code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = (1 - _cos) / 2 _UpperCamelCase = 1 - _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = (1 + _cos) / 2 _UpperCamelCase = -1 - _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = _sin / 2 _UpperCamelCase = 0 _UpperCamelCase = -ba _UpperCamelCase = 1 + alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 1 - alpha _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 + alpha _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = 1 + alpha * big_a _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha * big_a _UpperCamelCase = 1 + alpha / big_a _UpperCamelCase = -2 * _cos _UpperCamelCase = 1 - alpha / big_a _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase = 2 * sqrt(__snake_case ) * alpha _UpperCamelCase = big_a * (pmc + aaa) _UpperCamelCase = 2 * big_a * mpc _UpperCamelCase = big_a * (pmc - aaa) _UpperCamelCase = ppmc + aaa _UpperCamelCase = -2 * pmpc _UpperCamelCase = ppmc - aaa _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 1 / sqrt(2 ) , ): _UpperCamelCase = tau * frequency / samplerate _UpperCamelCase = sin(__snake_case ) _UpperCamelCase = cos(__snake_case ) _UpperCamelCase = _sin / (2 * q_factor) _UpperCamelCase = 10 ** (gain_db / 40) _UpperCamelCase = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase = 2 * sqrt(__snake_case ) * alpha _UpperCamelCase = big_a * (ppmc + aaa) _UpperCamelCase = -2 * big_a * pmpc _UpperCamelCase = big_a * (ppmc - aaa) _UpperCamelCase = pmc + aaa _UpperCamelCase = 2 * mpc _UpperCamelCase = pmc - aaa _UpperCamelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
from __future__ import annotations _lowerCAmelCase = 8.988E9 # units = N * m^s * C^-2 def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: _UpperCamelCase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _UpperCamelCase = abs(__snake_case ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _UpperCamelCase = abs(__snake_case ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _UpperCamelCase = (COULOMBS_CONSTANT * charge_product / abs(__snake_case )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["image_processor", "tokenizer"] UpperCAmelCase = "AutoImageProcessor" UpperCAmelCase = "AutoTokenizer" def __init__( self : Union[str, Any] , _A : Dict , _A : Union[str, Any] ): super().__init__(_A , _A ) _UpperCamelCase = self.image_processor def __call__( self : int , _A : Tuple=None , _A : Tuple=None , _A : List[Any]=None , **_A : Dict ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCamelCase = self.tokenizer(_A , return_tensors=_A , **_A ) if images is not None: _UpperCamelCase = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_A ) , tensor_type=_A ) def UpperCamelCase_ ( self : Any , *_A : List[Any] , **_A : str ): return self.tokenizer.batch_decode(*_A , **_A ) def UpperCamelCase_ ( self : Any , *_A : int , **_A : Dict ): return self.tokenizer.decode(*_A , **_A ) @property def UpperCamelCase_ ( self : Union[str, Any] ): return ["input_ids", "attention_mask", "pixel_values"]
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCAmelCase_ ( pl.LightningModule ): def __init__( self : List[str] , _A : str ): super().__init__() _UpperCamelCase = model _UpperCamelCase = 2 _UpperCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCamelCase_ ( self : List[str] ): pass def _snake_case ( __snake_case , __snake_case , __snake_case ): # load longformer model from model identifier _UpperCamelCase = LongformerModel.from_pretrained(__snake_case ) _UpperCamelCase = LightningModel(__snake_case ) _UpperCamelCase = torch.load(__snake_case , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model _UpperCamelCase = LongformerForQuestionAnswering.from_pretrained(__snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__snake_case ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "vision-encoder-decoder" UpperCAmelCase = True def __init__( self : Optional[Any] , **_A : Optional[int] ): super().__init__(**_A ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _UpperCamelCase = kwargs.pop('''encoder''' ) _UpperCamelCase = encoder_config.pop('''model_type''' ) _UpperCamelCase = kwargs.pop('''decoder''' ) _UpperCamelCase = decoder_config.pop('''model_type''' ) _UpperCamelCase = AutoConfig.for_model(_A , **_A ) _UpperCamelCase = AutoConfig.for_model(_A , **_A ) _UpperCamelCase = True @classmethod def UpperCamelCase_ ( cls : Tuple , _A : PretrainedConfig , _A : PretrainedConfig , **_A : Union[str, Any] ): logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _UpperCamelCase = True _UpperCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.encoder.to_dict() _UpperCamelCase = self.decoder.to_dict() _UpperCamelCase = self.__class__.model_type return output class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = version.parse("1.11" ) @property def UpperCamelCase_ ( self : str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self : Tuple ): return 1e-4 @property def UpperCamelCase_ ( self : Optional[Any] ): return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowerCAmelCase_ ( __lowercase ): @property def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = OrderedDict() _UpperCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCamelCase = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def UpperCamelCase_ ( self : List[str] , _A : "PreTrainedTokenizerBase" , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , ): import torch _UpperCamelCase = OrderedDict() _UpperCamelCase = super().generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) _UpperCamelCase , _UpperCamelCase = dummy_input['''input_ids'''].shape _UpperCamelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCamelCase = dummy_input.pop('''input_ids''' ) _UpperCamelCase = dummy_input.pop('''attention_mask''' ) _UpperCamelCase = torch.zeros(_A ) return common_inputs class lowerCAmelCase_ ( __lowercase ): @property def UpperCamelCase_ ( self : Optional[int] ): pass def UpperCamelCase_ ( self : Optional[int] , _A : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(_A ) def UpperCamelCase_ ( self : str , _A : PretrainedConfig , _A : PretrainedConfig , _A : str = "default" ): _UpperCamelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_A , _A )
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): _UpperCamelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(__snake_case ) if number < 1: _UpperCamelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(__snake_case ) _UpperCamelCase = 1 for i in range(1 , __snake_case ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
