()
# load state_dict of original model
lowercase__ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowercase__ : Optional[Any] = state_dict.pop(lowercase_ )
lowercase__ : Tuple = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowercase__ : List[str] = BitForImageClassification(lowercase_ )
model.eval()
model.load_state_dict(lowercase_ )
# create image processor
lowercase__ : Tuple = create_transform(**resolve_data_config({} , model=lowercase_ ) )
lowercase__ : Any = transform.transforms
lowercase__ : Dict = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowercase__ : Any = BitImageProcessor(
do_resize=lowercase_ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase_ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowercase__ : List[Any] = prepare_img()
lowercase__ : Any = transform(lowercase_ ).unsqueeze(0 )
lowercase__ : str = processor(lowercase_ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase_ , lowercase_ )
# verify logits
with torch.no_grad():
lowercase__ : Any = model(lowercase_ )
lowercase__ : Dict = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowercase__ : List[str] = timm_model(lowercase_ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase_ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if push_to_hub:
print(F'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(F'ybelkada/{model_name}' )
processor.push_to_hub(F'ybelkada/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""resnetv2_50x1_bitm""",
type=str,
help="""Name of the BiT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model to the hub.""",
)
lowerCamelCase__ : Dict = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
from random import shuffle
import tensorflow as tf
from numpy import array
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
assert noofclusters < len(lowercase_ )
# Find out the dimensionality
lowercase__ : Optional[Any] = len(vectors[0] )
# Will help select random centroids from among the available vectors
lowercase__ : Tuple = list(range(len(lowercase_ ) ) )
shuffle(lowercase_ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
lowercase__ : str = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
lowercase__ : Union[str, Any] = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
lowercase__ : Tuple = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ )
]
##These nodes will assign the centroid Variables the appropriate
##values
lowercase__ : int = tf.placeholder("""float64""" , [dim] )
lowercase__ : str = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
lowercase__ : int = [tf.Variable(0 ) for i in range(len(lowercase_ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
lowercase__ : Dict = tf.placeholder("""int32""" )
lowercase__ : Tuple = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
lowercase__ : Union[str, Any] = tf.placeholder("""float""" , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
lowercase__ : Optional[int] = tf.reduce_mean(lowercase_ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
lowercase__ : Any = tf.placeholder("""float""" , [dim] )
lowercase__ : Optional[Any] = tf.placeholder("""float""" , [dim] )
lowercase__ : Optional[int] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
lowercase__ : int = tf.placeholder("""float""" , [noofclusters] )
lowercase__ : Dict = tf.argmin(lowercase_ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
lowercase__ : Optional[Any] = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase_ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
lowercase__ : int = 1_00
for _ in range(lowercase_ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase_ ) ):
lowercase__ : List[Any] = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
lowercase__ : Optional[Any] = [
sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
lowercase__ : Any = sess.run(
lowercase_ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase_ ):
# Collect all the vectors assigned to this cluster
lowercase__ : Optional[Any] = [
vectors[i]
for i in range(len(lowercase_ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
lowercase__ : Dict = sess.run(
lowercase_ , feed_dict={mean_input: array(lowercase_ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
lowercase__ : Optional[Any] = sess.run(lowercase_ )
lowercase__ : List[str] = sess.run(lowercase_ )
return centroids, assignments
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
from __future__ import annotations
from collections import Counter
from random import random
class _snake_case :
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = {}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = {}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE_)
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = probability
def lowercase__ ( self):
'''simple docstring'''
return list(self.connections)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = 0
lowercase__ : List[Any] = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, int]:
'''simple docstring'''
lowercase__ : List[Any] = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(lowercase_ , lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = Counter(graph.get_nodes() )
lowercase__ : Tuple = start
for _ in range(lowercase_ ):
lowercase__ : Optional[Any] = graph.transition(lowercase_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
DiffusionPipeline,
UnCLIPImageVariationPipeline,
UnCLIPScheduler,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = UnCLIPImageVariationPipeline
__lowerCAmelCase : List[Any] = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'}
__lowerCAmelCase : Optional[int] = IMAGE_VARIATION_BATCH_PARAMS
__lowerCAmelCase : Tuple = [
'generator',
'return_dict',
'decoder_num_inference_steps',
'super_res_num_inference_steps',
]
__lowerCAmelCase : int = False
@property
def lowercase__ ( self):
'''simple docstring'''
return 32
@property
def lowercase__ ( self):
'''simple docstring'''
return 32
@property
def lowercase__ ( self):
'''simple docstring'''
return self.time_input_dim
@property
def lowercase__ ( self):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowercase__ ( self):
'''simple docstring'''
return 1_00
@property
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
return tokenizer
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : Any = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )
return CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : List[Any] = {
"""clip_embeddings_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""cross_attention_dim""": self.cross_attention_dim,
}
lowercase__ : List[str] = UnCLIPTextProjModel(**SCREAMING_SNAKE_CASE_)
return model
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : List[str] = {
"""sample_size""": 32,
# RGB in channels
"""in_channels""": 3,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 6,
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": """identity""",
}
lowercase__ : Optional[int] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_)
return model
@property
def lowercase__ ( self):
'''simple docstring'''
return {
"sample_size": 64,
"layers_per_block": 1,
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"in_channels": 6,
"out_channels": 3,
}
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs)
return model
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(1)
lowercase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs)
return model
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.dummy_decoder
lowercase__ : Any = self.dummy_text_proj
lowercase__ : Optional[int] = self.dummy_text_encoder
lowercase__ : Optional[int] = self.dummy_tokenizer
lowercase__ : Tuple = self.dummy_super_res_first
lowercase__ : List[Any] = self.dummy_super_res_last
lowercase__ : Optional[Any] = UnCLIPScheduler(
variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=10_00 , )
lowercase__ : Dict = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=10_00 , )
lowercase__ : Tuple = CLIPImageProcessor(crop_size=32 , size=32)
lowercase__ : List[str] = self.dummy_image_encoder
return {
"decoder": decoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_proj": text_proj,
"feature_extractor": feature_extractor,
"image_encoder": image_encoder,
"super_res_first": super_res_first,
"super_res_last": super_res_last,
"decoder_scheduler": decoder_scheduler,
"super_res_scheduler": super_res_scheduler,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=True):
'''simple docstring'''
lowercase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_)).to(SCREAMING_SNAKE_CASE_)
if str(SCREAMING_SNAKE_CASE_).startswith("""mps"""):
lowercase__ : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
else:
lowercase__ : int = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(SCREAMING_SNAKE_CASE_)
if pil_image:
lowercase__ : Any = input_image * 0.5 + 0.5
lowercase__ : Any = input_image.clamp(0 , 1)
lowercase__ : Tuple = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
lowercase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(SCREAMING_SNAKE_CASE_)[0]
return {
"image": input_image,
"generator": generator,
"decoder_num_inference_steps": 2,
"super_res_num_inference_steps": 2,
"output_type": "np",
}
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = """cpu"""
lowercase__ : List[str] = self.get_dummy_components()
lowercase__ : int = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = output.images
lowercase__ : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = pipe(
**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
lowercase__ : Any = image[0, -3:, -3:, -1]
lowercase__ : List[str] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase__ : str = np.array(
[
0.9_9_9_7,
0.0_0_0_2,
0.9_9_9_7,
0.9_9_9_7,
0.9_9_6_9,
0.0_0_2_3,
0.9_9_9_7,
0.9_9_6_9,
0.9_9_7_0,
])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = """cpu"""
lowercase__ : Optional[int] = self.get_dummy_components()
lowercase__ : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = pipe(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = output.images
lowercase__ : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_)
lowercase__ : int = pipe(
**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
lowercase__ : Optional[Any] = image[0, -3:, -3:, -1]
lowercase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = """cpu"""
lowercase__ : Union[str, Any] = self.get_dummy_components()
lowercase__ : str = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = [
pipeline_inputs["""image"""],
pipeline_inputs["""image"""],
]
lowercase__ : List[str] = pipe(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = output.images
lowercase__ : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_)
lowercase__ : str = [
tuple_pipeline_inputs["""image"""],
tuple_pipeline_inputs["""image"""],
]
lowercase__ : Optional[int] = pipe(
**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
lowercase__ : Optional[Any] = image[0, -3:, -3:, -1]
lowercase__ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
lowercase__ : List[str] = np.array(
[
0.9_9_9_7,
0.9_9_8_9,
0.0_0_0_8,
0.0_0_2_1,
0.9_9_6_0,
0.0_0_1_8,
0.0_0_1_4,
0.0_0_0_2,
0.9_9_3_3,
])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = torch.device("""cpu""")
class _snake_case :
__lowerCAmelCase : Optional[Any] = 1
lowercase__ : int = self.get_dummy_components()
lowercase__ : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0)
lowercase__ : List[str] = pipe.decoder.dtype
lowercase__ : int = 1
lowercase__ : Dict = (
batch_size,
pipe.decoder.config.in_channels,
pipe.decoder.config.sample_size,
pipe.decoder.config.sample_size,
)
lowercase__ : Tuple = pipe.prepare_latents(
SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , scheduler=DummyScheduler())
lowercase__ : Tuple = (
batch_size,
pipe.super_res_first.config.in_channels // 2,
pipe.super_res_first.config.sample_size,
pipe.super_res_first.config.sample_size,
)
lowercase__ : str = pipe.prepare_latents(
SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , scheduler=DummyScheduler())
lowercase__ : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = pipe(
**SCREAMING_SNAKE_CASE_ , decoder_latents=SCREAMING_SNAKE_CASE_ , super_res_latents=SCREAMING_SNAKE_CASE_).images
lowercase__ : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ , pil_image=SCREAMING_SNAKE_CASE_)
# Don't pass image, instead pass embedding
lowercase__ : List[str] = pipeline_inputs.pop("""image""")
lowercase__ : Optional[int] = pipe.image_encoder(SCREAMING_SNAKE_CASE_).image_embeds
lowercase__ : Union[str, Any] = pipe(
**SCREAMING_SNAKE_CASE_ , decoder_latents=SCREAMING_SNAKE_CASE_ , super_res_latents=SCREAMING_SNAKE_CASE_ , image_embeddings=SCREAMING_SNAKE_CASE_ , ).images
# make sure passing text embeddings manually is identical
assert np.abs(img_out_a - img_out_a).max() < 1E-4
@skip_mps
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = torch_device == """cpu"""
# Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
lowercase__ : str = 1E-2
self._test_attention_slicing_forward_pass(
test_max_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=SCREAMING_SNAKE_CASE_)
@skip_mps
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch_device == """cpu"""
lowercase__ : Optional[int] = True
lowercase__ : Tuple = [
"""decoder_num_inference_steps""",
"""super_res_num_inference_steps""",
]
self._test_inference_batch_single_identical(
test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = [
"""decoder_num_inference_steps""",
"""super_res_num_inference_steps""",
]
if torch_device == "mps":
# TODO: MPS errors with larger batch sizes
lowercase__ : Optional[int] = [2, 3]
self._test_inference_batch_consistent(
batch_sizes=SCREAMING_SNAKE_CASE_ , additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE_ , )
else:
self._test_inference_batch_consistent(
additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE_)
@skip_mps
def lowercase__ ( self):
'''simple docstring'''
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def lowercase__ ( self):
'''simple docstring'''
return super().test_save_load_local()
@skip_mps
def lowercase__ ( self):
'''simple docstring'''
return super().test_save_load_optional_components()
@slow
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""")
lowercase__ : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/unclip/karlo_v1_alpha_cat_variation_fp16.npy""")
lowercase__ : str = UnCLIPImageVariationPipeline.from_pretrained(
"""kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa)
lowercase__ : Optional[int] = pipeline.to(SCREAMING_SNAKE_CASE_)
pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = torch.Generator(device="""cpu""").manual_seed(0)
lowercase__ : int = pipeline(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , )
lowercase__ : str = output.images[0]
assert image.shape == (2_56, 2_56, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 15)
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ ) -> float:
'''simple docstring'''
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f'''{price_plus_tax(1_0_0, 0.25) = }''')
print(f'''{price_plus_tax(125.50, 0.05) = }''')
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ : Union[str, Any] = {
"""configuration_chinese_clip""": [
"""CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""ChineseCLIPConfig""",
"""ChineseCLIPOnnxConfig""",
"""ChineseCLIPTextConfig""",
"""ChineseCLIPVisionConfig""",
],
"""processing_chinese_clip""": ["""ChineseCLIPProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[Any] = ["""ChineseCLIPFeatureExtractor"""]
lowerCamelCase__ : Optional[int] = ["""ChineseCLIPImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[str] = [
"""CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ChineseCLIPModel""",
"""ChineseCLIPPreTrainedModel""",
"""ChineseCLIPTextModel""",
"""ChineseCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
lowerCamelCase__ : int = {
"""tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""",
"""tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""",
"""base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""",
"""base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""",
"""small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""",
"""small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""",
"""medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""",
"""medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""",
"""large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""",
"""large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""",
}
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : int = ["""layers""", """blocks"""]
for k in ignore_keys:
state_dict.pop(lowercase_ , lowercase_ )
lowerCamelCase__ : Optional[Any] = {
"""blocks""": """layers""",
"""mlp.0""": """fc1""",
"""mlp.2""": """fc2""",
"""mlp_ln""": """final_layer_norm""",
""".attn.query""": """.self_attn.q_proj""",
""".attn.key""": """.self_attn.k_proj""",
""".attn.value""": """.self_attn.v_proj""",
""".attn_ln""": """.self_attn_layer_norm""",
""".attn.out""": """.self_attn.out_proj""",
""".cross_attn.query""": """.encoder_attn.q_proj""",
""".cross_attn.key""": """.encoder_attn.k_proj""",
""".cross_attn.value""": """.encoder_attn.v_proj""",
""".cross_attn_ln""": """.encoder_attn_layer_norm""",
""".cross_attn.out""": """.encoder_attn.out_proj""",
"""decoder.ln.""": """decoder.layer_norm.""",
"""encoder.ln.""": """encoder.layer_norm.""",
"""token_embedding""": """embed_tokens""",
"""encoder.positional_embedding""": """encoder.embed_positions.weight""",
"""decoder.positional_embedding""": """decoder.embed_positions.weight""",
"""ln_post""": """layer_norm""",
}
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : str = list(s_dict.keys() )
for key in keys:
lowercase__ : int = key
for k, v in WHISPER_MAPPING.items():
if k in key:
lowercase__ : Union[str, Any] = new_key.replace(lowercase_ , lowercase_ )
print(F'{key} -> {new_key}' )
lowercase__ : List[str] = s_dict.pop(lowercase_ )
return s_dict
def UpperCamelCase ( lowercase_ ) -> List[str]:
'''simple docstring'''
lowercase__ , lowercase__ : int = emb.weight.shape
lowercase__ : List[Any] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ )
lowercase__ : Any = emb.weight.data
return lin_layer
def UpperCamelCase ( lowercase_ , lowercase_ ) -> bytes:
'''simple docstring'''
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowercase__ : List[str] = os.path.basename(lowercase_ )
lowercase__ : Union[str, Any] = url.split("""/""" )[-2]
lowercase__ : int = os.path.join(lowercase_ , lowercase_ )
if os.path.exists(lowercase_ ) and not os.path.isfile(lowercase_ ):
raise RuntimeError(F'{download_target} exists and is not a regular file' )
if os.path.isfile(lowercase_ ):
lowercase__ : Tuple = open(lowercase_ , """rb""" ).read()
if hashlib.shaaaa(lowercase_ ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' )
with urllib.request.urlopen(lowercase_ ) as source, open(lowercase_ , """wb""" ) as output:
with tqdm(
total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowercase_ , unit_divisor=10_24 ) as loop:
while True:
lowercase__ : str = source.read(81_92 )
if not buffer:
break
output.write(lowercase_ )
loop.update(len(lowercase_ ) )
lowercase__ : Tuple = open(lowercase_ , """rb""" ).read()
if hashlib.shaaaa(lowercase_ ).hexdigest() != expected_shaaaa:
raise RuntimeError(
"""Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" )
return model_bytes
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
if ".pt" not in checkpoint_path:
lowercase__ : Dict = _download(_MODELS[checkpoint_path] )
else:
lowercase__ : str = torch.load(lowercase_ , map_location="""cpu""" )
lowercase__ : List[Any] = original_checkpoint["""dims"""]
lowercase__ : Optional[Any] = original_checkpoint["""model_state_dict"""]
lowercase__ : str = state_dict["""decoder.token_embedding.weight"""]
remove_ignore_keys_(lowercase_ )
rename_keys(lowercase_ )
lowercase__ : Any = True
lowercase__ : Any = state_dict["""decoder.layers.0.fc1.weight"""].shape[0]
lowercase__ : int = WhisperConfig(
vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowercase_ , decoder_ffn_dim=lowercase_ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , )
lowercase__ : Optional[Any] = WhisperForConditionalGeneration(lowercase_ )
lowercase__ , lowercase__ : int = model.model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0 and not set(lowercase_ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
F' but all the following weights are missing {missing}' )
if tie_embeds:
lowercase__ : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowercase__ : Tuple = proj_out_weights
model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = argparse.ArgumentParser()
# # Required parameters
parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
lowerCamelCase__ : Optional[Any] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[str] = logging.get_logger(__name__)
lowerCamelCase__ : str = {
"""facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""",
"""facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""",
"""facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""",
"""facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""",
"""facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""",
"""facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""",
"""facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""",
"""facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""",
"""facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""",