import math def _snake_case ( __snake_case = 100 ): _UpperCamelCase = sum(i * i for i in range(1 , n + 1 ) ) _UpperCamelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _snake_case ( __snake_case ): random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCAmelCase_ : def __init__( self : Tuple , _A : Iterable[torch.nn.Parameter] , _A : float = 0.9999 , _A : float = 0.0 , _A : int = 0 , _A : bool = False , _A : Union[float, int] = 1.0 , _A : Union[float, int] = 2 / 3 , _A : Optional[Any] = None , _A : Dict[str, Any] = None , **_A : Dict , ): if isinstance(_A , torch.nn.Module ): _UpperCamelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , _A , standard_warn=_A , ) _UpperCamelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _UpperCamelCase = True if kwargs.get('''max_value''' , _A ) is not None: _UpperCamelCase = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , _A , standard_warn=_A ) _UpperCamelCase = kwargs['''max_value'''] if kwargs.get('''min_value''' , _A ) is not None: _UpperCamelCase = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , _A , standard_warn=_A ) _UpperCamelCase = kwargs['''min_value'''] _UpperCamelCase = list(_A ) _UpperCamelCase = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , _A ) is not None: _UpperCamelCase = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , _A , standard_warn=_A ) self.to(device=kwargs['''device'''] ) _UpperCamelCase = None _UpperCamelCase = decay _UpperCamelCase = min_decay _UpperCamelCase = update_after_step _UpperCamelCase = use_ema_warmup _UpperCamelCase = inv_gamma _UpperCamelCase = power _UpperCamelCase = 0 _UpperCamelCase = None # set in `step()` _UpperCamelCase = model_cls _UpperCamelCase = model_config @classmethod def UpperCamelCase_ ( cls : Optional[Any] , _A : Any , _A : str ): _UpperCamelCase , _UpperCamelCase = model_cls.load_config(_A , return_unused_kwargs=_A ) _UpperCamelCase = model_cls.from_pretrained(_A ) _UpperCamelCase = cls(model.parameters() , model_cls=_A , model_config=model.config ) ema_model.load_state_dict(_A ) return ema_model def UpperCamelCase_ ( self : Any , _A : str ): if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) _UpperCamelCase = self.model_cls.from_config(self.model_config ) _UpperCamelCase = self.state_dict() state_dict.pop('''shadow_params''' , _A ) model.register_to_config(**_A ) self.copy_to(model.parameters() ) model.save_pretrained(_A ) def UpperCamelCase_ ( self : Optional[int] , _A : int ): _UpperCamelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _UpperCamelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: _UpperCamelCase = (1 + step) / (10 + step) _UpperCamelCase = min(_A , self.decay ) # make sure decay is not smaller than min_decay _UpperCamelCase = max(_A , self.min_decay ) return cur_decay_value @torch.no_grad() def UpperCamelCase_ ( self : Union[str, Any] , _A : Iterable[torch.nn.Parameter] ): if isinstance(_A , torch.nn.Module ): _UpperCamelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , _A , standard_warn=_A , ) _UpperCamelCase = parameters.parameters() _UpperCamelCase = list(_A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _UpperCamelCase = self.get_decay(self.optimization_step ) _UpperCamelCase = decay _UpperCamelCase = 1 - decay _UpperCamelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _UpperCamelCase = deepspeed.zero.GatheredParameters(_A , modifier_rank=_A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_A ) def UpperCamelCase_ ( self : str , _A : Iterable[torch.nn.Parameter] ): _UpperCamelCase = list(_A ) for s_param, param in zip(self.shadow_params , _A ): param.data.copy_(s_param.to(param.device ).data ) def UpperCamelCase_ ( self : Dict , _A : Optional[Any]=None , _A : Dict=None ): _UpperCamelCase = [ p.to(device=_A , dtype=_A ) if p.is_floating_point() else p.to(device=_A ) for p in self.shadow_params ] def UpperCamelCase_ ( self : Any ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def UpperCamelCase_ ( self : List[Any] , _A : Iterable[torch.nn.Parameter] ): _UpperCamelCase = [param.detach().cpu().clone() for param in parameters] def UpperCamelCase_ ( self : str , _A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , _A ): param.data.copy_(c_param.data ) # Better memory-wise. _UpperCamelCase = None def UpperCamelCase_ ( self : Any , _A : dict ): _UpperCamelCase = copy.deepcopy(_A ) _UpperCamelCase = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) _UpperCamelCase = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , _A ): raise ValueError('''Invalid min_decay''' ) _UpperCamelCase = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , _A ): raise ValueError('''Invalid optimization_step''' ) _UpperCamelCase = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , _A ): raise ValueError('''Invalid update_after_step''' ) _UpperCamelCase = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _A ): raise ValueError('''Invalid use_ema_warmup''' ) _UpperCamelCase = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) _UpperCamelCase = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) _UpperCamelCase = state_dict.get('''shadow_params''' , _A ) if shadow_params is not None: _UpperCamelCase = shadow_params if not isinstance(self.shadow_params , _A ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(_A , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _lowerCAmelCase = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _lowerCAmelCase = logging.WARNING def _snake_case ( ): _UpperCamelCase = os.getenv('''DATASETS_VERBOSITY''' , __snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def _snake_case ( ): return __name__.split('''.''' )[0] def _snake_case ( ): return logging.getLogger(_get_library_name() ) def _snake_case ( ): # Apply our default configuration to the library root logger. _UpperCamelCase = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _snake_case ( ): _UpperCamelCase = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _snake_case ( __snake_case = None ): if name is None: _UpperCamelCase = _get_library_name() return logging.getLogger(__snake_case ) def _snake_case ( ): return _get_library_root_logger().getEffectiveLevel() def _snake_case ( __snake_case ): _get_library_root_logger().setLevel(__snake_case ) def _snake_case ( ): return set_verbosity(__snake_case ) def _snake_case ( ): return set_verbosity(__snake_case ) def _snake_case ( ): return set_verbosity(__snake_case ) def _snake_case ( ): return set_verbosity(__snake_case ) def _snake_case ( ): _UpperCamelCase = False def _snake_case ( ): _UpperCamelCase = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowerCAmelCase_ : def __init__( self : Any , *_A : Union[str, Any] , **_A : str ): # pylint: disable=unused-argument _UpperCamelCase = args[0] if args else None def __iter__( self : Optional[Any] ): return iter(self._iterator ) def __getattr__( self : Any , _A : Optional[int] ): def empty_fn(*_A : List[Any] , **_A : List[str] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ): return self def __exit__( self : str , _A : List[str] , _A : Dict , _A : str ): return _lowerCAmelCase = True class lowerCAmelCase_ : def __call__( self : int , *_A : Union[str, Any] , _A : Optional[int]=False , **_A : Dict ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*_A , **_A ) else: return EmptyTqdm(*_A , **_A ) def UpperCamelCase_ ( self : int , *_A : str , **_A : Optional[int] ): _UpperCamelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_A , **_A ) def UpperCamelCase_ ( self : Union[str, Any] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCAmelCase = _tqdm_cls() def _snake_case ( ): global _tqdm_active return bool(_tqdm_active ) def _snake_case ( ): global _tqdm_active _UpperCamelCase = True def _snake_case ( ): global _tqdm_active _UpperCamelCase = False
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = "▁" _lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} _lowerCAmelCase = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _lowerCAmelCase = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self : int , _A : Optional[Any] , _A : Union[str, Any]="<s>" , _A : List[Any]="</s>" , _A : Tuple="</s>" , _A : List[str]="<s>" , _A : Optional[int]="<unk>" , _A : Optional[Any]="<pad>" , _A : Optional[Any]="<mask>" , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase = 1 _UpperCamelCase = len(self.sp_model ) + self.fairseq_offset _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , _A : Optional[int] ): _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def UpperCamelCase_ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : int ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Optional[int] , _A : str ): return self.sp_model.encode(_A , out_type=_A ) def UpperCamelCase_ ( self : Dict , _A : Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase_ ( self : Dict , _A : str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Any , _A : int ): _UpperCamelCase = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ): if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( __snake_case , __snake_case , __snake_case ): def get_masked_lm_array(__snake_case ): _UpperCamelCase = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_array(__snake_case ): _UpperCamelCase = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_layer_array(__snake_case , __snake_case ): _UpperCamelCase = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_attention_layer_array(__snake_case , __snake_case , __snake_case ): _UpperCamelCase = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) _UpperCamelCase = array.reshape(__snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) print(f"""Loading model based on config from {config_path}...""" ) _UpperCamelCase = BertConfig.from_json_file(__snake_case ) _UpperCamelCase = BertForMaskedLM(__snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _UpperCamelCase = model.bert.encoder.layer[layer_index] # Self-attention _UpperCamelCase = layer.attention.self _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output _UpperCamelCase = layer.attention.output _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/gamma''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/beta''' ) # Intermediate _UpperCamelCase = layer.intermediate _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/kernel''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/bias''' ) # Output _UpperCamelCase = layer.output _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_dense/kernel''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_dense/bias''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/gamma''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/beta''' ) # Embeddings _UpperCamelCase = get_encoder_array('''_position_embedding_layer/embeddings''' ) _UpperCamelCase = get_encoder_array('''_type_embedding_layer/embeddings''' ) _UpperCamelCase = get_encoder_array('''_embedding_norm_layer/gamma''' ) _UpperCamelCase = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head _UpperCamelCase = model.cls.predictions.transform _UpperCamelCase = get_masked_lm_array('''dense/kernel''' ) _UpperCamelCase = get_masked_lm_array('''dense/bias''' ) _UpperCamelCase = get_masked_lm_array('''layer_norm/gamma''' ) _UpperCamelCase = get_masked_lm_array('''layer_norm/beta''' ) _UpperCamelCase = get_masked_lm_array('''embedding_table''' ) # Pooling _UpperCamelCase = BertPooler(config=__snake_case ) _UpperCamelCase = get_encoder_array('''_pooler_layer/kernel''' ) _UpperCamelCase = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__snake_case ) # Integration test - should load without any errors ;) _UpperCamelCase = BertForMaskedLM.from_pretrained(__snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = (DDIMParallelScheduler,) UpperCAmelCase = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCamelCase_ ( self : Dict , **_A : Any ): _UpperCamelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_A ) return config def UpperCamelCase_ ( self : str , **_A : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(**_A ) _UpperCamelCase = scheduler_class(**_A ) _UpperCamelCase , _UpperCamelCase = 10, 0.0 _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(_A ) for t in scheduler.timesteps: _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A , _A ).prev_sample return sample def UpperCamelCase_ ( self : List[str] ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(steps_offset=1 ) _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCamelCase_ ( self : Optional[int] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def UpperCamelCase_ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def UpperCamelCase_ ( self : Tuple ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_A ) def UpperCamelCase_ ( self : List[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def UpperCamelCase_ ( self : str ): for t in [1, 10, 49]: self.check_over_forward(time_step=_A ) def UpperCamelCase_ ( self : int ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_A , num_inference_steps=_A ) def UpperCamelCase_ ( self : Dict ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_A , eta=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) _UpperCamelCase , _UpperCamelCase = 10, 0.0 scheduler.set_timesteps(_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = self.dummy_sample_deter + 0.1 _UpperCamelCase = self.dummy_sample_deter - 0.1 _UpperCamelCase = samplea.shape[0] _UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _UpperCamelCase = torch.arange(_A )[0:3, None].repeat(1 , _A ) _UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _UpperCamelCase = scheduler.batch_step_no_noise(_A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _A ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.full_loop() _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.full_loop(prediction_type='''v_prediction''' ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase_ ( self : Any ): # We specify different beta, so that the first alpha is 0.99 _UpperCamelCase = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase_ ( self : List[Any] ): # We specify different beta, so that the first alpha is 0.99 _UpperCamelCase = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
from __future__ import annotations def _snake_case ( __snake_case ): if not nums: raise ValueError('''List is empty''' ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = multiprocessing.Manager() _UpperCamelCase = manager.list() _UpperCamelCase = multiprocessing.Process(target=__snake_case , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _snake_case ( __snake_case , __snake_case , __snake_case ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _UpperCamelCase = shutil.rmtree _UpperCamelCase = os.rmdir _UpperCamelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _UpperCamelCase = {} with swallow_io(): with time_limit(__snake_case ): exec(__snake_case , __snake_case ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. _UpperCamelCase = rmtree _UpperCamelCase = rmdir _UpperCamelCase = chdir @contextlib.contextmanager def _snake_case ( __snake_case ): def signal_handler(__snake_case , __snake_case ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __snake_case ) signal.signal(signal.SIGALRM , __snake_case ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _snake_case ( ): _UpperCamelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(__snake_case ): with contextlib.redirect_stderr(__snake_case ): with redirect_stdin(__snake_case ): yield @contextlib.contextmanager def _snake_case ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__snake_case ): yield dirname class lowerCAmelCase_ ( __lowercase ): pass class lowerCAmelCase_ ( io.StringIO ): def UpperCamelCase_ ( self : str , *_A : Tuple , **_A : int ): raise OSError def UpperCamelCase_ ( self : int , *_A : List[Any] , **_A : Optional[Any] ): raise OSError def UpperCamelCase_ ( self : Optional[int] , *_A : Any , **_A : Dict ): raise OSError def UpperCamelCase_ ( self : int , *_A : Tuple , **_A : str ): return False class lowerCAmelCase_ ( contextlib._RedirectStream ): # type: ignore UpperCAmelCase = "stdin" @contextlib.contextmanager def _snake_case ( __snake_case ): if root == ".": yield return _UpperCamelCase = os.getcwd() os.chdir(__snake_case ) try: yield except BaseException as exc: raise exc finally: os.chdir(__snake_case ) def _snake_case ( __snake_case=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _UpperCamelCase = None _UpperCamelCase = None import os _UpperCamelCase = '''1''' _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None import shutil _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None import subprocess _UpperCamelCase = None # type: ignore _UpperCamelCase = None import sys _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