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = 'xmod'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=("en_XX",) , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = vocab_size
lowercase__ : Any = hidden_size
lowercase__ : List[Any] = num_hidden_layers
lowercase__ : List[Any] = num_attention_heads
lowercase__ : Union[str, Any] = hidden_act
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_dropout_prob
lowercase__ : Dict = attention_probs_dropout_prob
lowercase__ : Union[str, Any] = max_position_embeddings
lowercase__ : Union[str, Any] = type_vocab_size
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[int] = position_embedding_type
lowercase__ : List[str] = use_cache
lowercase__ : Tuple = classifier_dropout
lowercase__ : Any = pre_norm
lowercase__ : Any = adapter_reduction_factor
lowercase__ : str = adapter_layer_norm
lowercase__ : str = adapter_reuse_layer_norm
lowercase__ : Any = ln_before_adapter
lowercase__ : List[Any] = list(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = default_language
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : int = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> list[float]:
'''simple docstring'''
lowercase__ , lowercase__ : Optional[Any] = coefficient_matrix.shape
lowercase__ , lowercase__ : str = constant_matrix.shape
if rowsa != colsa:
lowercase__ : Optional[int] = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'
raise ValueError(lowercase_ )
if colsa != 1:
lowercase__ : List[str] = F'Constant matrix must be nx1 but received {rowsa}x{colsa}'
raise ValueError(lowercase_ )
if rowsa != rowsa:
lowercase__ : List[str] = (
"""Coefficient and constant matrices dimensions must be nxn and nx1 but """
F'received {rowsa}x{colsa} and {rowsa}x{colsa}'
)
raise ValueError(lowercase_ )
if len(lowercase_ ) != rowsa:
lowercase__ : Dict = (
"""Number of initial values must be equal to number of rows in coefficient """
F'matrix but received {len(lowercase_ )} and {rowsa}'
)
raise ValueError(lowercase_ )
if iterations <= 0:
raise ValueError("""Iterations must be at least 1""" )
lowercase__ : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
lowercase__ , lowercase__ : Dict = table.shape
strictly_diagonally_dominant(lowercase_ )
# Iterates the whole matrix for given number of times
for _ in range(lowercase_ ):
lowercase__ : List[Any] = []
for row in range(lowercase_ ):
lowercase__ : Optional[int] = 0
for col in range(lowercase_ ):
if col == row:
lowercase__ : Optional[int] = table[row][col]
elif col == cols - 1:
lowercase__ : Optional[Any] = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
lowercase__ : Dict = (temp + val) / denom
new_val.append(lowercase_ )
lowercase__ : Any = new_val
return [float(lowercase_ ) for i in new_val]
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
lowercase__ , lowercase__ : Any = table.shape
lowercase__ : str = True
for i in range(0 , lowercase_ ):
lowercase__ : List[Any] = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def UpperCamelCase ( ) -> None:
'''simple docstring'''
print("""Making key files...""" )
make_key_files("""rsa""" , 10_24 )
print("""Key files generation successful.""" )
def UpperCamelCase ( lowercase_ ) -> tuple[tuple[int, int], tuple[int, int]]:
'''simple docstring'''
print("""Generating prime p...""" )
lowercase__ : Dict = rabinMiller.generate_large_prime(lowercase_ )
print("""Generating prime q...""" )
lowercase__ : List[str] = rabinMiller.generate_large_prime(lowercase_ )
lowercase__ : int = p * q
print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" )
while True:
lowercase__ : List[Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(lowercase_ , (p - 1) * (q - 1) ) == 1:
break
print("""Calculating d that is mod inverse of e...""" )
lowercase__ : Dict = cryptoMath.find_mod_inverse(lowercase_ , (p - 1) * (q - 1) )
lowercase__ : Tuple = (n, e)
lowercase__ : Union[str, Any] = (n, d)
return (public_key, private_key)
def UpperCamelCase ( lowercase_ , lowercase_ ) -> None:
'''simple docstring'''
if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ):
print("""\nWARNING:""" )
print(
F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
"""Use a different name or delete these files and re-run this program.""" )
sys.exit()
lowercase__ , lowercase__ : List[Any] = generate_key(lowercase_ )
print(F'\nWriting public key to file {name}_pubkey.txt...' )
with open(F'{name}_pubkey.txt' , """w""" ) as out_file:
out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' )
print(F'Writing private key to file {name}_privkey.txt...' )
with open(F'{name}_privkey.txt' , """w""" ) as out_file:
out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' )
if __name__ == "__main__":
main()
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowercase__ : Union[str, Any] = 0
for i in range(1 , 10_01 ):
total += i**i
return str(lowercase_ )[-10:]
if __name__ == "__main__":
print(solution())
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCamelCase__ : str = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Tuple = CodeGenTokenizer
__lowerCAmelCase : Optional[int] = CodeGenTokenizerFast
__lowerCAmelCase : Any = True
__lowerCAmelCase : Tuple = {'add_prefix_space': True}
__lowerCAmelCase : str = False
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase__ : Union[str, Any] = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
"""<|endoftext|>""",
]
lowercase__ : int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_))))
lowercase__ : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
lowercase__ : Dict = {"""unk_token""": """<unk>"""}
lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_) + """\n""")
with open(self.merges_file , """w""" , encoding="""utf-8""") as fp:
fp.write("""\n""".join(SCREAMING_SNAKE_CASE_))
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = """lower newer"""
lowercase__ : Optional[Any] = """lower newer"""
return input_text, output_text
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map)
lowercase__ : List[Any] = """lower newer"""
lowercase__ : str = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
lowercase__ : Dict = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokens + [tokenizer.unk_token]
lowercase__ : int = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowercase__ : str = self.get_tokenizer()
lowercase__ : List[str] = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = """lower newer"""
# Testing tokenization
lowercase__ : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : int = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# Testing conversion to ids without special tokens
lowercase__ : str = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# Testing conversion to ids with special tokens
lowercase__ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# Testing the unknown token
lowercase__ : Optional[int] = tokens + [rust_tokenizer.unk_token]
lowercase__ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
pass
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=15):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
# Simple input
lowercase__ : Optional[int] = """This is a simple input"""
lowercase__ : Any = ["""This is a simple input 1""", """This is a simple input 2"""]
lowercase__ : Optional[Any] = ("""This is a simple input""", """This is a pair""")
lowercase__ : int = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""")
# Simple input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""")
# Simple input
self.assertRaises(
SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" , )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""")
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""")
# Pair input
self.assertRaises(
SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""")
# Simple input
lowercase__ : Dict = """This is a simple input"""
lowercase__ : Optional[int] = ["""This is a simple input looooooooong""", """This is a simple input"""]
lowercase__ : List[str] = ("""This is a simple input""", """This is a pair""")
lowercase__ : Any = [
("""This is a simple input loooooong""", """This is a simple input"""),
("""This is a simple pair loooooong""", """This is a simple pair"""),
]
lowercase__ : Union[str, Any] = tokenizer.pad_token_id
lowercase__ : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=30 , return_tensors="""np""")
lowercase__ : Any = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors="""np""")
lowercase__ : List[Any] = tokenizer(*SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=60 , return_tensors="""np""")
lowercase__ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors="""np""")
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 30)
self.assertTrue(pad_token_id in out_s["""input_ids"""])
self.assertTrue(0 in out_s["""attention_mask"""])
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33)
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0])
self.assertFalse(0 in out_sa["""attention_mask"""][0])
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1])
self.assertTrue(0 in out_sa["""attention_mask"""][1])
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 60)
self.assertTrue(pad_token_id in out_p["""input_ids"""])
self.assertTrue(0 in out_p["""attention_mask"""])
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52)
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0])
self.assertFalse(0 in out_pa["""attention_mask"""][0])
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1])
self.assertTrue(0 in out_pa["""attention_mask"""][1])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = """$$$"""
lowercase__ : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE_ , add_bos_token=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = """This is a simple input"""
lowercase__ : Dict = ["""This is a simple input 1""", """This is a simple input 2"""]
lowercase__ : Optional[Any] = tokenizer.bos_token_id
lowercase__ : Any = tokenizer(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer(SCREAMING_SNAKE_CASE_)
self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE_)
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids))
lowercase__ : Any = tokenizer.decode(out_s.input_ids)
lowercase__ : int = tokenizer.batch_decode(out_sa.input_ids)
self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE_)
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa))
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""")
lowercase__ : Optional[Any] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"""
lowercase__ : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b"""
lowercase__ : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>"""), """^'''""", """^\"\"\"""", """\n\n\n"""]
lowercase__ : int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , truncate_before_pattern=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
pass
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
return abs(lowercase_ ) if a == 0 else greatest_common_divisor(b % a , lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
while y: # --> when y=0 then loop will terminate and return x as final GCD.
lowercase__ , lowercase__ : Tuple = y, x % y
return abs(lowercase_ )
def UpperCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
try:
lowercase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" )
lowercase__ : str = int(nums[0] )
lowercase__ : Dict = int(nums[1] )
print(
F'greatest_common_divisor({num_a}, {num_a}) = '
F'{greatest_common_divisor(lowercase_ , lowercase_ )}' )
print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowercase_ , lowercase_ )}' )
except (IndexError, UnboundLocalError, ValueError):
print("""Wrong input""" )
if __name__ == "__main__":
main()
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
from math import sqrt
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(lowercase_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCamelCase ( lowercase_ = 1_00_01 ) -> int:
'''simple docstring'''
lowercase__ : int = 0
lowercase__ : Dict = 1
while count != nth and number < 3:
number += 1
if is_prime(lowercase_ ):
count += 1
while count != nth:
number += 2
if is_prime(lowercase_ ):
count += 1
return number
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : Tuple = s.rsplit(lowercase_ , lowercase_ )
return new.join(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Tuple = {}
lowercase__ : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase__ : Tuple = key.replace(F'{group_key}.' , F'{group_key}.group.' )
if "res_path" in key:
lowercase__ : Any = key.replace("""res_path.""" , """res_path.path.""" )
if key.endswith(""".w""" ):
lowercase__ : Tuple = rreplace(lowercase_ , """.w""" , """.weight""" , 1 )
if key.endswith(""".b""" ):
lowercase__ : Dict = rreplace(lowercase_ , """.b""" , """.bias""" , 1 )
lowercase__ : Any = value.float()
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=True ) -> Union[str, Any]:
'''simple docstring'''
from dall_e import Encoder
lowercase__ : List[str] = Encoder()
if os.path.exists(lowercase_ ):
lowercase__ : str = torch.load(lowercase_ )
else:
lowercase__ : Any = torch.hub.load_state_dict_from_url(lowercase_ )
if isinstance(lowercase_ , lowercase_ ):
lowercase__ : Tuple = ckpt.state_dict()
encoder.load_state_dict(lowercase_ )
if config_path is not None:
lowercase__ : List[str] = FlavaImageCodebookConfig.from_pretrained(lowercase_ )
else:
lowercase__ : int = FlavaImageCodebookConfig()
lowercase__ : Tuple = FlavaImageCodebook(lowercase_ ).eval()
lowercase__ : int = encoder.state_dict()
lowercase__ : Tuple = upgrade_state_dict(lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Tuple = hf_model.state_dict()
lowercase__ : Any = count_parameters(lowercase_ )
lowercase__ : Dict = count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
if save_checkpoint:
hf_model.save_pretrained(lowercase_ )
else:
return hf_state_dict
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
lowerCamelCase__ : List[Any] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""")
lowerCamelCase__ : Optional[int] = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split()
lowerCamelCase__ : Tuple = """|""".join(sys.argv[1:])
lowerCamelCase__ : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''')
lowerCamelCase__ : int = [x for x in modified_files if regex.match(x)]
print(""" """.join(relevant_modified_files), end="""""")
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
assert isinstance(lowercase_ , lowercase_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : Tuple = tmp_path / """cache"""
lowercase__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase__ : Optional[int] = SqlDatasetReader(
"""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read()
_check_sql_dataset(lowercase_ , lowercase_ )
@require_sqlalchemy
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : Optional[int] = tmp_path / """cache"""
lowercase__ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowercase__ : Optional[int] = features.copy() if features else default_expected_features
lowercase__ : str = (
Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase__ : Tuple = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=lowercase_ , cache_dir=lowercase_ ).read()
_check_sql_dataset(lowercase_ , lowercase_ )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
with contextlib.closing(sqlitea.connect(lowercase_ ) ) as con:
lowercase__ : str = con.cursor()
cur.execute("""SELECT * FROM dataset""" )
for row in cur:
yield row
@require_sqlalchemy
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : str = tmp_path / """cache"""
lowercase__ : Optional[Any] = os.path.join(lowercase_ , """tmp.sql""" )
lowercase__ : Union[str, Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read()
SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write()
lowercase__ : Optional[Any] = iter_sql_file(lowercase_ )
lowercase__ : int = iter_sql_file(lowercase_ )
for rowa, rowa in zip(lowercase_ , lowercase_ ):
assert rowa == rowa
@require_sqlalchemy
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : List[str] = tmp_path / """cache"""
lowercase__ : str = os.path.join(lowercase_ , """tmp.sql""" )
lowercase__ : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read()
SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write()
lowercase__ : List[Any] = iter_sql_file(lowercase_ )
lowercase__ : Tuple = iter_sql_file(lowercase_ )
for rowa, rowa in zip(lowercase_ , lowercase_ ):
assert rowa == rowa
@require_sqlalchemy
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : Tuple = tmp_path / """cache"""
lowercase__ : Union[str, Any] = os.path.join(lowercase_ , """tmp.sql""" )
lowercase__ : Dict = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read()
with pytest.raises(lowercase_ ):
SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
from __future__ import annotations
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
print(F'Vertex\tShortest Distance from vertex {src}' )
for i, d in enumerate(lowercase_ ):
print(F'{i}\t\t{d}' )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
for j in range(lowercase_ ):
lowercase__ , lowercase__ , lowercase__ : str = (graph[j][k] for k in ["""src""", """dst""", """weight"""])
if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]:
return True
return False
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list[float]:
'''simple docstring'''
lowercase__ : Tuple = [float("""inf""" )] * vertex_count
lowercase__ : Optional[int] = 0.0
for _ in range(vertex_count - 1 ):
for j in range(lowercase_ ):
lowercase__ , lowercase__ , lowercase__ : int = (graph[j][k] for k in ["""src""", """dst""", """weight"""])
if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]:
lowercase__ : Optional[Any] = distance[u] + w
lowercase__ : Union[str, Any] = check_negative_cycle(lowercase_ , lowercase_ , lowercase_ )
if negative_cycle_exists:
raise Exception("""Negative cycle found""" )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ : Dict = int(input("""Enter number of vertices: """).strip())
lowerCamelCase__ : Tuple = int(input("""Enter number of edges: """).strip())
lowerCamelCase__ : list[dict[str, int]] = [{} for _ in range(E)]
for i in range(E):
print("""Edge """, i + 1)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = (
int(x)
for x in input("""Enter source, destination, weight: """).strip().split(""" """)
)
lowerCamelCase__ : Union[str, Any] = {"""src""": src, """dst""": dest, """weight""": weight}
lowerCamelCase__ : Union[str, Any] = int(input("""\nEnter shortest path source:""").strip())
lowerCamelCase__ : Any = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
lowerCamelCase__ : int = [
(1_0_0_0, """M"""),
(9_0_0, """CM"""),
(5_0_0, """D"""),
(4_0_0, """CD"""),
(1_0_0, """C"""),
(9_0, """XC"""),
(5_0, """L"""),
(4_0, """XL"""),
(1_0, """X"""),
(9, """IX"""),
(5, """V"""),
(4, """IV"""),
(1, """I"""),
]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : List[str] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00}
lowercase__ : Optional[Any] = 0
lowercase__ : Any = 0
while place < len(lowercase_ ):
if (place + 1 < len(lowercase_ )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : List[str] = []
for arabic, roman in ROMAN:
((lowercase__) , (lowercase__)) : Tuple = divmod(lowercase_ , lowercase_ )
result.append(roman * factor )
if number == 0:
break
return "".join(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
from math import factorial
lowerCamelCase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)}
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError("""Parameter number must be int""" )
if number < 0:
raise ValueError("""Parameter number must be greater than or equal to 0""" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase_ ) )
def UpperCamelCase ( lowercase_ = 60 , lowercase_ = 1_00_00_00 ) -> int:
'''simple docstring'''
if not isinstance(lowercase_ , lowercase_ ) or not isinstance(lowercase_ , lowercase_ ):
raise TypeError("""Parameters chain_length and number_limit must be int""" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"""Parameters chain_length and number_limit must be greater than 0""" )
# the counter for the chains with the exact desired length
lowercase__ : str = 0
# the cached sizes of the previous chains
lowercase__ : dict[int, int] = {}
for start_chain_element in range(1 , lowercase_ ):
# The temporary set will contain the elements of the chain
lowercase__ : Dict = set()
lowercase__ : Dict = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
lowercase__ : Optional[Any] = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(lowercase_ )
chain_set_length += 1
lowercase__ : Any = digit_factorial_sum(lowercase_ )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
lowercase__ : Union[str, Any] = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'''{solution()}''')
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
lowerCamelCase__ : Tuple = {
"""Pillow""": """Pillow""",
"""accelerate""": """accelerate>=0.11.0""",
"""compel""": """compel==0.1.8""",
"""black""": """black~=23.1""",
"""datasets""": """datasets""",
"""filelock""": """filelock""",
"""flax""": """flax>=0.4.1""",
"""hf-doc-builder""": """hf-doc-builder>=0.3.0""",
"""huggingface-hub""": """huggingface-hub>=0.13.2""",
"""requests-mock""": """requests-mock==1.10.0""",
"""importlib_metadata""": """importlib_metadata""",
"""invisible-watermark""": """invisible-watermark""",
"""isort""": """isort>=5.5.4""",
"""jax""": """jax>=0.2.8,!=0.3.2""",
"""jaxlib""": """jaxlib>=0.1.65""",
"""Jinja2""": """Jinja2""",
"""k-diffusion""": """k-diffusion>=0.0.12""",
"""torchsde""": """torchsde""",
"""note_seq""": """note_seq""",
"""librosa""": """librosa""",
"""numpy""": """numpy""",
"""omegaconf""": """omegaconf""",
"""parameterized""": """parameterized""",
"""protobuf""": """protobuf>=3.20.3,<4""",
"""pytest""": """pytest""",
"""pytest-timeout""": """pytest-timeout""",
"""pytest-xdist""": """pytest-xdist""",
"""ruff""": """ruff>=0.0.241""",
"""safetensors""": """safetensors""",
"""sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""",
"""scipy""": """scipy""",
"""onnx""": """onnx""",
"""regex""": """regex!=2019.12.17""",
"""requests""": """requests""",
"""tensorboard""": """tensorboard""",
"""torch""": """torch>=1.4""",
"""torchvision""": """torchvision""",
"""transformers""": """transformers>=4.25.1""",
"""urllib3""": """urllib3<=2.0.0""",
}
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
lowerCamelCase__ : Union[str, Any] = """3"""
print("""Python version:""", sys.version)
print("""transformers version:""", transformers.__version__)
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
print("""NCCL version:""", torch.cuda.nccl.version())
except ImportError:
print("""Torch version:""", None)
try:
import deepspeed
print("""DeepSpeed version:""", deepspeed.__version__)
except ImportError:
print("""DeepSpeed version:""", None)
try:
import tensorflow as tf
print("""TensorFlow version:""", tf.__version__)
print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU""")))
print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU""")))
except ImportError:
print("""TensorFlow version:""", None)
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
def UpperCamelCase ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[Any] = {
"""s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""",
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = 'open-llama'
def __init__( self , SCREAMING_SNAKE_CASE_=10_00_00 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=1_10_08 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_="silu" , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-6 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : str = vocab_size
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Tuple = hidden_size
lowercase__ : Tuple = intermediate_size
lowercase__ : Any = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Any = hidden_act
lowercase__ : Optional[int] = initializer_range
lowercase__ : Union[str, Any] = rms_norm_eps
lowercase__ : Optional[Any] = use_cache
lowercase__ : Dict = kwargs.pop(
"""use_memorry_efficient_attention""" , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = hidden_dropout_prob
lowercase__ : Optional[int] = attention_dropout_prob
lowercase__ : Optional[int] = use_stable_embedding
lowercase__ : Dict = shared_input_output_embedding
lowercase__ : str = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_) or len(self.rope_scaling) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'got {self.rope_scaling}')
lowercase__ : int = self.rope_scaling.get("""type""" , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.rope_scaling.get("""factor""" , SCREAMING_SNAKE_CASE_)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}')
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) or rope_scaling_factor <= 1.0:
raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = tempfile.mkdtemp()
# fmt: off
lowercase__ : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
lowercase__ : Tuple = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_))))
lowercase__ : Tuple = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
lowercase__ : Dict = {"""unk_token""": """<unk>"""}
lowercase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_) + """\n""")
with open(self.merges_file , """w""" , encoding="""utf-8""") as fp:
fp.write("""\n""".join(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
"""image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
lowercase__ : int = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)]
lowercase__ : Dict = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1)) for x in image_inputs]
return image_inputs
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.get_tokenizer()
lowercase__ : Any = self.get_rust_tokenizer()
lowercase__ : Optional[Any] = self.get_image_processor()
lowercase__ : List[str] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
processor_slow.save_pretrained(self.tmpdirname)
lowercase__ : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
processor_fast.save_pretrained(self.tmpdirname)
lowercase__ : int = CLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_)
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
lowercase__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
lowercase__ : Dict = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0)
lowercase__ : List[Any] = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.get_image_processor()
lowercase__ : str = self.get_tokenizer()
lowercase__ : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.prepare_image_inputs()
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""")
lowercase__ : Dict = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.get_image_processor()
lowercase__ : List[Any] = self.get_tokenizer()
lowercase__ : Union[str, Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : str = """lower newer"""
lowercase__ : int = processor(text=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_image_processor()
lowercase__ : List[Any] = self.get_tokenizer()
lowercase__ : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = """lower newer"""
lowercase__ : Any = self.prepare_image_inputs()
lowercase__ : Tuple = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_)
self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask""", """pixel_values"""])
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_):
processor()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_image_processor()
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : str = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ : Union[str, Any] = processor.batch_decode(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_image_processor()
lowercase__ : int = self.get_tokenizer()
lowercase__ : Optional[int] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = """lower newer"""
lowercase__ : Tuple = self.prepare_image_inputs()
lowercase__ : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
lowerCamelCase__ : Optional[Any] = """0.18.2"""
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
lowerCamelCase__ : List[Any] = pytest.mark.integration
lowerCamelCase__ : Dict = {"""comet"""}
lowerCamelCase__ : Optional[int] = importlib.util.find_spec("""fairseq""") is not None
lowerCamelCase__ : Tuple = {"""code_eval"""}
lowerCamelCase__ : str = os.name == """nt"""
lowerCamelCase__ : int = {"""bertscore""", """frugalscore""", """perplexity"""}
lowerCamelCase__ : Tuple = importlib.util.find_spec("""transformers""") is not None
def UpperCamelCase ( lowercase_ ) -> Optional[Any]:
'''simple docstring'''
@wraps(lowercase_ )
def wrapper(self , lowercase_ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("""\"test requires Fairseq\"""" )
else:
test_case(self , lowercase_ )
return wrapper
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
@wraps(lowercase_ )
def wrapper(self , lowercase_ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("""\"test requires transformers\"""" )
else:
test_case(self , lowercase_ )
return wrapper
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
@wraps(lowercase_ )
def wrapper(self , lowercase_ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("""\"test not supported on Windows\"""" )
else:
test_case(self , lowercase_ )
return wrapper
def UpperCamelCase ( ) -> List[str]:
'''simple docstring'''
lowercase__ : Union[str, Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
@local
class _snake_case ( parameterized.TestCase ):
__lowerCAmelCase : Any = {}
__lowerCAmelCase : str = None
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""")
@pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = """[...]"""
lowercase__ : Optional[Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_)).module_path)
lowercase__ : List[str] = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE_)
# check parameters
lowercase__ : Any = inspect.signature(metric._compute).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs
# run doctest
with self.patch_intensive_calls(SCREAMING_SNAKE_CASE_ , metric_module.__name__):
with self.use_local_metrics():
try:
lowercase__ : int = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_)
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0)
self.assertGreater(results.attempted , 1)
@slow
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = """[...]"""
lowercase__ : Union[str, Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_)).module_path)
# run doctest
with self.use_local_metrics():
lowercase__ : Union[str, Any] = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_)
self.assertEqual(results.failed , 0)
self.assertGreater(results.attempted , 1)
@contextmanager
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE_):
yield
else:
yield
@contextmanager
def lowercase__ ( self):
'''simple docstring'''
def load_local_metric(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
return load_metric(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_) , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
with patch("""datasets.load_metric""") as mock_load_metric:
lowercase__ : Union[str, Any] = load_local_metric
yield
@classmethod
def lowercase__ ( cls , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
def wrapper(SCREAMING_SNAKE_CASE_):
lowercase__ : Any = contextmanager(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("""bleurt""" )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags
class _snake_case ( UpperCAmelCase_ ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
assert len(input_dict["""input_ids"""]) == 2
return np.array([1.0_3, 1.0_4])
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor:
lowercase__ : str = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("""bertscore""" )
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
import torch
def bert_cos_score_idf(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(lowercase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("""bert_score.scorer.get_model""" ), patch(
"""bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf:
lowercase__ : int = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("""comet""" )
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
def load_from_checkpoint(lowercase_ ):
class _snake_case :
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
assert len(SCREAMING_SNAKE_CASE_) == 2
lowercase__ : Optional[Any] = [0.1_9, 0.9_2]
return scores, sum(SCREAMING_SNAKE_CASE_) / len(SCREAMING_SNAKE_CASE_)
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("""comet.download_model""" ) as mock_download_model:
lowercase__ : Union[str, Any] = None
with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint:
lowercase__ : List[Any] = load_from_checkpoint
yield
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowercase__ : Optional[Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) )
lowercase__ : int = """ERROR"""
lowercase__ : Tuple = F'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'
with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ):
metric.compute(predictions=[] , references=[] , scheme=lowercase_ )
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
lowerCamelCase__ : Dict = {
"""a""": """AAAAA""",
"""b""": """AAAAB""",
"""c""": """AAABA""",
"""d""": """AAABB""",
"""e""": """AABAA""",
"""f""": """AABAB""",
"""g""": """AABBA""",
"""h""": """AABBB""",
"""i""": """ABAAA""",
"""j""": """BBBAA""",
"""k""": """ABAAB""",
"""l""": """ABABA""",
"""m""": """ABABB""",
"""n""": """ABBAA""",
"""o""": """ABBAB""",
"""p""": """ABBBA""",
"""q""": """ABBBB""",
"""r""": """BAAAA""",
"""s""": """BAAAB""",
"""t""": """BAABA""",
"""u""": """BAABB""",
"""v""": """BBBAB""",
"""w""": """BABAA""",
"""x""": """BABAB""",
"""y""": """BABBA""",
"""z""": """BABBB""",
""" """: """ """,
}
lowerCamelCase__ : int = {value: key for key, value in encode_dict.items()}
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = """"""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("""encode() accepts only letters of the alphabet and spaces""" )
return encoded
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
if set(lowercase_ ) - {"A", "B", " "} != set():
raise Exception("""decode() accepts only 'A', 'B' and spaces""" )
lowercase__ : str = """"""
for word in coded.split():
while len(lowercase_ ) != 0:
decoded += decode_dict[word[:5]]
lowercase__ : Tuple = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCamelCase__ : str = """"""
lowerCamelCase__ : Tuple = """"""
lowerCamelCase__ : int = """"""
lowerCamelCase__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def UpperCamelCase ( ) -> None:
'''simple docstring'''
lowercase__ , lowercase__ : Union[str, Any] = get_dataset(lowercase_ , lowercase_ )
print("""Processing...""" )
lowercase__ , lowercase__ , lowercase__ : str = update_image_and_anno(lowercase_ , lowercase_ , lowercase_ )
for index, image in enumerate(lowercase_ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowercase__ : Any = random_chars(32 )
lowercase__ : Tuple = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0]
lowercase__ : List[str] = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'
cva.imwrite(F'/{file_root}.jpg' , lowercase_ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F'Success {index+1}/{len(lowercase_ )} with {file_name}' )
lowercase__ : Dict = []
for anno in new_annos[index]:
lowercase__ : List[str] = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'
annos_list.append(lowercase_ )
with open(F'/{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> tuple[list, list]:
'''simple docstring'''
lowercase__ : List[Any] = []
lowercase__ : List[Any] = []
for label_file in glob.glob(os.path.join(lowercase_ , """*.txt""" ) ):
lowercase__ : Union[str, Any] = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(lowercase_ ) as in_file:
lowercase__ : Any = in_file.readlines()
lowercase__ : List[str] = os.path.join(lowercase_ , F'{label_name}.jpg' )
lowercase__ : Tuple = []
for obj_list in obj_lists:
lowercase__ : Tuple = obj_list.rstrip("""\n""" ).split(""" """ )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(lowercase_ )
labels.append(lowercase_ )
return img_paths, labels
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ = 1 ) -> tuple[list, list, list]:
'''simple docstring'''
lowercase__ : Optional[int] = []
lowercase__ : Dict = []
lowercase__ : Optional[int] = []
for idx in range(len(lowercase_ ) ):
lowercase__ : Tuple = []
lowercase__ : Optional[Any] = img_list[idx]
path_list.append(lowercase_ )
lowercase__ : List[Any] = anno_list[idx]
lowercase__ : Union[str, Any] = cva.imread(lowercase_ )
if flip_type == 1:
lowercase__ : int = cva.flip(lowercase_ , lowercase_ )
for bbox in img_annos:
lowercase__ : Any = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
lowercase__ : Any = cva.flip(lowercase_ , lowercase_ )
for bbox in img_annos:
lowercase__ : List[str] = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(lowercase_ )
new_imgs_list.append(lowercase_ )
return new_imgs_list, new_annos_lists, path_list
def UpperCamelCase ( lowercase_ = 32 ) -> str:
'''simple docstring'''
assert number_char > 1, "The number of character should greater than 1"
lowercase__ : Dict = ascii_lowercase + digits
return "".join(random.choice(lowercase_ ) for _ in range(lowercase_ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""")
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
lowerCamelCase__ : str = logging.getLogger(__name__)
@dataclass
class _snake_case :
__lowerCAmelCase : Optional[int] = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__lowerCAmelCase : bool = field(
default=UpperCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
__lowerCAmelCase : bool = field(
default=UpperCAmelCase_ , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
__lowerCAmelCase : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
__lowerCAmelCase : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
__lowerCAmelCase : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
@dataclass
class _snake_case :
__lowerCAmelCase : str = field(
default=UpperCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
__lowerCAmelCase : str = field(
default=UpperCAmelCase_ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} )
__lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase_ , metadata={'help': 'Train language if it is different from the evaluation language.'} )
__lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
__lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
__lowerCAmelCase : Optional[bool] = field(
default=UpperCAmelCase_ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , )
__lowerCAmelCase : bool = field(
default=UpperCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
__lowerCAmelCase : str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
__lowerCAmelCase : bool = field(
default=UpperCAmelCase_ , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
__lowerCAmelCase : bool = field(
default=UpperCAmelCase_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , )
def UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_xnli""" , lowercase_ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowercase__ : int = training_args.get_process_log_level()
logger.setLevel(lowercase_ )
datasets.utils.logging.set_verbosity(lowercase_ )
transformers.utils.logging.set_verbosity(lowercase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
lowercase__ : List[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowercase__ : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
lowercase__ : Union[str, Any] = load_dataset(
"""xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
lowercase__ : Dict = load_dataset(
"""xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : List[str] = train_dataset.features["""label"""].names
if training_args.do_eval:
lowercase__ : Optional[Any] = load_dataset(
"""xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : Tuple = eval_dataset.features["""label"""].names
if training_args.do_predict:
lowercase__ : List[Any] = load_dataset(
"""xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : Tuple = predict_dataset.features["""label"""].names
# Labels
lowercase__ : List[str] = len(lowercase_ )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : List[str] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase_ , idalabel={str(lowercase_ ): label for i, label in enumerate(lowercase_ )} , labelaid={label: i for i, label in enumerate(lowercase_ )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
lowercase__ : str = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowercase__ : Any = False
def preprocess_function(lowercase_ ):
# Tokenize the texts
return tokenizer(
examples["""premise"""] , examples["""hypothesis"""] , padding=lowercase_ , max_length=data_args.max_seq_length , truncation=lowercase_ , )
if training_args.do_train:
if data_args.max_train_samples is not None:
lowercase__ : int = min(len(lowercase_ ) , data_args.max_train_samples )
lowercase__ : Optional[Any] = train_dataset.select(range(lowercase_ ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
lowercase__ : Any = train_dataset.map(
lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , )
# Log a few random samples from the training set:
for index in random.sample(range(len(lowercase_ ) ) , 3 ):
logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
lowercase__ : int = min(len(lowercase_ ) , data_args.max_eval_samples )
lowercase__ : Union[str, Any] = eval_dataset.select(range(lowercase_ ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
lowercase__ : Dict = eval_dataset.map(
lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
lowercase__ : int = min(len(lowercase_ ) , data_args.max_predict_samples )
lowercase__ : Optional[int] = predict_dataset.select(range(lowercase_ ) )
with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ):
lowercase__ : List[Any] = predict_dataset.map(
lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , )
# Get the metric function
lowercase__ : Union[str, Any] = evaluate.load("""xnli""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowercase_ ):
lowercase__ : str = p.predictions[0] if isinstance(p.predictions , lowercase_ ) else p.predictions
lowercase__ : Optional[int] = np.argmax(lowercase_ , axis=1 )
return metric.compute(predictions=lowercase_ , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowercase__ : List[str] = default_data_collator
elif training_args.fpaa:
lowercase__ : Any = DataCollatorWithPadding(lowercase_ , pad_to_multiple_of=8 )
else:
lowercase__ : Optional[Any] = None
# Initialize our Trainer
lowercase__ : List[Any] = Trainer(
model=lowercase_ , args=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , data_collator=lowercase_ , )
# Training
if training_args.do_train:
lowercase__ : str = None
if training_args.resume_from_checkpoint is not None:
lowercase__ : Tuple = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowercase__ : Optional[int] = last_checkpoint
lowercase__ : str = trainer.train(resume_from_checkpoint=lowercase_ )
lowercase__ : Union[str, Any] = train_result.metrics
lowercase__ : Optional[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ )
)