from string import ascii_uppercase _lowerCAmelCase = {str(ord(c) - 55): c for c in ascii_uppercase} def _snake_case ( __snake_case , __snake_case ): if isinstance(__snake_case , __snake_case ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(__snake_case , __snake_case ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(__snake_case , __snake_case ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) _UpperCamelCase = '''''' _UpperCamelCase = 0 _UpperCamelCase = 0 while div != 1: _UpperCamelCase , _UpperCamelCase = divmod(__snake_case , __snake_case ) if base >= 11 and 9 < mod < 36: _UpperCamelCase = ALPHABET_VALUES[str(__snake_case )] else: _UpperCamelCase = str(__snake_case ) new_value += actual_value _UpperCamelCase = num // base _UpperCamelCase = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__snake_case ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : Any , _A : bool = True , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Union[str, Any] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 256} _UpperCamelCase = get_size_dict(_A , default_to_square=_A ) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[Any] , ): _UpperCamelCase = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size(_A , size=size['''shortest_edge'''] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ): _UpperCamelCase = get_size_dict(_A ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : float , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : Optional[bool] = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_A : Dict , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A , default_to_square=_A ) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowerCAmelCase = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case=None ): # Initialise PyTorch model _UpperCamelCase = XLNetConfig.from_json_file(__snake_case ) _UpperCamelCase = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _UpperCamelCase = finetuning_task _UpperCamelCase = GLUE_TASKS_NUM_LABELS[finetuning_task] _UpperCamelCase = XLNetForSequenceClassification(__snake_case ) elif "squad" in finetuning_task: _UpperCamelCase = finetuning_task _UpperCamelCase = XLNetForQuestionAnswering(__snake_case ) else: _UpperCamelCase = XLNetLMHeadModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case ) # Save pytorch-model _UpperCamelCase = os.path.join(__snake_case , __snake_case ) _UpperCamelCase = os.path.join(__snake_case , __snake_case ) print(f"""Save PyTorch model to {os.path.abspath(__snake_case )}""" ) torch.save(model.state_dict() , __snake_case ) print(f"""Save configuration file to {os.path.abspath(__snake_case )}""" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _lowerCAmelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : Any , _A : List[Any]=7 , _A : int=3 , _A : Tuple=30 , _A : Union[str, Any]=400 , _A : List[str]=True , _A : Union[str, Any]=None , _A : int=True , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : Optional[Any]=[0.5, 0.5, 0.5] , _A : List[str]=True , _A : Union[str, Any]=1 / 255 , _A : Union[str, Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self : int , _A : Tuple , _A : Union[str, Any]=False ): if not batched: _UpperCamelCase = image_inputs[0] if isinstance(_A , Image.Image ): _UpperCamelCase , _UpperCamelCase = image.size else: _UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2] if w < h: _UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = self.size['''shortest_edge'''] else: _UpperCamelCase = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase = max(_A , key=lambda _A : item[0] )[0] _UpperCamelCase = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _A ) _UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : int ): # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) _UpperCamelCase = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(_A , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(_A , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase_ ( self : Optional[int] ): # prepare image and target _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''image_id''': 3_9769, '''annotations''': target} # encode them _UpperCamelCase = DeformableDetrImageProcessor() _UpperCamelCase = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) _UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels _UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def UpperCamelCase_ ( self : List[str] ): # prepare image, target and masks_path _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} _UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _UpperCamelCase = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) _UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels _UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks _UpperCamelCase = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _UpperCamelCase = timm.create_model('''levit_128s''' , pretrained=__snake_case ) else: _UpperCamelCase = timm.create_model('''levit_128''' , pretrained=__snake_case ) if hidden_sizes == 192: _UpperCamelCase = timm.create_model('''levit_192''' , pretrained=__snake_case ) if hidden_sizes == 256: _UpperCamelCase = timm.create_model('''levit_256''' , pretrained=__snake_case ) if hidden_sizes == 384: _UpperCamelCase = timm.create_model('''levit_384''' , pretrained=__snake_case ) from_model.eval() _UpperCamelCase = LevitForImageClassificationWithTeacher(__snake_case ).eval() _UpperCamelCase = OrderedDict() _UpperCamelCase = from_model.state_dict() _UpperCamelCase = list(from_model.state_dict().keys() ) _UpperCamelCase = list(our_model.state_dict().keys() ) print(len(__snake_case ) , len(__snake_case ) ) for i in range(len(__snake_case ) ): _UpperCamelCase = weights[og_keys[i]] our_model.load_state_dict(__snake_case ) _UpperCamelCase = torch.randn((2, 3, 224, 224) ) _UpperCamelCase = from_model(__snake_case ) _UpperCamelCase = our_model(__snake_case ).logits assert torch.allclose(__snake_case , __snake_case ), "The model logits don't match the original one." _UpperCamelCase = name print(__snake_case ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _UpperCamelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _snake_case ( __snake_case , __snake_case = None , __snake_case = True ): _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = 1000 _UpperCamelCase = (1, num_labels) _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = num_labels _UpperCamelCase = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = partial(__snake_case , num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case ) _UpperCamelCase = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } _UpperCamelCase = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __snake_case , names_to_config[model_name] , __snake_case , __snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __snake_case , __snake_case , __snake_case , __snake_case ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Tuple , _A : Dict=768 ): super().