lowercase__ : str = min(lowercase_ , len(lowercase_ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , lowercase_ )
trainer.save_metrics("""train""" , lowercase_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowercase__ : Union[str, Any] = trainer.evaluate(eval_dataset=lowercase_ )
lowercase__ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase_ )
lowercase__ : int = min(lowercase_ , len(lowercase_ ) )
trainer.log_metrics("""eval""" , lowercase_ )
trainer.save_metrics("""eval""" , lowercase_ )
# Prediction
if training_args.do_predict:
logger.info("""*** Predict ***""" )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = trainer.predict(lowercase_ , metric_key_prefix="""predict""" )
lowercase__ : str = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase_ )
)
lowercase__ : Tuple = min(lowercase_ , len(lowercase_ ) )
trainer.log_metrics("""predict""" , lowercase_ )
trainer.save_metrics("""predict""" , lowercase_ )
lowercase__ : str = np.argmax(lowercase_ , axis=1 )
lowercase__ : Any = os.path.join(training_args.output_dir , """predictions.txt""" )
if trainer.is_world_process_zero():
with open(lowercase_ , """w""" ) as writer:
writer.write("""index\tprediction\n""" )
for index, item in enumerate(lowercase_ ):
lowercase__ : Any = label_list[item]
writer.write(F'{index}\t{item}\n' )
if __name__ == "__main__":
main()
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
import itertools
import string
from collections.abc import Generator, Iterable
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Generator[tuple[str, ...], None, None]:
'''simple docstring'''
lowercase__ : Any = iter(lowercase_ )
while True:
lowercase__ : Any = tuple(itertools.islice(lowercase_ , lowercase_ ) )
if not chunk:
return
yield chunk
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] )
lowercase__ : Union[str, Any] = """"""
if len(lowercase_ ) < 2:
return dirty
for i in range(len(lowercase_ ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase_ ) & 1:
clean += "X"
return clean
def UpperCamelCase ( lowercase_ ) -> list[str]:
'''simple docstring'''
lowercase__ : Optional[Any] = """ABCDEFGHIKLMNOPQRSTUVWXYZ"""
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
lowercase__ : List[Any] = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase_ )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase_ )
return table
def UpperCamelCase ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = generate_table(lowercase_ )
lowercase__ : Optional[int] = prepare_input(lowercase_ )
lowercase__ : Optional[int] = """"""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase_ , 2 ):
lowercase__ , lowercase__ : Dict = divmod(table.index(lowercase_ ) , 5 )
lowercase__ , lowercase__ : Optional[int] = divmod(table.index(lowercase_ ) , 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def UpperCamelCase ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : int = generate_table(lowercase_ )
lowercase__ : Tuple = """"""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase_ , 2 ):
lowercase__ , lowercase__ : Optional[int] = divmod(table.index(lowercase_ ) , 5 )
lowercase__ , lowercase__ : int = divmod(table.index(lowercase_ ) , 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
lowerCamelCase__ : Tuple = """\
@misc{wu2016googles,
title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
lowerCamelCase__ : Union[str, Any] = """\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the 'GLEU score'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score's range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
"""
lowerCamelCase__ : Optional[int] = """\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
'google_bleu': google_bleu score
Examples:
Example 1:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.44
Example 2:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.61
Example 3:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results[\"google_bleu\"], 2))
0.53
Example 4:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results[\"google_bleu\"], 2))
0.4
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def lowercase__ ( self):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence"""),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence""") , id="""references"""),
}) , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 4 , ):
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=SCREAMING_SNAKE_CASE_ , hypotheses=SCREAMING_SNAKE_CASE_ , min_len=SCREAMING_SNAKE_CASE_ , max_len=SCREAMING_SNAKE_CASE_)
}
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
lowerCamelCase__ : str = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {
"""openai/imagegpt-small""": """""",
"""openai/imagegpt-medium""": """""",
"""openai/imagegpt-large""": """""",
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Tuple = 'imagegpt'
__lowerCAmelCase : Tuple = ['past_key_values']
__lowerCAmelCase : str = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE_=5_12 + 1 , SCREAMING_SNAKE_CASE_=32 * 32 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Any = vocab_size
lowercase__ : Optional[Any] = n_positions
lowercase__ : List[str] = n_embd
lowercase__ : Tuple = n_layer
lowercase__ : Optional[Any] = n_head
lowercase__ : List[str] = n_inner
lowercase__ : Union[str, Any] = activation_function
lowercase__ : Union[str, Any] = resid_pdrop
lowercase__ : Optional[int] = embd_pdrop
lowercase__ : int = attn_pdrop
lowercase__ : str = layer_norm_epsilon
lowercase__ : Optional[Any] = initializer_range
lowercase__ : Any = scale_attn_weights
lowercase__ : str = use_cache
lowercase__ : str = scale_attn_by_inverse_layer_idx
lowercase__ : Optional[int] = reorder_and_upcast_attn
lowercase__ : Union[str, Any] = tie_word_embeddings
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
])
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , ):
'''simple docstring'''
lowercase__ : List[Any] = self._generate_dummy_images(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = dict(preprocessor(images=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_))
return inputs
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
lowerCamelCase__ : List[Any] = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
lowerCamelCase__ : Dict = {
# fairseq:
"""wmt19-ru-en""": {"""length_penalty""": 1.1},
"""wmt19-en-ru""": {"""length_penalty""": 1.15},
"""wmt19-en-de""": {"""length_penalty""": 1.0},
"""wmt19-de-en""": {"""length_penalty""": 1.1},
# allenai:
"""wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6},
"""wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6},
"""wmt16-en-de-12-1""": {"""length_penalty""": 0.8},
"""wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6},
"""wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6},
}
# this remaps the different models to their organization names
lowerCamelCase__ : str = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
lowerCamelCase__ : List[str] = """facebook"""
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
lowerCamelCase__ : Optional[Any] = """allenai"""
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : Any = dict((re.sub(R"""@@$""" , """""" , lowercase_ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , lowercase_ ), v) for k, v in d.items() )
lowercase__ : List[str] = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
lowercase__ : int = d[k] # restore
return da
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
assert os.path.exists(lowercase_ )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
lowercase__ : int = basename(lowercase_ )
lowercase__ : List[Any] = dirname(lowercase_ )
lowercase__ : List[str] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
lowercase__ : int = cls.hub_models()
lowercase__ : Tuple = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""}
lowercase__ : Optional[Any] = """."""
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(F'using checkpoint {checkpoint_file}' )
lowercase__ : Optional[int] = hub_utils.from_pretrained(
lowercase_ , lowercase_ , lowercase_ , archive_map=lowercase_ , **lowercase_ )
lowercase__ : Tuple = vars(chkpt["""args"""]["""model"""] )
lowercase__ : List[Any] = args["""source_lang"""]
lowercase__ : Dict = args["""target_lang"""]
lowercase__ : Optional[Any] = dirname(lowercase_ )
lowercase__ : int = basename(lowercase_ )
# dicts
lowercase__ : Union[str, Any] = os.path.join(lowercase_ , F'dict.{src_lang}.txt' )
lowercase__ : Optional[int] = os.path.join(lowercase_ , F'dict.{tgt_lang}.txt' )
lowercase__ : Optional[int] = Dictionary.load(lowercase_ )
lowercase__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices )
lowercase__ : str = len(lowercase_ )
lowercase__ : Any = os.path.join(lowercase_ , """vocab-src.json""" )
print(F'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
lowercase__ : Any = True
for k in src_vocab.keys():
if not k.islower():
lowercase__ : List[str] = False
break
lowercase__ : Tuple = Dictionary.load(lowercase_ )
lowercase__ : Any = rewrite_dict_keys(tgt_dict.indices )
lowercase__ : Any = len(lowercase_ )
lowercase__ : Any = os.path.join(lowercase_ , """vocab-tgt.json""" )
print(F'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) )
# merges_file (bpecodes)
lowercase__ : Union[str, Any] = os.path.join(lowercase_ , VOCAB_FILES_NAMES["""merges_file"""] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
lowercase__ : Optional[int] = os.path.join(lowercase_ , lowercase_ )
if os.path.exists(lowercase_ ):
break
with open(lowercase_ , encoding="""utf-8""" ) as fin:
lowercase__ : List[Any] = fin.read()
lowercase__ : Optional[Any] = re.sub(R""" \d+$""" , """""" , lowercase_ , 0 , re.M ) # remove frequency number
print(F'Generating {merges_file}' )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as fout:
fout.write(lowercase_ )
# model config
lowercase__ : Tuple = os.path.join(lowercase_ , """config.json""" )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", F'need to extend tokenizer to support bpe={args["bpe"]}'
assert args["tokenizer"] == "moses", F'need to extend tokenizer to support bpe={args["tokenizer"]}'
lowercase__ : List[str] = {
"""architectures""": ["""FSMTForConditionalGeneration"""],
"""model_type""": """fsmt""",
"""activation_dropout""": args["""activation_dropout"""],
"""activation_function""": """relu""",
"""attention_dropout""": args["""attention_dropout"""],
"""d_model""": args["""decoder_embed_dim"""],
"""dropout""": args["""dropout"""],
"""init_std""": 0.02,
"""max_position_embeddings""": args["""max_source_positions"""],
"""num_hidden_layers""": args["""encoder_layers"""],
"""src_vocab_size""": src_vocab_size,
"""tgt_vocab_size""": tgt_vocab_size,
"""langs""": [src_lang, tgt_lang],
"""encoder_attention_heads""": args["""encoder_attention_heads"""],
"""encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""],
"""encoder_layerdrop""": args["""encoder_layerdrop"""],
"""encoder_layers""": args["""encoder_layers"""],
"""decoder_attention_heads""": args["""decoder_attention_heads"""],
"""decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""],
"""decoder_layerdrop""": args["""decoder_layerdrop"""],
"""decoder_layers""": args["""decoder_layers"""],
"""bos_token_id""": 0,
"""pad_token_id""": 1,
"""eos_token_id""": 2,
"""is_encoder_decoder""": True,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_all_embeddings"""],
}
# good hparam defaults to start with
lowercase__ : Optional[int] = 5
lowercase__ : List[str] = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
lowercase__ : Optional[int] = best_score_hparams[model_dir]["""length_penalty"""]
else:
lowercase__ : Union[str, Any] = 1.0
print(F'Generating {fsmt_model_config_file}' )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) )
# tokenizer config
lowercase__ : Optional[int] = os.path.join(lowercase_ , lowercase_ )
lowercase__ : int = {
"""langs""": [src_lang, tgt_lang],
"""model_max_length""": 10_24,
"""do_lower_case""": do_lower_case,
}
print(F'Generating {fsmt_tokenizer_config_file}' )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) )
# model
lowercase__ : Dict = chkpt["""models"""][0]
lowercase__ : Optional[Any] = model.state_dict()
# rename keys to start with 'model.'
lowercase__ : Any = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
lowercase__ : List[Any] = [
"""model.model""",
"""model.encoder.version""",
"""model.decoder.version""",
"""model.encoder_embed_tokens.weight""",
"""model.decoder_embed_tokens.weight""",
"""model.encoder.embed_positions._float_tensor""",
"""model.decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
model_state_dict.pop(lowercase_ , lowercase_ )
lowercase__ : str = FSMTConfig.from_pretrained(lowercase_ )
lowercase__ : List[str] = FSMTForConditionalGeneration(lowercase_ )
# check that it loads ok
model_new.load_state_dict(lowercase_ , strict=lowercase_ )
# save
lowercase__ : str = os.path.join(lowercase_ , lowercase_ )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase_ , lowercase_ )
print("""Conversion is done!""" )
print("""\nLast step is to upload the files to s3""" )
print(F'cd {data_root}' )
print(F'transformers-cli upload {model_dir}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fsmt_checkpoint_path""",
default=None,
type=str,
required=True,
help=(
"""Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"""
""" bpecodes, etc."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
lowerCamelCase__ : List[str] = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0_0_2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ):
'''simple docstring'''
lowercase__ : Optional[int] = parent
lowercase__ : Any = batch_size
lowercase__ : Dict = encoder_seq_length
lowercase__ : int = decoder_seq_length
# For common tests
lowercase__ : Tuple = self.decoder_seq_length
lowercase__ : List[Any] = is_training
lowercase__ : Dict = use_attention_mask
lowercase__ : Any = use_labels
lowercase__ : Any = vocab_size
lowercase__ : int = hidden_size
lowercase__ : List[str] = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : str = d_ff
lowercase__ : Tuple = relative_attention_num_buckets
lowercase__ : Optional[Any] = dropout_rate
lowercase__ : List[str] = initializer_factor
lowercase__ : Dict = eos_token_id
lowercase__ : List[Any] = pad_token_id
lowercase__ : Optional[int] = decoder_start_token_id
lowercase__ : Any = None
lowercase__ : str = decoder_layers
def lowercase__ ( self):
'''simple docstring'''
return TaConfig.from_pretrained("""google/umt5-base""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ):
'''simple docstring'''
if attention_mask is None:
lowercase__ : int = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
lowercase__ : List[Any] = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
lowercase__ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_)
if decoder_head_mask is None:
lowercase__ : Any = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_)
if cross_attn_head_mask is None:
lowercase__ : int = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size)
lowercase__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size)
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
lowercase__ : str = input_ids.clamp(self.pad_token_id + 1)
lowercase__ : List[Any] = decoder_input_ids.clamp(self.pad_token_id + 1)
lowercase__ : List[str] = self.get_config()
lowercase__ : List[Any] = config.num_attention_heads
lowercase__ : Dict = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return config, input_dict
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase__ ( self):
'''simple docstring'''
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def lowercase__ ( self):
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : List[Any] = UMTaModel(config=SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : Union[str, Any] = model(
input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_)
lowercase__ : int = result.last_hidden_state
lowercase__ : Optional[int] = result.past_key_values
lowercase__ : Union[str, Any] = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size))
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size))
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE_) , config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0]) , 4)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Optional[Any] = UMTaModel(config=SCREAMING_SNAKE_CASE_).get_decoder().to(SCREAMING_SNAKE_CASE_).eval()
# first forward pass
lowercase__ : Any = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_)
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_) == len(SCREAMING_SNAKE_CASE_))
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_) == len(SCREAMING_SNAKE_CASE_) + 1)
lowercase__ , lowercase__ : Tuple = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowercase__ : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size)
# append to next input_ids and
lowercase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1)
lowercase__ : Any = model(SCREAMING_SNAKE_CASE_)["""last_hidden_state"""]
lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_)["""last_hidden_state"""]
# select random slice
lowercase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item()
lowercase__ : Any = output_from_no_past[:, -1, random_slice_idx].detach()
lowercase__ : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Dict = UMTaModel(config=SCREAMING_SNAKE_CASE_).to(SCREAMING_SNAKE_CASE_).half().eval()
lowercase__ : str = model(**SCREAMING_SNAKE_CASE_)["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE_).any().item())
@require_torch
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Any = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
__lowerCAmelCase : str = (UMTaForConditionalGeneration,) if is_torch_available() else ()
__lowerCAmelCase : Dict = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
__lowerCAmelCase : Any = True
__lowerCAmelCase : Optional[Any] = False
__lowerCAmelCase : Optional[int] = False
__lowerCAmelCase : List[str] = True
__lowerCAmelCase : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
__lowerCAmelCase : Tuple = [0.8, 0.9]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = UMTaModelTester(self)
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""")
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
lowercase__ : str = UMTaModel(config_and_inputs[0]).to(SCREAMING_SNAKE_CASE_)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=SCREAMING_SNAKE_CASE_ , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""")
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
lowercase__ : int = config_and_inputs[0]
lowercase__ : Tuple = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE_).eval()
model.to(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE_ , head_masking.items()):
lowercase__ : str = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
lowercase__ : Optional[int] = torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE_ , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
lowercase__ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0)
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""")
def lowercase__ ( self):
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""")
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=SCREAMING_SNAKE_CASE_).to(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=SCREAMING_SNAKE_CASE_ , legacy=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
lowercase__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_).input_ids
# fmt: off
lowercase__ : Dict = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
])
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.generate(input_ids.to(SCREAMING_SNAKE_CASE_))
lowercase__ : List[Any] = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
import os
import sys
import unittest
lowerCamelCase__ : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowerCamelCase__ : List[Any] = os.path.join(git_repo_path, """src""", """diffusers""")
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = find_backend(""" if not is_torch_available():""")
self.assertEqual(SCREAMING_SNAKE_CASE_ , """torch""")
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
lowercase__ : int = find_backend(""" if not (is_torch_available() and is_transformers_available()):""")
self.assertEqual(SCREAMING_SNAKE_CASE_ , """torch_and_transformers""")
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
lowercase__ : Tuple = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""")
self.assertEqual(SCREAMING_SNAKE_CASE_ , """torch_and_transformers_and_onnx""")
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""" , SCREAMING_SNAKE_CASE_)
self.assertIn("""torch_and_transformers""" , SCREAMING_SNAKE_CASE_)
self.assertIn("""flax_and_transformers""" , SCREAMING_SNAKE_CASE_)
self.assertIn("""torch_and_transformers_and_onnx""" , SCREAMING_SNAKE_CASE_)
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""" , objects["""torch"""])
self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""])
self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""])
self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""])
self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""])
self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = create_dummy_object("""CONSTANT""" , """'torch'""")
self.assertEqual(SCREAMING_SNAKE_CASE_ , """\nCONSTANT = None\n""")
lowercase__ : Any = create_dummy_object("""function""" , """'torch'""")
self.assertEqual(
SCREAMING_SNAKE_CASE_ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""")
lowercase__ : Tuple = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