__init__(_A ) _UpperCamelCase = proj_size _UpperCamelCase = CLIPVisionModel(_A ) _UpperCamelCase = PaintByExampleMapper(_A ) _UpperCamelCase = nn.LayerNorm(config.hidden_size ) _UpperCamelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _UpperCamelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : str=False ): _UpperCamelCase = self.model(pixel_values=_A ) _UpperCamelCase = clip_output.pooler_output _UpperCamelCase = self.mapper(latent_states[:, None] ) _UpperCamelCase = self.final_layer_norm(_A ) _UpperCamelCase = self.proj_out(_A ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase_ ( nn.Module ): def __init__( self : Optional[Any] , _A : Optional[int] ): super().__init__() _UpperCamelCase = (config.num_hidden_layers + 1) // 5 _UpperCamelCase = config.hidden_size _UpperCamelCase = 1 _UpperCamelCase = nn.ModuleList( [ BasicTransformerBlock(_A , _A , _A , activation_fn='''gelu''' , attention_bias=_A ) for _ in range(_A ) ] ) def UpperCamelCase_ ( self : Optional[Any] , _A : int ): for block in self.blocks: _UpperCamelCase = block(_A ) return hidden_states
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase_ ( self : Tuple , _A : str , _A : List[Any] , _A : List[Any] ): _UpperCamelCase = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = VideoClassificationPipeline(model=_A , image_processor=_A , top_k=2 ) _UpperCamelCase = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : Union[str, Any] ): for example in examples: _UpperCamelCase = video_classifier(_A ) self.assertEqual( _A , [ {'''score''': ANY(_A ), '''label''': ANY(_A )}, {'''score''': ANY(_A ), '''label''': ANY(_A )}, ] , ) @require_torch def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' _UpperCamelCase = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) _UpperCamelCase = pipeline( '''video-classification''' , model=_A , feature_extractor=_A , frame_sampling_rate=4 ) _UpperCamelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = video_classifier(_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) _UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def UpperCamelCase_ ( self : Optional[int] ): pass
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any , _A : str ): _UpperCamelCase = 3 _UpperCamelCase = 250 _UpperCamelCase = ids_tensor((batch_size, length) , _A ) _UpperCamelCase = torch.ones((batch_size, length) , device=_A , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase_ ( self : Any ): _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) _UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = MaxLengthCriteria(max_length=10 ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) _UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) _UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : Any ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_A ) , 1 )
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
from __future__ import annotations from dataclasses import dataclass @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None def _snake_case ( __snake_case ): # Validation def is_valid_tree(__snake_case ) -> bool: if node is None: return True if not isinstance(__snake_case , __snake_case ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__snake_case ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __snake_case , __snake_case , __snake_case ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __snake_case , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __snake_case ) ) return is_binary_search_tree_recursive_check(__snake_case , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "efficientnet" def __init__( self : List[str] , _A : int = 3 , _A : int = 600 , _A : float = 2.0 , _A : float = 3.1 , _A : int = 8 , _A : List[int] = [3, 3, 5, 3, 5, 5, 3] , _A : List[int] = [32, 16, 24, 40, 80, 112, 192] , _A : List[int] = [16, 24, 40, 80, 112, 192, 320] , _A : List[int] = [] , _A : List[int] = [1, 2, 2, 2, 1, 2, 1] , _A : List[int] = [1, 2, 2, 3, 3, 4, 1] , _A : List[int] = [1, 6, 6, 6, 6, 6, 6] , _A : float = 0.25 , _A : str = "swish" , _A : int = 2560 , _A : str = "mean" , _A : float = 0.02 , _A : float = 0.001 , _A : float = 0.99 , _A : float = 0.5 , _A : float = 0.2 , **_A : Dict , ): super().__init__(**_A ) _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = width_coefficient _UpperCamelCase = depth_coefficient _UpperCamelCase = depth_divisor _UpperCamelCase = kernel_sizes _UpperCamelCase = in_channels _UpperCamelCase = out_channels _UpperCamelCase = depthwise_padding _UpperCamelCase = strides _UpperCamelCase = num_block_repeats _UpperCamelCase = expand_ratios _UpperCamelCase = squeeze_expansion_ratio _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dim _UpperCamelCase = pooling_type _UpperCamelCase = initializer_range _UpperCamelCase = batch_norm_eps _UpperCamelCase = batch_norm_momentum _UpperCamelCase = dropout_rate _UpperCamelCase = drop_connect_rate _UpperCamelCase = sum(_A ) * 4 class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = version.parse("1.11" ) @property def UpperCamelCase_ ( self : Optional[int] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self : str ): return 1e-5
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
def _snake_case ( __snake_case = 10**12 ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'{solution() = }')
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( __lowercase ): def __init__( self : int , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use _UpperCamelCase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): _UpperCamelCase = int(_A ) _UpperCamelCase = dict(sorted(self.labels.items() ) ) def UpperCamelCase_ ( self : str , _A : Union[str, List[str]] ): if not isinstance(_A , _A ): _UpperCamelCase = list(_A ) for l in label: if l not in self.labels: raise ValueError( F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Any , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): _UpperCamelCase = len(_A ) _UpperCamelCase = self.transformer.config.sample_size _UpperCamelCase = self.transformer.config.in_channels _UpperCamelCase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) _UpperCamelCase = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _UpperCamelCase = torch.tensor(_A , device=self.device ).reshape(-1 ) _UpperCamelCase = torch.tensor([1000] * batch_size , device=self.device ) _UpperCamelCase = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _UpperCamelCase = latent_model_input[: len(_A ) // 2] _UpperCamelCase = torch.cat([half, half] , dim=0 ) _UpperCamelCase = self.scheduler.scale_model_input(_A , _A ) _UpperCamelCase = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _UpperCamelCase = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): _UpperCamelCase = torch.floataa if is_mps else torch.floataa else: _UpperCamelCase = torch.intaa if is_mps else torch.intaa _UpperCamelCase = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _UpperCamelCase = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCamelCase = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _UpperCamelCase = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: _UpperCamelCase , _UpperCamelCase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _UpperCamelCase , _UpperCamelCase = torch.split(_A , len(_A ) // 2 , dim=0 ) _UpperCamelCase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _UpperCamelCase = torch.cat([half_eps, half_eps] , dim=0 ) _UpperCamelCase = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _UpperCamelCase , _UpperCamelCase = torch.split(_A , _A , dim=1 ) else: _UpperCamelCase = noise_pred # compute previous image: x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: _UpperCamelCase , _UpperCamelCase = latent_model_input.chunk(2 , dim=0 ) else: _UpperCamelCase = latent_model_input _UpperCamelCase = 1 / self.vae.config.scaling_factor * latents _UpperCamelCase = self.vae.decode(_A ).sample _UpperCamelCase = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCamelCase = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
def _snake_case ( __snake_case ): _UpperCamelCase = 0 for ch in input_str: _UpperCamelCase = ord(__snake_case ) _UpperCamelCase = pow(2 , __snake_case ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _lowerCAmelCase = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } _lowerCAmelCase = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } _lowerCAmelCase = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def _snake_case ( __snake_case ): if isinstance(__snake_case , __snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False ): _UpperCamelCase = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _UpperCamelCase = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _UpperCamelCase = checkpoint[f"""{old_prefix}.norm.weight"""] _UpperCamelCase = checkpoint[f"""{old_prefix}.norm.bias"""] _UpperCamelCase = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = torch.load(__snake_case , map_location='''cpu''' ) _UpperCamelCase = {} _UpperCamelCase = checkpoint['''time_embed.0.weight'''] _UpperCamelCase = checkpoint['''time_embed.0.bias'''] _UpperCamelCase = checkpoint['''time_embed.2.weight'''] _UpperCamelCase = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: _UpperCamelCase = checkpoint['''label_emb.weight'''] _UpperCamelCase = checkpoint['''input_blocks.0.0.weight'''] _UpperCamelCase = checkpoint['''input_blocks.0.0.bias'''] _UpperCamelCase = unet_config['''down_block_types'''] _UpperCamelCase = unet_config['''layers_per_block'''] _UpperCamelCase = unet_config['''attention_head_dim'''] _UpperCamelCase = unet_config['''block_out_channels'''] _UpperCamelCase = 1 _UpperCamelCase = channels_list[0] for i, layer_type in enumerate(__snake_case ): _UpperCamelCase = channels_list[i] _UpperCamelCase = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__snake_case ): _UpperCamelCase = f"""down_blocks.{i}.resnets.{j}""" _UpperCamelCase = f"""input_blocks.{current_layer}.0""" _UpperCamelCase = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case , has_skip=__snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__snake_case ): _UpperCamelCase = f"""down_blocks.{i}.resnets.{j}""" _UpperCamelCase = f"""input_blocks.{current_layer}.0""" _UpperCamelCase = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case , has_skip=__snake_case ) _UpperCamelCase = f"""down_blocks.{i}.attentions.{j}""" _UpperCamelCase = f"""input_blocks.{current_layer}.1""" _UpperCamelCase = convert_attention( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) current_layer += 1 if i != len(__snake_case ) - 1: _UpperCamelCase = f"""down_blocks.{i}.downsamplers.0""" _UpperCamelCase = f"""input_blocks.{current_layer}.0""" _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) current_layer += 1 _UpperCamelCase = current_channels # hardcoded the mid-block for now _UpperCamelCase = '''mid_block.resnets.0''' _UpperCamelCase = '''middle_block.0''' _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = '''mid_block.attentions.0''' _UpperCamelCase = '''middle_block.1''' _UpperCamelCase = convert_attention(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = '''mid_block.resnets.1''' _UpperCamelCase = '''middle_block.2''' _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = 0 _UpperCamelCase = unet_config['''up_block_types'''] for i, layer_type in enumerate(__snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase = f"""up_blocks.{i}.resnets.{j}""" _UpperCamelCase = f"""output_blocks.{current_layer}.0""" _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case , has_skip=__snake_case ) current_layer += 1 if i != len(__snake_case ) - 1: _UpperCamelCase = f"""up_blocks.{i}.upsamplers.0""" _UpperCamelCase = f"""output_blocks.{current_layer-1}.1""" _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase = f"""up_blocks.{i}.resnets.{j}""" _UpperCamelCase = f"""output_blocks.{current_layer}.0""" _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case , has_skip=__snake_case ) _UpperCamelCase = f"""up_blocks.{i}.attentions.{j}""" _UpperCamelCase = f"""output_blocks.{current_layer}.1""" _UpperCamelCase = convert_attention( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) current_layer += 1 if i != len(__snake_case ) - 1: _UpperCamelCase = f"""up_blocks.{i}.upsamplers.0""" _UpperCamelCase = f"""output_blocks.{current_layer-1}.2""" _UpperCamelCase = convert_resnet(__snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = checkpoint['''out.0.weight'''] _UpperCamelCase = checkpoint['''out.0.bias'''] _UpperCamelCase = checkpoint['''out.2.weight'''] _UpperCamelCase = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = strabool(args.class_cond) _lowerCAmelCase = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: _lowerCAmelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowerCAmelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _lowerCAmelCase = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: _lowerCAmelCase = None _lowerCAmelCase = con_pt_to_diffuser(args.unet_path, unet_config) _lowerCAmelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _lowerCAmelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _lowerCAmelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowerCAmelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') _lowerCAmelCase = CMStochasticIterativeScheduler(**scheduler_config) _lowerCAmelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["ViTFeatureExtractor"] _lowerCAmelCase = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default="tab_fact", metadata={"help": "The name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="tab_fact", metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, ) UpperCAmelCase = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "A csv or a json file containing the test data."} ) def UpperCamelCase_ ( self : Optional[Any] ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: _UpperCamelCase = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _UpperCamelCase = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) UpperCAmelCase = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCamelCase = training_args.get_process_log_level() logger.setLevel(__snake_case ) datasets.