lowercase__ : List[str] = create_dummy_object("""FakeClass""" , """'torch'""")
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
lowercase__ : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]})
self.assertEqual(dummy_files["""torch"""] , SCREAMING_SNAKE_CASE_)
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
lowerCamelCase__ : Any = {
"""n_samples""": 6_4,
"""horizon""": 3_2,
"""num_inference_steps""": 2_0,
"""n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network
"""scale_grad_by_std""": True,
"""scale""": 0.1,
"""eta""": 0.0,
"""t_grad_cutoff""": 2,
"""device""": """cpu""",
}
if __name__ == "__main__":
lowerCamelCase__ : Any = """hopper-medium-v2"""
lowerCamelCase__ : Optional[Any] = gym.make(env_name)
lowerCamelCase__ : List[Any] = ValueGuidedRLPipeline.from_pretrained(
"""bglick13/hopper-medium-v2-value-function-hor32""",
env=env,
)
env.seed(0)
lowerCamelCase__ : List[Any] = env.reset()
lowerCamelCase__ : Optional[Any] = 0
lowerCamelCase__ : Optional[int] = 0
lowerCamelCase__ : List[str] = 1_0_0_0
lowerCamelCase__ : str = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
lowerCamelCase__ : str = pipeline(obs, planning_horizon=3_2)
# execute action in environment
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = env.step(denorm_actions)
lowerCamelCase__ : Union[str, Any] = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:'''
f''' {total_score}'''
)
# save observations for rendering
rollout.append(next_observation.copy())
lowerCamelCase__ : Tuple = next_observation
except KeyboardInterrupt:
pass
print(f'''Total reward: {total_reward}''')
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : Dict = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowercase__ : str = load_file(lowercase_ )
lowercase__ : List[Any] = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowercase__ : List[Any] = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
lowercase__ : Any = pipeline.text_encoder
else:
lowercase__ : List[str] = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
lowercase__ : List[Any] = pipeline.unet
# find the target layer
lowercase__ : str = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
lowercase__ : Any = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
lowercase__ : Any = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowercase__ : Union[str, Any] = layer_infos.pop(0 )
lowercase__ : Optional[Any] = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowercase__ : int = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowercase__ : Optional[int] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowercase__ : str = state_dict[pair_keys[0]].to(torch.floataa )
lowercase__ : List[Any] = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
lowerCamelCase__ : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
lowerCamelCase__ : Dict = parser.parse_args()
lowerCamelCase__ : int = args.base_model_path
lowerCamelCase__ : Any = args.checkpoint_path
lowerCamelCase__ : Union[str, Any] = args.dump_path
lowerCamelCase__ : str = args.lora_prefix_unet
lowerCamelCase__ : Optional[int] = args.lora_prefix_text_encoder
lowerCamelCase__ : Dict = args.alpha
lowerCamelCase__ : str = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCamelCase__ : str = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
import sys
lowerCamelCase__ : Any = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def UpperCamelCase ( lowercase_ = N ) -> int:
'''simple docstring'''
lowercase__ : Tuple = -sys.maxsize - 1
for i in range(len(lowercase_ ) - 12 ):
lowercase__ : List[Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
lowercase__ : List[Any] = product
return largest_product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
from __future__ import annotations
from typing import TypedDict
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : str
__lowerCAmelCase : int
def UpperCamelCase ( lowercase_ ) -> list[str]:
'''simple docstring'''
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError("""The parameter s type must be str.""" )
return [s[i:] + s[:i] for i in range(len(lowercase_ ) )]
def UpperCamelCase ( lowercase_ ) -> BWTTransformDict:
'''simple docstring'''
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError("""The parameter s type must be str.""" )
if not s:
raise ValueError("""The parameter s must not be empty.""" )
lowercase__ : List[str] = all_rotations(lowercase_ )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
lowercase__ : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(lowercase_ ),
}
return response
def UpperCamelCase ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError("""The parameter bwt_string type must be str.""" )
if not bwt_string:
raise ValueError("""The parameter bwt_string must not be empty.""" )
try:
lowercase__ : Optional[Any] = int(lowercase_ )
except ValueError:
raise TypeError(
"""The parameter idx_original_string type must be int or passive"""
""" of cast to int.""" )
if idx_original_string < 0:
raise ValueError("""The parameter idx_original_string must not be lower than 0.""" )
if idx_original_string >= len(lowercase_ ):
raise ValueError(
"""The parameter idx_original_string must be lower than""" """ len(bwt_string).""" )
lowercase__ : str = [""""""] * len(lowercase_ )
for _ in range(len(lowercase_ ) ):
for i in range(len(lowercase_ ) ):
lowercase__ : List[Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
lowerCamelCase__ : Tuple = """Provide a string that I will generate its BWT transform: """
lowerCamelCase__ : Dict = input(entry_msg).strip()
lowerCamelCase__ : int = bwt_transform(s)
print(
f'''Burrows Wheeler transform for string \'{s}\' results '''
f'''in \'{result["bwt_string"]}\''''
)
lowerCamelCase__ : List[str] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""])
print(
f'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' '''
f'''we get original string \'{original_string}\''''
)
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from sklearn.metrics import mean_squared_error
import datasets
lowerCamelCase__ : Tuple = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
lowerCamelCase__ : int = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
lowerCamelCase__ : Dict = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def lowercase__ ( self):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def lowercase__ ( self):
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""")),
"references": datasets.Sequence(datasets.Value("""float""")),
}
else:
return {
"predictions": datasets.Value("""float"""),
"references": datasets.Value("""float"""),
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="uniform_average" , SCREAMING_SNAKE_CASE_=True):
'''simple docstring'''
lowercase__ : Dict = mean_squared_error(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sample_weight=SCREAMING_SNAKE_CASE_ , multioutput=SCREAMING_SNAKE_CASE_ , squared=SCREAMING_SNAKE_CASE_)
return {"mse": mse}
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase__ : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : List[Any] = ReformerTokenizer
__lowerCAmelCase : str = ReformerTokenizerFast
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Dict = False
__lowerCAmelCase : Tuple = True
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Any = ReformerTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_)
tokenizer.save_pretrained(self.tmpdirname)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = """<s>"""
lowercase__ : Optional[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<unk>""")
self.assertEqual(vocab_keys[1] , """<s>""")
self.assertEqual(vocab_keys[-1] , """j""")
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , 10_00)
def lowercase__ ( self):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 10_00)
def lowercase__ ( self):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowercase__ : int = self.get_tokenizer()
lowercase__ : Any = self.get_rust_tokenizer()
lowercase__ : Optional[Any] = """I was born in 92000, and this is falsé."""
lowercase__ : Tuple = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.get_rust_tokenizer()
lowercase__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE_)
lowercase__ : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=15):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
# Simple input
lowercase__ : List[Any] = """This is a simple input"""
lowercase__ : int = ["""This is a simple input 1""", """This is a simple input 2"""]
lowercase__ : str = ("""This is a simple input""", """This is a pair""")
lowercase__ : Optional[int] = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""")
# Simple input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""")
# Simple input
self.assertRaises(
SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" , )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""")
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""")
# Pair input
self.assertRaises(
SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" , )
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = ReformerTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.tokenize("""This is a test""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [2_85, 46, 10, 1_70, 3_82] , )
lowercase__ : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""")
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
@cached_property
def lowercase__ ( self):
'''simple docstring'''
return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""")
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = """Hello World!"""
lowercase__ : str = [1_26, 32, 2_62, 1_52, 38, 72, 2_87]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_))
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"""
)
lowercase__ : List[Any] = [
1_08,
2_65,
24,
1_11,
4,
2_58,
1_56,
35,
28,
2_75,
3,
2_59,
2_97,
2_60,
84,
4,
35,
1_10,
44,
8,
2_59,
91,
2_68,
21,
11,
2_09,
2_74,
1_09,
2_66,
2_77,
1_17,
86,
93,
3_15,
2_58,
2_78,
2_58,
2_77,
2_58,
0,
2_58,
2_88,
2_58,
3_19,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
0,
2_58,
2_87,
2_58,
3_15,
2_58,
2_89,
2_58,
2_78,
99,
2_69,
2_66,
2_62,
8,
2_59,
2_41,
4,
2_17,
2_30,
2_68,
2_66,
55,
1_68,
1_06,
75,
1_93,
2_66,
2_23,
27,
49,
26,
2_82,
25,
2_64,
2_99,
19,
26,
0,
2_58,
2_77,
1_17,
86,
93,
1_76,
1_83,
2_70,
11,
2_62,
42,
61,
2_65,
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_))
@require_torch
@slow
def lowercase__ ( self):
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
lowercase__ : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys())[:10]
lowercase__ : Optional[Any] = """ """.join(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""")
lowercase__ : Any = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""")
lowercase__ : Dict = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
lowercase__ : Tuple = encoded_sequence["""input_ids"""].shape
lowercase__ : Union[str, Any] = ReformerModel(SCREAMING_SNAKE_CASE_)
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**SCREAMING_SNAKE_CASE_)
model(**SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = {"""input_ids""": [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
lowercase__ : Dict = [
"""This is a very simple sentence.""",
"""The quick brown fox jumps over the lazy dog.""",
]
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=SCREAMING_SNAKE_CASE_ , sequences=SCREAMING_SNAKE_CASE_ , )
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
import math
def UpperCamelCase ( lowercase_ ) -> list[int]:
'''simple docstring'''
lowercase__ : Union[str, Any] = []
lowercase__ : Any = 2
lowercase__ : Tuple = int(math.sqrt(lowercase_ ) ) # Size of every segment
lowercase__ : Optional[Any] = [True] * (end + 1)
lowercase__ : int = []
while start <= end:
if temp[start] is True:
in_prime.append(lowercase_ )
for i in range(start * start , end + 1 , lowercase_ ):
lowercase__ : Optional[int] = False
start += 1
prime += in_prime
lowercase__ : str = end + 1
lowercase__ : Any = min(2 * end , lowercase_ )
while low <= n:
lowercase__ : Dict = [True] * (high - low + 1)
for each in in_prime:
lowercase__ : Any = math.floor(low / each ) * each
if t < low:
t += each
for j in range(lowercase_ , high + 1 , lowercase_ ):
lowercase__ : Optional[int] = False
for j in range(len(lowercase_ ) ):
if temp[j] is True:
prime.append(j + low )
lowercase__ : Dict = high + 1
lowercase__ : Optional[int] = min(high + end , lowercase_ )
return prime
print(sieve(1_0**6))
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
super().tearDown()
gc.collect()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , )
lowercase__ : Optional[int] = """A painting of a squirrel eating a burger"""
lowercase__ : Optional[Any] = jax.device_count()
lowercase__ : Optional[int] = num_samples * [prompt]
lowercase__ : Tuple = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = replicate(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = shard(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = jax.random.PRNGKey(0)
lowercase__ : Tuple = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
lowercase__ : Optional[int] = sd_pipe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , jit=SCREAMING_SNAKE_CASE_)[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
lowercase__ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
lowercase__ : Optional[Any] = images[0, 2_53:2_56, 2_53:2_56, -1]
lowercase__ : Dict = jnp.asarray(jax.device_get(image_slice.flatten()))
lowercase__ : Dict = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2])
print(f'output_slice: {output_slice}')
assert jnp.abs(output_slice - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = """stabilityai/stable-diffusion-2"""
lowercase__ , lowercase__ : List[str] = FlaxDPMSolverMultistepScheduler.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder="""scheduler""")
lowercase__ , lowercase__ : int = FlaxStableDiffusionPipeline.from_pretrained(
SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , revision="""bf16""" , dtype=jnp.bfloataa , )
lowercase__ : str = scheduler_params
lowercase__ : List[Any] = """A painting of a squirrel eating a burger"""
lowercase__ : List[Any] = jax.device_count()
lowercase__ : str = num_samples * [prompt]
lowercase__ : Optional[Any] = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = replicate(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = shard(SCREAMING_SNAKE_CASE_)
lowercase__ : str = jax.random.PRNGKey(0)
lowercase__ : Any = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
lowercase__ : Tuple = sd_pipe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , jit=SCREAMING_SNAKE_CASE_)[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
lowercase__ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
lowercase__ : List[Any] = images[0, 2_53:2_56, 2_53:2_56, -1]
lowercase__ : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten()))
lowercase__ : Union[str, Any] = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7])
print(f'output_slice: {output_slice}')
assert jnp.abs(output_slice - expected_slice).max() < 1E-2
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = parent
lowercase__ : Dict = batch_size
lowercase__ : Union[str, Any] = seq_length
lowercase__ : List[str] = is_training
lowercase__ : List[Any] = use_input_mask
lowercase__ : str = use_token_type_ids
lowercase__ : str = use_labels
lowercase__ : Union[str, Any] = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : Any = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Optional[Any] = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : int = type_sequence_label_size
lowercase__ : List[str] = initializer_range
lowercase__ : Optional[Any] = num_labels
lowercase__ : List[Any] = num_choices
lowercase__ : str = scope
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : int = None
if self.use_input_mask:
lowercase__ : str = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : str = None
if self.use_token_type_ids:
lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase__ : Dict = None
lowercase__ : str = None
lowercase__ : List[Any] = None
if self.use_labels:
lowercase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase__ : str = ids_tensor([self.batch_size] , self.num_choices)
lowercase__ : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self):
'''simple docstring'''
return NezhaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
def lowercase__ ( self):
'''simple docstring'''
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : int = self.prepare_config_and_inputs()
lowercase__ : Dict = True
lowercase__ : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = NezhaModel(config=SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Optional[Any] = True
lowercase__ : List[Any] = NezhaModel(SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : str = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = NezhaForMaskedLM(config=SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = NezhaForNextSentencePrediction(config=SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : int = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = NezhaForPreTraining(config=SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : List[str] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , next_sentence_label=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = NezhaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : Any = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = self.num_labels
lowercase__ : List[Any] = NezhaForSequenceClassification(SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = self.num_labels
lowercase__ : Optional[int] = NezhaForTokenClassification(config=SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[int] = self.num_choices
lowercase__ : Union[str, Any] = NezhaForMultipleChoice(config=SCREAMING_SNAKE_CASE_)
model.to(SCREAMING_SNAKE_CASE_)
model.eval()
lowercase__ : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase__ : Tuple = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase__ : Any = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase__ : Union[str, Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : int = config_and_inputs
lowercase__ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : List[str] = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
__lowerCAmelCase : List[str] = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCAmelCase : Optional[Any] = True
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False):
'''simple docstring'''
lowercase__ : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_)
if return_labels:
if model_class in get_values(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_)
return inputs_dict
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = NezhaModelTester(self)
lowercase__ : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37)
def lowercase__ ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder()
lowercase__ : str = None
self.model_tester.create_and_check_model_as_decoder(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Tuple = NezhaModel.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
@slow
@require_torch_gpu
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
lowercase__ : Optional[Any] = True
lowercase__ : int = model_class(config=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = torch.jit.trace(
SCREAMING_SNAKE_CASE_ , (inputs_dict["""input_ids"""].to("""cpu"""), inputs_dict["""attention_mask"""].to("""cpu""")))
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , """bert.pt"""))
lowercase__ : Tuple = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , """bert.pt""") , map_location=SCREAMING_SNAKE_CASE_)
loaded(inputs_dict["""input_ids"""].to(SCREAMING_SNAKE_CASE_) , inputs_dict["""attention_mask"""].to(SCREAMING_SNAKE_CASE_))
@require_torch
class _snake_case ( unittest.TestCase ):
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""")
lowercase__ : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]])
lowercase__ : str = torch.tensor([[0, 1, 1, 1, 1, 1]])
with torch.no_grad():
lowercase__ : Any = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)[0]
lowercase__ : Any = torch.Size((1, 6, 7_68))
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]])
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4))
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""")
lowercase__ : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]])
lowercase__ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1]])
with torch.no_grad():
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)[0]
lowercase__ : Optional[Any] = torch.Size((1, 6, 2_11_28))
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_)
lowercase__ : int = torch.tensor(
[[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]])
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4))
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCamelCase__ : Union[str, Any] = 1_6
lowerCamelCase__ : List[Any] = 3_2
def UpperCamelCase ( lowercase_ , lowercase_ = 16 ) -> List[str]:
'''simple docstring'''
lowercase__ : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowercase__ : Optional[int] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(lowercase_ ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ : List[str] = datasets.map(
lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowercase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ : Dict = 16
elif accelerator.mixed_precision != "no":
lowercase__ : str = 8
else:
lowercase__ : Dict = None
return tokenizer.pad(
lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , )
# Instantiate dataloaders.
lowercase__ : int = DataLoader(
tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
lowercase__ : Optional[int] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCamelCase__ : str = mocked_dataloaders # noqa: F811
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1":
lowercase__ : List[str] = 2
# New Code #
lowercase__ : List[str] = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ : Optional[int] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase_ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ : Dict = config["""lr"""]
lowercase__ : Dict = int(config["""num_epochs"""] )
lowercase__ : int = int(config["""seed"""] )
lowercase__ : int = int(config["""batch_size"""] )
lowercase__ : str = evaluate.load("""glue""" , """mrpc""" )
set_seed(lowercase_ )
lowercase__ , lowercase__ : Dict = get_dataloaders(lowercase_ , lowercase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ : str = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ : Any = AdamW(params=model.parameters() , lr=lowercase_ )
# Instantiate scheduler
lowercase__ : Optional[int] = get_linear_schedule_with_warmup(
optimizer=lowercase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowercase_ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Now we train the model
for epoch in range(lowercase_ ):
model.train()
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(lowercase_ ):
lowercase__ : List[str] = model(**lowercase_ )
lowercase__ : Any = output.loss
accelerator.backward(lowercase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ : List[str] = model(**lowercase_ )
lowercase__ : Optional[Any] = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=lowercase_ , references=lowercase_ , )
lowercase__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:' , lowercase_ )
def UpperCamelCase ( ) -> str:
'''simple docstring'''
lowercase__ : int = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=lowercase_ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
lowercase__ : str = parser.parse_args()
lowercase__ : List[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(lowercase_ , lowercase_ )
if __name__ == "__main__":
main()
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Dict:
'''simple docstring'''
assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match'
lowercase__ : List[str] = nn.Parameter(lowercase_ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match'
lowercase__ : List[Any] = nn.Parameter(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : int = np.asarray(weights[0] )
lowercase__ : Tuple = np.asarray(weights[1] )
lowercase__ : List[Any] = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowercase_ ).view(-1 , lowercase_ ).contiguous().transpose(0 , 1 ) , )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : Optional[Any] = np.asarray(weights[0] )
lowercase__ : Optional[int] = np.asarray(weights[1] )
lowercase__ : Union[str, Any] = np.asarray(weights[2] )
lowercase__ : Any = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowercase_ ).view(-1 , lowercase_ ).contiguous().transpose(0 , 1 ) , )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Any = weights[0][0][0]
lowercase__ : Tuple = np.asarray(layer_norm_a[0] )
lowercase__ : Any = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , )
# lsh weights + output
lowercase__ : List[Any] = weights[0][1]
if len(lowercase_ ) < 4:
set_layer_weights_in_torch_lsh(lowercase_ , torch_block.attention , lowercase_ )
else:
set_layer_weights_in_torch_local(lowercase_ , torch_block.attention , lowercase_ )
# intermediate weighs
lowercase__ : Any = weights[2][0][1][2]
# Chunked Feed Forward
if len(lowercase_ ) == 4:
lowercase__ : Union[str, Any] = intermediate_weights[2]
# layernorm 2
lowercase__ : Tuple = np.asarray(intermediate_weights[0][0] )
lowercase__ : int = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , )
# intermediate dense
lowercase__ : Optional[Any] = np.asarray(intermediate_weights[1][0] )
lowercase__ : Any = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , )
# intermediate out
lowercase__ : List[Any] = np.asarray(intermediate_weights[4][0] )
lowercase__ : Optional[Any] = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Dict = torch_model.reformer
# word embeds
lowercase__ : Any = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowercase_ ) , )
if isinstance(weights[3] , lowercase_ ):
lowercase__ : List[Any] = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
lowercase__ : List[str] = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F'{position_embeddings[emb_idx]} emb does not match'
lowercase__ : Union[str, Any] = nn.Parameter(torch.tensor(lowercase_ ) )
lowercase__ : Union[str, Any] = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
lowercase_ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
lowercase__ : List[str] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(lowercase_ , lowercase_ , lowercase_ )
# output layer norm
lowercase__ : int = np.asarray(weights[7][0] )
lowercase__ : str = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , )
# output embeddings
lowercase__ : List[Any] = np.asarray(weights[9][0] )
lowercase__ : int = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : Union[str, Any] = ReformerConfig.from_json_file(lowercase_ )
print(F'Building PyTorch model from configuration: {config}' )
lowercase__ : Union[str, Any] = ReformerModelWithLMHead(lowercase_ )
with open(lowercase_ , """rb""" ) as f:
lowercase__ : Tuple = pickle.load(lowercase_ )["""weights"""]
set_model_weights_in_torch(lowercase_ , lowercase_ , config.hidden_size )
# Save pytorch-model
print(F'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained Reformer model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
lowerCamelCase__ : int = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
import argparse
import os
import re
lowerCamelCase__ : str = """src/diffusers"""
# Pattern that looks at the indentation in a line.
lowerCamelCase__ : str = re.compile(R"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCamelCase__ : Optional[Any] = re.compile(R"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCamelCase__ : str = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCamelCase__ : Any = re.compile(R"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCamelCase__ : Union[str, Any] = re.compile(R"""\[([^\]]+)\]""")
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = _re_indent.search(lowercase_ )
return "" if search is None else search.groups()[0]
def UpperCamelCase ( lowercase_ , lowercase_="" , lowercase_=None , lowercase_=None ) -> Optional[int]:
'''simple docstring'''
lowercase__ : int = 0
lowercase__ : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(lowercase_ ):
index += 1
lowercase__ : Dict = ["""\n""".join(lines[:index] )]
else:
lowercase__ : Dict = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase__ : str = [lines[index]]
index += 1
while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(lowercase_ ) )
if index < len(lowercase_ ) - 1:
lowercase__ : Union[str, Any] = [lines[index + 1]]
index += 1
else:
lowercase__ : Union[str, Any] = []
else:
blocks.append("""\n""".join(lowercase_ ) )
lowercase__ : List[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowercase_ ) > 0:
blocks.append("""\n""".join(lowercase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowercase_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def UpperCamelCase ( lowercase_ ) -> List[Any]:
'''simple docstring'''
def _inner(lowercase_ ):
return key(lowercase_ ).lower().replace("""_""" , """""" )
return _inner
def UpperCamelCase ( lowercase_ , lowercase_=None ) -> str:
'''simple docstring'''
def noop(lowercase_ ):
return x
if key is None:
lowercase__ : str = noop
# Constants are all uppercase, they go first.
lowercase__ : List[Any] = [obj for obj in objects if key(lowercase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase__ : List[str] = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowercase__ : Tuple = [obj for obj in objects if not key(lowercase_ )[0].isupper()]
lowercase__ : Optional[Any] = ignore_underscore(lowercase_ )
return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
def _replace(lowercase_ ):
lowercase__ : int = match.groups()[0]
if "," not in imports:
return F'[{imports}]'
lowercase__ : Tuple = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ : str = keys[:-1]
return "[" + ", ".join([F'"{k}"' for k in sort_objects(lowercase_ )] ) + "]"
lowercase__ : Optional[int] = import_statement.split("""\n""" )
if len(lowercase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase__ : List[str] = 2 if lines[1].strip() == """[""" else 1
lowercase__ : Union[str, Any] = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowercase__ : Any = sort_objects(lowercase_ , key=lambda lowercase_ : x[1] )
lowercase__ : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowercase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowercase__ : Any = _re_bracket_content.sub(_replace , lines[1] )
else:
lowercase__ : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ : List[str] = keys[:-1]
lowercase__ : List[str] = get_indent(lines[1] ) + """, """.join([F'"{k}"' for k in sort_objects(lowercase_ )] )
return "\n".join(lowercase_ )
else:
# Finally we have to deal with imports fitting on one line
lowercase__ : str = _re_bracket_content.sub(_replace , lowercase_ )
return import_statement
def UpperCamelCase ( lowercase_ , lowercase_=True ) -> int:
'''simple docstring'''
with open(lowercase_ , """r""" ) as f:
lowercase__ : List[Any] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase__ : Optional[Any] = split_code_in_indented_blocks(
lowercase_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowercase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase__ : Any = main_blocks[block_idx]
lowercase__ : Union[str, Any] = block.split("""\n""" )
# Get to the start of the imports.
lowercase__ : int = 0
while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase__ : List[str] = len(lowercase_ )
else:
line_idx += 1
if line_idx >= len(lowercase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase__ : List[Any] = """\n""".join(block_lines[line_idx:-1] )
lowercase__ : Optional[Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowercase__ : Union[str, Any] = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase__ : Tuple = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase__ : Dict = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase__ : Any = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None]
lowercase__ : List[str] = [x[0] for x in sorted(lowercase_ , key=lambda lowercase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase__ : Any = 0
lowercase__ : Optional[int] = []
for i in range(len(lowercase_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
lowercase__ : List[str] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(lowercase_ )
count += 1
# And we put our main block back together with its first and last line.
lowercase__ : List[Any] = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(lowercase_ ):
if check_only:
return True
else:
print(F'Overwriting {file}.' )
with open(lowercase_ , """w""" ) as f:
f.write("""\n""".join(lowercase_ ) )
def UpperCamelCase ( lowercase_=True ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = []
for root, _, files in os.walk(lowercase_ ):
if "__init__.py" in files:
lowercase__ : int = sort_imports(os.path.join(lowercase_ , """__init__.py""" ) , check_only=lowercase_ )
if result:
lowercase__ : Dict = [os.path.join(lowercase_ , """__init__.py""" )]
if len(lowercase_ ) > 0:
raise ValueError(F'Would overwrite {len(lowercase_ )} files, run `make style`.' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCamelCase__ : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
# flake8: noqa
# Lint as: python3
lowerCamelCase__ : Tuple = [
"""VerificationMode""",
"""Version""",
"""disable_progress_bar""",
"""enable_progress_bar""",
"""is_progress_bar_enabled""",
"""experimental""",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from __future__ import annotations
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums:
raise ValueError("""List is empty""" )
return sum(lowercase_ ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if not numbers:
return 0
if not isinstance(lowercase_ , (list, tuple) ) or not all(
isinstance(lowercase_ , lowercase_ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
lowercase__ : Dict = numbers[0]
for i in range(1 , len(lowercase_ ) ):
# update the maximum and minimum subarray products
lowercase__ : Optional[int] = numbers[i]
if number < 0:
lowercase__ , lowercase__ : Any = min_till_now, max_till_now
lowercase__ : List[str] = max(lowercase_ , max_till_now * number )
lowercase__ : Any = min(lowercase_ , min_till_now * number )
# update the maximum product found till now
lowercase__ : List[Any] = max(lowercase_ , lowercase_ )
return max_prod
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
import cmath
import math
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> complex:
'''simple docstring'''
lowercase__ : Dict = math.radians(lowercase_ )
lowercase__ : List[str] = math.radians(lowercase_ )
# Convert voltage and current to rectangular form
lowercase__ : Tuple = cmath.rect(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cmath.rect(lowercase_ , lowercase_ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
lowerCamelCase__ : List[Any] = abspath(join(dirname(__file__), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def UpperCamelCase ( lowercase_ ) -> Optional[Any]:
'''simple docstring'''
config.addinivalue_line(
"""markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" )
config.addinivalue_line(
"""markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" )
config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" )
config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" )
config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" )
config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" )
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
from transformers.testing_utils import pytest_terminal_summary_main
lowercase__ : List[str] = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(lowercase_ , id=lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
if exitstatus == 5:
lowercase__ : Optional[Any] = 0
# Doctest custom flag to ignore output.
lowerCamelCase__ : Dict = doctest.register_optionflag("""IGNORE_RESULT""")
lowerCamelCase__ : List[str] = doctest.OutputChecker
class _snake_case ( UpperCAmelCase_ ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowerCamelCase__ : Optional[Any] = CustomOutputChecker
lowerCamelCase__ : Tuple = HfDoctestModule
lowerCamelCase__ : Union[str, Any] = HfDocTestParser
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__)
class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ):
__lowerCAmelCase : bool = None
__lowerCAmelCase : bool = None
class _snake_case ( folder_based_builder.FolderBasedBuilder ):
__lowerCAmelCase : Optional[Any] = datasets.Audio()
__lowerCAmelCase : Union[str, Any] = 'audio'
__lowerCAmelCase : str = AudioFolderConfig
__lowerCAmelCase : List[str] # definition at the bottom of the script
__lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' )
lowerCamelCase__ : int = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
lowerCamelCase__ : int = AUDIO_EXTENSIONS
| 12 | 1 |
from ...configuration_utils import PretrainedConfig
lowerCamelCase__ : List[Any] = {
"""google/tapas-base-finetuned-sqa""": (
"""https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wtq""": (
"""https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wikisql-supervised""": (
"""https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-tabfact""": (
"""https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"""
),
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : List[str] = 'tapas'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1_0.0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="ratio" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
lowercase__ : Tuple = vocab_size
lowercase__ : str = hidden_size
lowercase__ : List[Any] = num_hidden_layers
lowercase__ : Any = num_attention_heads
lowercase__ : List[Any] = hidden_act
lowercase__ : Optional[Any] = intermediate_size
lowercase__ : List[Any] = hidden_dropout_prob
lowercase__ : List[Any] = attention_probs_dropout_prob
lowercase__ : List[Any] = max_position_embeddings
lowercase__ : List[str] = type_vocab_sizes
lowercase__ : Tuple = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
# Fine-tuning task hyperparameters
lowercase__ : Union[str, Any] = positive_label_weight
lowercase__ : Optional[Any] = num_aggregation_labels
lowercase__ : str = aggregation_loss_weight
lowercase__ : str = use_answer_as_supervision
lowercase__ : Union[str, Any] = answer_loss_importance
lowercase__ : Union[str, Any] = use_normalized_answer_loss
lowercase__ : str = huber_loss_delta
lowercase__ : Tuple = temperature
lowercase__ : Any = aggregation_temperature
lowercase__ : List[Any] = use_gumbel_for_cells
lowercase__ : List[str] = use_gumbel_for_aggregation
lowercase__ : Dict = average_approximation_function
lowercase__ : str = cell_selection_preference
lowercase__ : List[Any] = answer_loss_cutoff
lowercase__ : Optional[Any] = max_num_rows
lowercase__ : str = max_num_columns
lowercase__ : Optional[Any] = average_logits_per_cell
lowercase__ : Tuple = select_one_column
lowercase__ : str = allow_empty_column_selection
lowercase__ : Optional[Any] = init_cell_selection_weights_to_zero
lowercase__ : Dict = reset_position_index_per_cell
lowercase__ : str = disable_per_token_loss
# Aggregation hyperparameters
lowercase__ : Union[str, Any] = aggregation_labels
lowercase__ : Optional[Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , SCREAMING_SNAKE_CASE_):
lowercase__ : Any = {int(SCREAMING_SNAKE_CASE_): v for k, v in aggregation_labels.items()}
| 12 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = (DDPMScheduler,)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**SCREAMING_SNAKE_CASE_)
return config
def lowercase__ ( self):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config()
lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config()
lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.dummy_model()
lowercase__ : List[Any] = self.dummy_sample_deter
lowercase__ : str = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : str = pred_prev_sample
lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2
assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : int = torch.manual_seed(0)
for t in reversed(range(SCREAMING_SNAKE_CASE_)):
# 1. predict noise residual
lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# 2. predict previous mean of sample x_t-1
lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowercase__ : Tuple = pred_prev_sample
lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_))
assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2
assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE_):
if i == len(SCREAMING_SNAKE_CASE_) - 1:
lowercase__ : Optional[int] = -1
else:
lowercase__ : Tuple = timesteps[i + 1]
lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_)
lowercase__ : int = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [1_00, 87, 50, 51, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.scheduler_classes[0]
lowercase__ : List[Any] = self.get_scheduler_config()
lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : int = [1_00, 87, 50, 1, 0]
lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_)
with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : str = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 1 |
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
lowerCamelCase__ : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
lowerCamelCase__ : Optional[int] = 0
lowerCamelCase__ : Any = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowerCamelCase__ : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
lowerCamelCase__ : Any = tuple[int, int]
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : List[str] = pos_x
lowercase__ : Dict = pos_y
lowercase__ : Any = (pos_y, pos_x)
lowercase__ : str = goal_x
lowercase__ : Optional[int] = goal_y
lowercase__ : Dict = g_cost
lowercase__ : List[str] = parent
lowercase__ : Any = self.calculate_heuristic()
lowercase__ : str = self.g_cost + self.h_cost
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.pos_x - self.goal_x
lowercase__ : Optional[Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(SCREAMING_SNAKE_CASE_) + abs(SCREAMING_SNAKE_CASE_)
else:
return sqrt(dy**2 + dx**2)
def __lt__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.f_cost < other.f_cost
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = [self.start]
lowercase__ : list[Node] = []
lowercase__ : Dict = False
def lowercase__ ( self):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
lowercase__ : List[str] = self.open_nodes.pop(0)
if current_node.pos == self.target.pos:
return self.retrace_path(SCREAMING_SNAKE_CASE_)
self.closed_nodes.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = self.get_successors(SCREAMING_SNAKE_CASE_)