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _UpperCamelCase = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _UpperCamelCase = data_args.train_file.split('''.''' )[-1] _UpperCamelCase = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _UpperCamelCase = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files _UpperCamelCase = load_dataset('''csv''' , data_files=__snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _UpperCamelCase = load_dataset('''json''' , data_files=__snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _UpperCamelCase = raw_datasets['''train'''].features['''label'''].names _UpperCamelCase = len(__snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _UpperCamelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__snake_case , ) _UpperCamelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _UpperCamelCase = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCamelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. _UpperCamelCase = {'''Refused''': 0, '''Entailed''': 1} _UpperCamelCase = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCamelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__snake_case ): # Tokenize the texts def _convert_table_text_to_pandas(__snake_case ): _UpperCamelCase = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] _UpperCamelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _UpperCamelCase = examples['''statement'''] _UpperCamelCase = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) _UpperCamelCase = tokenizer(__snake_case , __snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case ) _UpperCamelCase = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): _UpperCamelCase = raw_datasets.map( __snake_case , batched=__snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) _UpperCamelCase = raw_datasets['''train'''] if data_args.max_train_samples is not None: _UpperCamelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) _UpperCamelCase = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) _UpperCamelCase = raw_datasets['''test'''] if data_args.max_predict_samples is not None: _UpperCamelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__snake_case ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__snake_case ): _UpperCamelCase = p.predictions[0] if isinstance(p.predictions , __snake_case ) else p.predictions _UpperCamelCase = np.argmax(__snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCamelCase = default_data_collator elif training_args.fpaa: _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) else: _UpperCamelCase = None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__snake_case , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: _UpperCamelCase = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase = last_checkpoint _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate(eval_dataset=__snake_case ) _UpperCamelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _UpperCamelCase = predict_dataset.remove_columns('''label''' ) _UpperCamelCase = trainer.predict(__snake_case , metric_key_prefix='''predict''' ).predictions _UpperCamelCase = np.argmax(__snake_case , axis=1 ) _UpperCamelCase = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(__snake_case ): _UpperCamelCase = label_list[item] writer.write(f"""{index}\t{item}\n""" ) _UpperCamelCase = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
from __future__ import annotations from collections.abc import Callable def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = 100 , ): _UpperCamelCase = x_start _UpperCamelCase = fnc(__snake_case ) _UpperCamelCase = 0.0 for _ in range(__snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCamelCase = (x_end - x_start) / steps + xa _UpperCamelCase = fnc(__snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCamelCase = xa _UpperCamelCase = fxa return area if __name__ == "__main__": def _snake_case ( __snake_case ): return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") _lowerCAmelCase = 10 while i <= 100_000: print(f'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self : int , _A : int , _A : Dict=13 , _A : Optional[Any]=32 , _A : List[str]=3 , _A : Tuple=4 , _A : Union[str, Any]=[10, 20, 30, 40] , _A : Optional[int]=[2, 2, 3, 2] , _A : Union[str, Any]=True , _A : str=True , _A : List[Any]=37 , _A : List[str]="gelu" , _A : str=10 , _A : Optional[Any]=0.02 , _A : Optional[Any]=["stage2", "stage3", "stage4"] , _A : Any=[2, 3, 4] , _A : Union[str, Any]=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_labels _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = out_indices _UpperCamelCase = scope def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : int ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] , _A : Dict ): _UpperCamelCase = ConvNextModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase_ ( self : Optional[int] , _A : Optional[Any] , _A : Tuple , _A : int ): _UpperCamelCase = ConvNextForImageClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : List[str] , _A : Union[str, Any] , _A : Dict , _A : Any ): _UpperCamelCase = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase = None _UpperCamelCase = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = ConvNextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCamelCase_ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : str ): return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def UpperCamelCase_ ( self : Optional[int] ): pass def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) def UpperCamelCase_ ( self : List[str] ): def check_hidden_states_output(_A : int , _A : Optional[int] , _A : Dict ): _UpperCamelCase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(_A , _A ) ) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(_A , _A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def UpperCamelCase_ ( self : List[str] ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ConvNextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _snake_case ( ): _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : int ): return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_A ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**_A ) # verify the logits _UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) _UpperCamelCase = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase, __lowercase ): UpperCAmelCase = (ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase = ConvNextConfig UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = ConvNextModelTester(self )