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE_)
else:
# retrieve the best current path
lowercase__ : List[Any] = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_))
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE_)
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE_)
return [self.start.pos]
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = []
for action in delta:
lowercase__ : Any = parent.pos_x + action[1]
lowercase__ : Tuple = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ))
return successors
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Optional[Any] = node
lowercase__ : Optional[Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
lowercase__ : List[Any] = current_node.parent
path.reverse()
return path
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = False
def lowercase__ ( self):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
lowercase__ : List[Any] = self.fwd_astar.open_nodes.pop(0)
lowercase__ : Optional[int] = self.bwd_astar.open_nodes.pop(0)
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_)
self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_)
lowercase__ : str = current_bwd_node
lowercase__ : str = current_fwd_node
lowercase__ : Union[str, Any] = {
self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE_),
self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE_),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_)
else:
# retrieve the best current path
lowercase__ : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(SCREAMING_SNAKE_CASE_))
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_)
else:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_)
return [self.fwd_astar.start.pos]
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE_)
bwd_path.pop()
bwd_path.reverse()
lowercase__ : List[str] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
lowerCamelCase__ : str = (0, 0)
lowerCamelCase__ : Dict = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
lowerCamelCase__ : int = time.time()
lowerCamelCase__ : List[Any] = AStar(init, goal)
lowerCamelCase__ : str = a_star.search()
lowerCamelCase__ : Any = time.time() - start_time
print(f'''AStar execution time = {end_time:f} seconds''')
lowerCamelCase__ : List[str] = time.time()
lowerCamelCase__ : Tuple = BidirectionalAStar(init, goal)
lowerCamelCase__ : List[str] = time.time() - bd_start_time
print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 12 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 1 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 1 |
from __future__ import annotations
def UpperCamelCase ( lowercase_ , lowercase_ = None ) -> list[list[str]]:
'''simple docstring'''
lowercase__ : Dict = word_bank or []
# create a table
lowercase__ : int = len(lowercase_ ) + 1
lowercase__ : list[list[list[str]]] = []
for _ in range(lowercase_ ):
table.append([] )
# seed value
lowercase__ : Dict = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase_ ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase_ )] == word:
lowercase__ : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase_ )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase_ )]:
combination.reverse()
return table[len(lowercase_ )]
if __name__ == "__main__":
print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""]))
print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""]))
print(
all_construct(
"""hexagonosaurus""",
["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""],
)
)
| 12 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__lowerCAmelCase : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} )
__lowerCAmelCase : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} )
__lowerCAmelCase : ClassVar[Features] = Features(
{
'answers': Sequence(
{
'text': Value('string' ),
'answer_start': Value('int32' ),
} )
} )
__lowerCAmelCase : str = "question"
__lowerCAmelCase : str = "context"
__lowerCAmelCase : str = "answers"
@property
def lowercase__ ( self):
'''simple docstring'''
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 12 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 1 |
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : List[str] = k_size // 2
lowercase__ , lowercase__ : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
lowercase__ : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(lowercase_ ) + square(lowercase_ )) / (2 * square(lowercase_ )) )
return g
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
lowercase__ , lowercase__ : List[Any] = image.shape[0], image.shape[1]
# dst image height and width
lowercase__ : Tuple = height - k_size + 1
lowercase__ : Dict = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
lowercase__ : List[str] = zeros((dst_height * dst_width, k_size * k_size) )
lowercase__ : Optional[int] = 0
for i, j in product(range(lowercase_ ) , range(lowercase_ ) ):
lowercase__ : Any = ravel(image[i : i + k_size, j : j + k_size] )
lowercase__ : List[Any] = window
row += 1
# turn the kernel into shape(k*k, 1)
lowercase__ : Dict = gen_gaussian_kernel(lowercase_ , lowercase_ )
lowercase__ : Tuple = ravel(lowercase_ )
# reshape and get the dst image
lowercase__ : Any = dot(lowercase_ , lowercase_ ).reshape(lowercase_ , lowercase_ ).astype(lowercase_ )
return dst
if __name__ == "__main__":
# read original image
lowerCamelCase__ : Any = imread(R"""../image_data/lena.jpg""")
# turn image in gray scale value
lowerCamelCase__ : Dict = cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
lowerCamelCase__ : List[Any] = gaussian_filter(gray, 3, sigma=1)
lowerCamelCase__ : List[Any] = gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow("""gaussian filter with 3x3 mask""", gaussianaxa)
imshow("""gaussian filter with 5x5 mask""", gaussianaxa)
waitKey()
| 12 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 1 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ):
__lowerCAmelCase : List[Any] = 'pixel_values'
__lowerCAmelCase : Union[str, Any] = False
__lowerCAmelCase : List[Any] = TimmBackboneConfig
def __init__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
requires_backends(self , """timm""")
super().__init__(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""")
if config.backbone not in timm.list_models():
raise ValueError(f'backbone {config.backbone} is not supported by timm.')
if hasattr(SCREAMING_SNAKE_CASE_ , """out_features""") and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""")
lowercase__ : Any = getattr(SCREAMING_SNAKE_CASE_ , """use_pretrained_backbone""" , SCREAMING_SNAKE_CASE_)
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""")
# We just take the final layer by default. This matches the default for the transformers models.
lowercase__ : Optional[int] = config.out_indices if getattr(SCREAMING_SNAKE_CASE_ , """out_indices""" , SCREAMING_SNAKE_CASE_) is not None else (-1,)
lowercase__ : List[str] = timm.create_model(
config.backbone , pretrained=SCREAMING_SNAKE_CASE_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowercase__ : List[str] = self._backbone.return_layers
lowercase__ : Union[str, Any] = {layer["""module"""]: str(SCREAMING_SNAKE_CASE_) for i, layer in enumerate(self._backbone.feature_info.info)}
super()._init_backbone(SCREAMING_SNAKE_CASE_)
@classmethod
def lowercase__ ( cls , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
requires_backends(cls , ["""vision""", """timm"""])
from ...models.timm_backbone import TimmBackboneConfig
lowercase__ : Dict = kwargs.pop("""config""" , TimmBackboneConfig())
lowercase__ : List[str] = kwargs.pop("""use_timm_backbone""" , SCREAMING_SNAKE_CASE_)
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""")
lowercase__ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels)
lowercase__ : Optional[int] = kwargs.pop("""features_only""" , config.features_only)
lowercase__ : int = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone)
lowercase__ : Any = kwargs.pop("""out_indices""" , config.out_indices)
lowercase__ : List[str] = TimmBackboneConfig(
backbone=SCREAMING_SNAKE_CASE_ , num_channels=SCREAMING_SNAKE_CASE_ , features_only=SCREAMING_SNAKE_CASE_ , use_pretrained_backbone=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , )
return super()._from_config(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
pass
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Optional[Any] = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""")
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowercase__ : List[str] = self._all_layers
lowercase__ : Optional[int] = self._backbone(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self._return_layers
lowercase__ : Optional[Any] = tuple(hidden_states[i] for i in self.out_indices)
else:
lowercase__ : int = self._backbone(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = None
lowercase__ : Optional[Any] = tuple(SCREAMING_SNAKE_CASE_)
lowercase__ : int = tuple(SCREAMING_SNAKE_CASE_) if hidden_states is not None else None
if not return_dict:
lowercase__ : Union[str, Any] = (feature_maps,)
if output_hidden_states:
lowercase__ : Optional[Any] = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , attentions=SCREAMING_SNAKE_CASE_)
| 12 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 1 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=0 ) -> List[str]:
'''simple docstring'''
if name is None:
lowercase__ : List[Any] = None
else:
lowercase__ : Any = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
lowercase__ : int = fmt.format(lowercase_ )
# Print and recurse (if needed).
if isinstance(lowercase_ , lowercase_ ):
if msg is not None:
print(lowercase_ )
for k in val.keys():
recursive_print(lowercase_ , val[k] , spaces + 2 )
elif isinstance(lowercase_ , torch.Tensor ):
print(lowercase_ , """:""" , val.size() )
else:
print(lowercase_ , """:""" , lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : List[Any] = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowercase__ : Optional[int] = (num_heads, hidden_size, num_splits) + input_shape[1:]
lowercase__ : str = param.view(*lowercase_ )
lowercase__ : Dict = param.transpose(0 , 2 )
lowercase__ : Tuple = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowercase__ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
lowercase__ : int = param.view(*lowercase_ )
lowercase__ : List[Any] = param.transpose(0 , 1 ).contiguous()
lowercase__ : List[str] = param.view(*lowercase_ )
return param
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Union[str, Any] = {}
# old versions did not store training args
lowercase__ : Optional[int] = input_state_dict.get("""args""" , lowercase_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowercase__ : Optional[int] = ds_args.padded_vocab_size
lowercase__ : List[str] = ds_args.max_position_embeddings
lowercase__ : Union[str, Any] = ds_args.hidden_size
lowercase__ : Union[str, Any] = ds_args.num_layers
lowercase__ : List[Any] = ds_args.num_attention_heads
lowercase__ : Any = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowercase__ : Tuple = config.n_head
# The hidden_size per head.
lowercase__ : List[str] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowercase__ : str = input_state_dict["""checkpoint_version"""]
else:
lowercase__ : Optional[int] = 0.0
# The model.
lowercase__ : Tuple = input_state_dict["""model"""]
# The language model.
lowercase__ : List[str] = model["""language_model"""]
# The embeddings.
lowercase__ : Dict = lm["""embedding"""]
# The word embeddings.
lowercase__ : Any = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
lowercase__ : List[Any] = word_embeddings[: config.vocab_size, :]
lowercase__ : List[str] = word_embeddings
# The position embeddings.
lowercase__ : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowercase__ : List[str] = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' )
# Store the position embeddings.
lowercase__ : Optional[Any] = pos_embeddings
# The transformer.
lowercase__ : List[str] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
lowercase__ : str = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
lowercase__ : Optional[int] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowercase__ : int = layer_re.match(lowercase_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowercase__ : Union[str, Any] = int(m.group(1 ) )
# The name of the operation.
lowercase__ : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
lowercase__ : Optional[int] = m.group(3 )
# The name of the layer.
lowercase__ : List[str] = F'transformer.h.{layer_idx}'
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
lowercase__ : Optional[Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
lowercase__ : str = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowercase__ : List[str] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , lowercase_ , lowercase_ )
lowercase__ : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
lowercase__ : Dict = torch.tensor(-1E4 , dtype=torch.floataa )
lowercase__ : Tuple = masked_bias
lowercase__ : List[Any] = fix_query_key_value_ordering(lowercase_ , lowercase_ , 3 , lowercase_ , lowercase_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowercase__ : Optional[int] = out_val.transpose(0 , 1 ).contiguous()
# Store.
lowercase__ : int = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowercase__ : List[str] = fix_query_key_value_ordering(lowercase_ , lowercase_ , 3 , lowercase_ , lowercase_ )
# Store. No change of shape.
lowercase__ : Dict = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowercase__ : List[str] = megatron_to_transformers[op_name]
lowercase__ : int = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowercase__ : List[str] = megatron_to_transformers[op_name]
lowercase__ : Dict = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowercase__ : Union[str, Any] = transformer["""final_layernorm.weight"""]
lowercase__ : List[Any] = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
lowercase__ : Union[str, Any] = word_embeddings
# It should be done!
return output_state_dict
def UpperCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""" , type=lowercase_ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , )
parser.add_argument(
"""--config_file""" , default="""""" , type=lowercase_ , help="""An optional config json file describing the pre-trained model.""" , )
lowercase__ : Optional[int] = parser.parse_args()
# Extract the basename.
lowercase__ : Union[str, Any] = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
lowercase__ : Union[str, Any] = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : int = torch.load(args.path_to_checkpoint , map_location="""cpu""" )
lowercase__ : Optional[int] = input_state_dict.get("""args""" , lowercase_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowercase__ : int = """gelu_fast"""
elif ds_args.openai_gelu:
lowercase__ : Tuple = """gelu_new"""
else:
lowercase__ : Union[str, Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
lowercase__ : Optional[int] = """gelu_new"""
# Spell out all parameters in case the defaults change.
lowercase__ : Tuple = GPTaConfig(
vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=lowercase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=lowercase_ , summary_activation=lowercase_ , summary_proj_to_labels=lowercase_ , summary_first_dropout=0.1 , scale_attn_weights=lowercase_ , use_cache=lowercase_ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , )
else:
lowercase__ : List[str] = GPTaConfig.from_json_file(args.config_file )
lowercase__ : Optional[Any] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
lowercase__ : Dict = convert_megatron_checkpoint(lowercase_ , lowercase_ , lowercase_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(lowercase_ , lowercase_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowercase__ : Dict = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowercase__ : List[Any] = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
lowercase__ : str = ds_args.tokenizer_name_or_path
else:
raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' )
else:
lowercase__ : Union[str, Any] = """gpt2"""
lowercase__ : List[Any] = AutoTokenizer.from_pretrained(lowercase_ )
lowercase__ : int = type(lowercase_ ).__name__
lowercase__ : str = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(lowercase_ )
# Save tokenizer based on args
print(F'Adding {tokenizer_class} tokenizer files' )
tokenizer.save_pretrained(lowercase_ )
# Store the state_dict to file.
lowercase__ : Optional[Any] = os.path.join(lowercase_ , """pytorch_model.bin""" )
print(F'Saving checkpoint to "{output_checkpoint_file}"' )
torch.save(lowercase_ , lowercase_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 12 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 1 |
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : str = logging.get_logger(__name__)
lowerCamelCase__ : str = {
"""huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""",
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : int = 'autoformer'
__lowerCAmelCase : str = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "student_t" , SCREAMING_SNAKE_CASE_ = "nll" , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = [1, 2, 3, 4, 5, 6, 7] , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 64 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = 0.0_2 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = 25 , SCREAMING_SNAKE_CASE_ = 3 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Any = prediction_length
lowercase__ : Dict = context_length if context_length is not None else prediction_length
lowercase__ : List[str] = distribution_output
lowercase__ : Optional[int] = loss
lowercase__ : Tuple = input_size
lowercase__ : Any = num_time_features
lowercase__ : Optional[Any] = lags_sequence
lowercase__ : Dict = scaling
lowercase__ : Dict = num_dynamic_real_features
lowercase__ : Union[str, Any] = num_static_real_features
lowercase__ : Any = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE_) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""")
lowercase__ : str = cardinality
else:
lowercase__ : int = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE_) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""")
lowercase__ : List[Any] = embedding_dimension
else:
lowercase__ : Optional[Any] = [min(50 , (cat + 1) // 2) for cat in self.cardinality]
lowercase__ : Optional[Any] = num_parallel_samples
# Transformer architecture configuration
lowercase__ : int = input_size * len(self.lags_sequence) + self._number_of_features
lowercase__ : Tuple = d_model
lowercase__ : List[str] = encoder_attention_heads
lowercase__ : int = decoder_attention_heads
lowercase__ : Any = encoder_ffn_dim
lowercase__ : List[Any] = decoder_ffn_dim
lowercase__ : Tuple = encoder_layers
lowercase__ : Any = decoder_layers
lowercase__ : int = dropout
lowercase__ : Optional[Any] = attention_dropout
lowercase__ : str = activation_dropout
lowercase__ : Any = encoder_layerdrop
lowercase__ : List[Any] = decoder_layerdrop
lowercase__ : str = activation_function
lowercase__ : Union[str, Any] = init_std
lowercase__ : Any = use_cache
# Autoformer
lowercase__ : Any = label_length
lowercase__ : Optional[int] = moving_average
lowercase__ : Tuple = autocorrelation_factor
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return (
sum(self.embedding_dimension)
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 12 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 1 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = RobertaTokenizer
__lowerCAmelCase : Union[str, Any] = RobertaTokenizerFast
__lowerCAmelCase : Union[str, Any] = True
__lowerCAmelCase : int = {'cls_token': '<s>'}
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase__ : Any = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
lowercase__ : Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_))))
lowercase__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
lowercase__ : Dict = {"""unk_token""": """<unk>"""}
lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_) + """\n""")
with open(self.merges_file , """w""" , encoding="""utf-8""") as fp:
fp.write("""\n""".join(SCREAMING_SNAKE_CASE_))
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = """lower newer"""
lowercase__ : Dict = """lower newer"""
return input_text, output_text
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map)
lowercase__ : Union[str, Any] = """lower newer"""
lowercase__ : Tuple = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
lowercase__ : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) # , add_prefix_space=True)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = tokens + [tokenizer.unk_token]
lowercase__ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=SCREAMING_SNAKE_CASE_) , [0, 3_14_14, 2_32, 3_28, 2])
self.assertListEqual(
tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=SCREAMING_SNAKE_CASE_) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained("""roberta-base""")
lowercase__ : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.encode(
"""sequence builders""" , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.get_tokenizer()
lowercase__ : Optional[int] = """Encode this sequence."""
lowercase__ : List[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""")[0]]
# Testing encoder arguments
lowercase__ : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
tokenizer.add_special_tokens({"""bos_token""": """<s>"""})
lowercase__ : str = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1])[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# Testing spaces after special tokens
lowercase__ : int = """<mask>"""
tokenizer.add_special_tokens(
{"""mask_token""": AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_)}) # mask token has a left space
lowercase__ : Optional[int] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = """Encode <mask> sequence"""
lowercase__ : Any = """Encode <mask>sequence"""
lowercase__ : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = encoded.index(SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_)
lowercase__ : str = encoded.index(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : int = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Any = """A, <mask> AllenNLP sentence."""
lowercase__ : Union[str, Any] = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["""token_type_ids"""]) , sum(tokens_p["""token_type_ids"""]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["""attention_mask"""]) / len(tokens_r["""attention_mask"""]) , sum(tokens_p["""attention_mask"""]) / len(tokens_p["""attention_mask"""]) , )
lowercase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""])
lowercase__ : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""])
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2])
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2])
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""])
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""])
def lowercase__ ( self):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2):
lowercase__ : int = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__())
lowercase__ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__())
self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , SCREAMING_SNAKE_CASE_)
self.assertEqual(post_processor_state["""add_prefix_space"""] , SCREAMING_SNAKE_CASE_)
self.assertEqual(post_processor_state["""trim_offsets"""] , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Optional[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
lowercase__ : List[str] = f'{text_of_1_token} {text_of_1_token}'
lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_)))
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_) + 1, len(SCREAMING_SNAKE_CASE_) + 1 + len(SCREAMING_SNAKE_CASE_)) , )
lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_)))
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_) + 1, len(SCREAMING_SNAKE_CASE_) + 1 + len(SCREAMING_SNAKE_CASE_)) , )
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_)))
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_), len(SCREAMING_SNAKE_CASE_) + 1 + len(SCREAMING_SNAKE_CASE_)) , )
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_)))
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_), len(SCREAMING_SNAKE_CASE_) + 1 + len(SCREAMING_SNAKE_CASE_)) , )
lowercase__ : Dict = f' {text}'
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowercase__ : int = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE_)))
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_) + 1, 1 + len(SCREAMING_SNAKE_CASE_) + 1 + len(SCREAMING_SNAKE_CASE_)) , )
lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_)))
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_), 1 + len(SCREAMING_SNAKE_CASE_) + 1 + len(SCREAMING_SNAKE_CASE_)) , )
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_)))
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_), 1 + len(SCREAMING_SNAKE_CASE_) + 1 + len(SCREAMING_SNAKE_CASE_)) , )
| 12 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 1 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 1 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowerCamelCase__ : Any = logging.get_logger(__name__)
lowerCamelCase__ : List[Any] = {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""",
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : List[str] = 't5'
__lowerCAmelCase : List[str] = ['past_key_values']
__lowerCAmelCase : List[str] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self , SCREAMING_SNAKE_CASE_=3_21_28 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-6 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Optional[Any] = vocab_size
lowercase__ : Union[str, Any] = d_model
lowercase__ : Union[str, Any] = d_kv
lowercase__ : List[Any] = d_ff
lowercase__ : Optional[Any] = num_layers
lowercase__ : Union[str, Any] = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase__ : Any = num_heads
lowercase__ : Tuple = relative_attention_num_buckets
lowercase__ : Union[str, Any] = relative_attention_max_distance
lowercase__ : str = dropout_rate
lowercase__ : Dict = layer_norm_epsilon
lowercase__ : Optional[int] = initializer_factor
lowercase__ : str = feed_forward_proj
lowercase__ : Optional[int] = use_cache
lowercase__ : str = self.feed_forward_proj.split("""-""")
lowercase__ : Tuple = act_info[-1]
lowercase__ : Optional[int] = act_info[0] == """gated"""
if len(SCREAMING_SNAKE_CASE_) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE_) > 2:
raise ValueError(
f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
"""Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """
"""'gated-gelu' or 'relu'""")
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
lowercase__ : str = """gelu_new"""
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = {
"""input_ids""": {0: """batch""", 1: """encoder_sequence"""},
"""attention_mask""": {0: """batch""", 1: """encoder_sequence"""},
}
if self.use_past:
lowercase__ : List[str] = """past_encoder_sequence + sequence"""
lowercase__ : int = {0: """batch"""}
lowercase__ : Optional[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
lowercase__ : int = {0: """batch""", 1: """decoder_sequence"""}
lowercase__ : Optional[int] = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction="""inputs""")
return common_inputs
@property
def lowercase__ ( self):
'''simple docstring'''
return 13
| 12 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 1 |
# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = multiprocessing.Manager()
lowercase__ : Optional[int] = manager.list()
lowercase__ : str = multiprocessing.Process(target=lowercase_ , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append("""timed out""" )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
lowercase__ : Optional[int] = shutil.rmtree
lowercase__ : Dict = os.rmdir
lowercase__ : int = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
lowercase__ : Any = {}
with swallow_io():
with time_limit(lowercase_ ):
exec(lowercase_ , lowercase_ )
result.append("""passed""" )
except TimeoutException:
result.append("""timed out""" )
except BaseException as e:
result.append(F'failed: {e}' )
# Needed for cleaning up.
lowercase__ : List[Any] = rmtree
lowercase__ : int = rmdir
lowercase__ : int = chdir
@contextlib.contextmanager
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
def signal_handler(lowercase_ , lowercase_ ):
raise TimeoutException("""Timed out!""" )
signal.setitimer(signal.ITIMER_REAL , lowercase_ )
signal.signal(signal.SIGALRM , lowercase_ )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def UpperCamelCase ( ) -> Dict:
'''simple docstring'''
lowercase__ : Union[str, Any] = WriteOnlyStringIO()
with contextlib.redirect_stdout(lowercase_ ):
with contextlib.redirect_stderr(lowercase_ ):
with redirect_stdin(lowercase_ ):
yield
@contextlib.contextmanager
def UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as dirname:
with chdir(lowercase_ ):
yield dirname
class _snake_case ( UpperCAmelCase_ ):
pass
class _snake_case ( io.StringIO ):
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
raise OSError
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
raise OSError
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
raise OSError
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return False
class _snake_case ( contextlib._RedirectStream ): # type: ignore
__lowerCAmelCase : Any = 'stdin'
@contextlib.contextmanager
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
if root == ".":
yield
return
lowercase__ : Any = os.getcwd()
os.chdir(lowercase_ )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(lowercase_ )
def UpperCamelCase ( lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
lowercase__ : Union[str, Any] = None
lowercase__ : int = None
import os
lowercase__ : Union[str, Any] = """1"""
lowercase__ : Union[str, Any] = None
lowercase__ : List[Any] = None
lowercase__ : List[Any] = None
lowercase__ : Tuple = None
lowercase__ : List[Any] = None
lowercase__ : List[Any] = None
lowercase__ : str = None
lowercase__ : int = None
lowercase__ : Optional[Any] = None
lowercase__ : str = None
lowercase__ : List[str] = None
lowercase__ : Union[str, Any] = None
lowercase__ : List[Any] = None
lowercase__ : str = None
lowercase__ : Tuple = None
lowercase__ : int = None
lowercase__ : Optional[int] = None
lowercase__ : Optional[Any] = None
lowercase__ : int = None
lowercase__ : str = None
lowercase__ : str = None
lowercase__ : Optional[int] = None
lowercase__ : List[str] = None
lowercase__ : List[str] = None
lowercase__ : Union[str, Any] = None
lowercase__ : Union[str, Any] = None
lowercase__ : List[Any] = None
import shutil
lowercase__ : Any = None
lowercase__ : Optional[int] = None
lowercase__ : Any = None
import subprocess
lowercase__ : Union[str, Any] = None # type: ignore
lowercase__ : Optional[int] = None
import sys
lowercase__ : Dict = None
lowercase__ : Dict = None
lowercase__ : Tuple = None
lowercase__ : Optional[Any] = None
lowercase__ : Any = None
| 12 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 1 |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = FlaxAutoencoderKL
@property
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = 4
lowercase__ : str = 3
lowercase__ : Union[str, Any] = (32, 32)
lowercase__ : Optional[Any] = jax.random.PRNGKey(0)
lowercase__ : int = jax.random.uniform(SCREAMING_SNAKE_CASE_ , ((batch_size, num_channels) + sizes))
return {"sample": image, "prng_key": prng_key}
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
lowercase__ : List[str] = self.dummy_input
return init_dict, inputs_dict
| 12 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
lowercase__ : str = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
lowercase__ : Optional[Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
"""image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
lowercase__ : int = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)]
lowercase__ : str = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1)) for x in image_inputs]
return image_inputs
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.get_tokenizer()
lowercase__ : Optional[int] = self.get_rust_tokenizer()
lowercase__ : Optional[int] = self.get_image_processor()
lowercase__ : Optional[int] = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
processor_slow.save_pretrained(self.tmpdirname)
lowercase__ : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
processor_fast.save_pretrained(self.tmpdirname)
lowercase__ : Optional[Any] = AlignProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_)
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
lowercase__ : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
lowercase__ : Optional[int] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0)
lowercase__ : Dict = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.get_image_processor()
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : Dict = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = self.prepare_image_inputs()
lowercase__ : List[str] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""")
lowercase__ : Any = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.get_image_processor()
lowercase__ : List[str] = self.get_tokenizer()
lowercase__ : Optional[int] = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = """lower newer"""
lowercase__ : Dict = processor(text=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=64)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = self.get_image_processor()
lowercase__ : Any = self.get_tokenizer()
lowercase__ : Tuple = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = """lower newer"""
lowercase__ : Union[str, Any] = self.prepare_image_inputs()
lowercase__ : List[str] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_)
self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""])
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_):
processor()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_image_processor()
lowercase__ : Any = self.get_tokenizer()
lowercase__ : str = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ : int = processor.batch_decode(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.get_image_processor()
lowercase__ : Optional[int] = self.get_tokenizer()
lowercase__ : Tuple = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = """lower newer"""
lowercase__ : Any = self.prepare_image_inputs()
lowercase__ : int = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 12 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = ShapEImgaImgPipeline
__lowerCAmelCase : Optional[int] = ['image']
__lowerCAmelCase : str = ['image']
__lowerCAmelCase : List[str] = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
__lowerCAmelCase : Union[str, Any] = False
@property
def lowercase__ ( self):
'''simple docstring'''
return 32
@property
def lowercase__ ( self):
'''simple docstring'''
return 32
@property
def lowercase__ ( self):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowercase__ ( self):
'''simple docstring'''
return 8
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : List[str] = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
lowercase__ : Any = CLIPVisionModel(SCREAMING_SNAKE_CASE_)
return model
@property
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ , do_resize=SCREAMING_SNAKE_CASE_ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_24 , )
return image_processor
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : int = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
lowercase__ : List[Any] = PriorTransformer(**SCREAMING_SNAKE_CASE_)
return model
@property
def lowercase__ ( self):
'''simple docstring'''
torch.manual_seed(0)
lowercase__ : Dict = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
lowercase__ : int = ShapERenderer(**SCREAMING_SNAKE_CASE_)
return model
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.dummy_prior
lowercase__ : List[str] = self.dummy_image_encoder
lowercase__ : Union[str, Any] = self.dummy_image_processor
lowercase__ : List[Any] = self.dummy_renderer
lowercase__ : Optional[Any] = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , )
lowercase__ : Tuple = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0):
'''simple docstring'''
lowercase__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_)).to(SCREAMING_SNAKE_CASE_)
if str(SCREAMING_SNAKE_CASE_).startswith("""mps"""):
lowercase__ : Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_)
else:
lowercase__ : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = """cpu"""
lowercase__ : Dict = self.get_dummy_components()
lowercase__ : int = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : Any = pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_))
lowercase__ : int = output.images[0]
lowercase__ : int = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowercase__ : Optional[int] = np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def lowercase__ ( self):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = torch_device == """cpu"""
lowercase__ : Union[str, Any] = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.get_dummy_components()
lowercase__ : int = self.pipeline_class(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = 1
lowercase__ : Dict = 2
lowercase__ : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_)
for key in inputs.keys():
if key in self.batch_params:
lowercase__ : Tuple = batch_size * [inputs[key]]
lowercase__ : Tuple = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""")
lowercase__ : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""")
lowercase__ : Optional[Any] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""")
lowercase__ : List[str] = pipe.to(SCREAMING_SNAKE_CASE_)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_)
lowercase__ : int = torch.Generator(device=SCREAMING_SNAKE_CASE_).manual_seed(0)
lowercase__ : Optional[int] = pipe(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = tempfile.mkdtemp()
# fmt: off
lowercase__ : str = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
lowercase__ : Tuple = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_))))
lowercase__ : Dict = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
lowercase__ : List[str] = {"""unk_token""": """<unk>"""}
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_) + """\n""")
with open(self.merges_file , """w""" , encoding="""utf-8""") as fp:
fp.write("""\n""".join(SCREAMING_SNAKE_CASE_))
lowercase__ : Dict = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
"""image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
lowercase__ : List[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)]
lowercase__ : str = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1)) for x in image_inputs]
return image_inputs
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.get_tokenizer()
lowercase__ : Optional[Any] = self.get_rust_tokenizer()
lowercase__ : int = self.get_image_processor()
lowercase__ : Dict = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
processor_slow.save_pretrained(self.tmpdirname)
lowercase__ : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_)
lowercase__ : str = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
processor_fast.save_pretrained(self.tmpdirname)
lowercase__ : int = CLIPSegProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_)
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
lowercase__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
lowercase__ : Tuple = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0)
lowercase__ : Union[str, Any] = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_image_processor()
lowercase__ : int = self.get_tokenizer()
lowercase__ : Dict = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.prepare_image_inputs()
lowercase__ : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""")
lowercase__ : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_image_processor()
lowercase__ : str = self.get_tokenizer()
lowercase__ : Tuple = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = """lower newer"""
lowercase__ : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.get_image_processor()
lowercase__ : List[str] = self.get_tokenizer()
lowercase__ : Optional[Any] = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : int = """lower newer"""
lowercase__ : Union[str, Any] = self.prepare_image_inputs()
lowercase__ : Tuple = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_)
self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask""", """pixel_values"""])
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_):
processor()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.get_image_processor()
lowercase__ : Any = self.get_tokenizer()
lowercase__ : Optional[Any] = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.prepare_image_inputs()
lowercase__ : List[Any] = self.prepare_image_inputs()
lowercase__ : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE_ , visual_prompt=SCREAMING_SNAKE_CASE_)
self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """conditional_pixel_values"""])
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_):
processor()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_image_processor()
lowercase__ : Tuple = self.get_tokenizer()
lowercase__ : Optional[int] = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ : int = processor.batch_decode(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 1 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE_=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ):
'''simple docstring'''
lowercase__ : Any = parent
lowercase__ : Any = batch_size
lowercase__ : Dict = image_size
lowercase__ : Union[str, Any] = num_channels
lowercase__ : Optional[Any] = embeddings_size
lowercase__ : Optional[Any] = hidden_sizes
lowercase__ : Any = depths
lowercase__ : Optional[int] = is_training
lowercase__ : Optional[int] = use_labels
lowercase__ : Optional[int] = hidden_act
lowercase__ : Dict = num_labels
lowercase__ : str = scope
lowercase__ : Optional[int] = len(SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase__ : Union[str, Any] = None
if self.use_labels:
lowercase__ : Any = ids_tensor([self.batch_size] , self.num_labels)
lowercase__ : str = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self):
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = TFResNetModel(config=SCREAMING_SNAKE_CASE_)
lowercase__ : int = model(SCREAMING_SNAKE_CASE_)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.num_labels
lowercase__ : List[Any] = TFResNetForImageClassification(SCREAMING_SNAKE_CASE_)
lowercase__ : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs
lowercase__ : List[str] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
__lowerCAmelCase : Optional[Any] = (
{'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification}
if is_tf_available()
else {}
)
__lowerCAmelCase : Optional[Any] = False
__lowerCAmelCase : Optional[Any] = False
__lowerCAmelCase : List[str] = False
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = False
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = TFResNetModelTester(self)
lowercase__ : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self):
'''simple docstring'''
return
@unittest.skip(reason="""ResNet does not use inputs_embeds""")
def lowercase__ ( self):
'''simple docstring'''
pass
@unittest.skip(reason="""ResNet does not support input and output embeddings""")
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : List[Any] = [*signature.parameters.keys()]
lowercase__ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : int = model_class(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_))
lowercase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase__ : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : int = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase__ : Any = layer_type
lowercase__ : str = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : Dict = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : List[str] = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
def UpperCamelCase ( ) -> Dict:
'''simple docstring'''
lowercase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def lowercase__ ( self):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
lowercase__ : Any = self.default_image_processor
lowercase__ : Any = prepare_img()
lowercase__ : List[str] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""")
# forward pass
lowercase__ : List[Any] = model(**SCREAMING_SNAKE_CASE_)
# verify the logits
lowercase__ : List[str] = tf.TensorShape((1, 10_00))
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1E-4))
| 12 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.