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): # Return True if there is node that has not iterated. _UpperCamelCase = [False] * len(__snake_case ) _UpperCamelCase = [] queue.append(__snake_case ) _UpperCamelCase = True while queue: _UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__snake_case ) _UpperCamelCase = True _UpperCamelCase = u return visited[t] def _snake_case ( __snake_case , __snake_case , __snake_case ): # This array is filled by BFS and to store path _UpperCamelCase = [-1] * (len(__snake_case )) _UpperCamelCase = 0 while bfs(__snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = float('''Inf''' ) _UpperCamelCase = sink while s != source: # Find the minimum value in select path _UpperCamelCase = min(__snake_case , graph[parent[s]][s] ) _UpperCamelCase = parent[s] max_flow += path_flow _UpperCamelCase = sink while v != source: _UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase = parent[v] return max_flow _lowerCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _lowerCAmelCase, _lowerCAmelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = OmegaConf.load(__snake_case ) _UpperCamelCase = torch.load(__snake_case , map_location='''cpu''' )['''model'''] _UpperCamelCase = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCamelCase = {} _UpperCamelCase = '''first_stage_model.''' for key in keys: if key.startswith(__snake_case ): _UpperCamelCase = state_dict[key] # extract state_dict for UNetLDM _UpperCamelCase = {} _UpperCamelCase = '''model.diffusion_model.''' for key in keys: if key.startswith(__snake_case ): _UpperCamelCase = state_dict[key] _UpperCamelCase = config.model.params.first_stage_config.params _UpperCamelCase = config.model.params.unet_config.params _UpperCamelCase = VQModel(**__snake_case ).eval() vqvae.load_state_dict(__snake_case ) _UpperCamelCase = UNetLDMModel(**__snake_case ).eval() unet.load_state_dict(__snake_case ) _UpperCamelCase = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__snake_case , ) _UpperCamelCase = LDMPipeline(__snake_case , __snake_case , __snake_case ) pipeline.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) _lowerCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "spiece.model"} _lowerCAmelCase = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __lowercase ): def __init__( self : Any , _A : Optional[int] , _A : Union[str, Any]=False , _A : Dict=True , _A : str=False , _A : int="<s>" , _A : Optional[Any]="</s>" , _A : Any="<unk>" , _A : List[Any]="<sep>" , _A : Any="<pad>" , _A : List[str]="<cls>" , _A : Tuple="<mask>" , _A : List[Any]=["<eop>", "<eod>"] , _A : Optional[Dict[str, Any]] = None , **_A : Optional[Any] , ): _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) _UpperCamelCase = 3 _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) _UpperCamelCase = jieba _UpperCamelCase = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCamelCase_ ( self : int ): return len(self.sp_model ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : str , _A : Optional[int] ): _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Any ): if self.remove_space: _UpperCamelCase = ''' '''.join(inputs.strip().split() ) else: _UpperCamelCase = inputs _UpperCamelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: _UpperCamelCase = unicodedata.normalize('''NFKD''' , _A ) _UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _UpperCamelCase = outputs.lower() return outputs def UpperCamelCase_ ( self : Optional[Any] , _A : str ): _UpperCamelCase = self.preprocess_text(_A ) _UpperCamelCase = self.sp_model.encode(_A , out_type=_A ) _UpperCamelCase = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCamelCase = cur_pieces[1:] else: _UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def UpperCamelCase_ ( self : List[str] , _A : Optional[Any] ): return self.sp_model.PieceToId(_A ) def UpperCamelCase_ ( self : int , _A : Any ): return self.sp_model.IdToPiece(_A ) def UpperCamelCase_ ( self : Optional[int] , _A : Optional[int] ): _UpperCamelCase = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase_ ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def UpperCamelCase_ ( self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase_ ( self : Union[str, Any] , _A : str , _A : Optional[str] = None ): if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Tuple , *_A : Any , **_A : str ): _UpperCamelCase = super()._decode(*_A , **_A ) _UpperCamelCase = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "dpr" def __init__( self : List[str] , _A : Optional[Any]=3_0522 , _A : int=768 , _A : List[Any]=12 , _A : Dict=12 , _A : Union[str, Any]=3072 , _A : Dict="gelu" , _A : int=0.1 , _A : Dict=0.1 , _A : Union[str, Any]=512 , _A : int=2 , _A : Any=0.02 , _A : Optional[Any]=1e-12 , _A : int=0 , _A : Optional[int]="absolute" , _A : int = 0 , **_A : Optional[int] , ): super().__init__(pad_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = projection_dim _UpperCamelCase = position_embedding_type
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "segformer" def __init__( self : Optional[Any] , _A : List[Any]=3 , _A : Tuple=4 , _A : Any=[2, 2, 2, 2] , _A : Dict=[8, 4, 2, 1] , _A : int=[32, 64, 160, 256] , _A : Any=[7, 3, 3, 3] , _A : Any=[4, 2, 2, 2] , _A : str=[1, 2, 5, 8] , _A : Optional[Any]=[4, 4, 4, 4] , _A : Dict="gelu" , _A : Optional[Any]=0.0 , _A : Any=0.0 , _A : Tuple=0.1 , _A : Optional[Any]=0.02 , _A : Dict=0.1 , _A : Dict=1e-6 , _A : int=256 , _A : Dict=255 , **_A : List[Any] , ): super().__init__(**_A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , _A , ) _UpperCamelCase = num_channels _UpperCamelCase = num_encoder_blocks _UpperCamelCase = depths _UpperCamelCase = sr_ratios _UpperCamelCase = hidden_sizes _UpperCamelCase = patch_sizes _UpperCamelCase = strides _UpperCamelCase = mlp_ratios _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = classifier_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = drop_path_rate _UpperCamelCase = layer_norm_eps _UpperCamelCase = decoder_hidden_size _UpperCamelCase = kwargs.get('''reshape_last_stage''' , _A ) _UpperCamelCase = semantic_loss_ignore_index class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = version.parse("1.11" ) @property def UpperCamelCase_ ( self : Any ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self : str ): return 1e-4 @property def UpperCamelCase_ ( self : int ): return 12
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
import math def _snake_case ( __snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case ( __snake_case = 10001 ): try: _UpperCamelCase = int(__snake_case ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) _UpperCamelCase = [] _UpperCamelCase = 2 while len(__snake_case ) < nth: if is_prime(__snake_case ): primes.append(__snake_case ) num += 1 else: num += 1 return primes[len(__snake_case ) - 1] if __name__ == "__main__": print(f'{solution() = }')
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
from collections.abc import Generator from math import sin def _snake_case ( __snake_case ): if len(__snake_case ) != 32: raise ValueError('''Input must be of length 32''' ) _UpperCamelCase = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _snake_case ( __snake_case ): if i < 0: raise ValueError('''Input must be non-negative''' ) _UpperCamelCase = format(__snake_case , '''08x''' )[-8:] _UpperCamelCase = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def _snake_case ( __snake_case ): _UpperCamelCase = B'''''' for char in message: bit_string += format(__snake_case , '''08b''' ).encode('''utf-8''' ) _UpperCamelCase = format(len(__snake_case ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__snake_case ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _snake_case ( __snake_case ): if len(__snake_case ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(__snake_case ) , 512 ): _UpperCamelCase = bit_string[pos : pos + 512] _UpperCamelCase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _snake_case ( __snake_case ): if i < 0: raise ValueError('''Input must be non-negative''' ) _UpperCamelCase = format(__snake_case , '''032b''' ) _UpperCamelCase = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(__snake_case , 2 ) def _snake_case ( __snake_case , __snake_case ): return (a + b) % 2**32 def _snake_case ( __snake_case , __snake_case ): if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _snake_case ( __snake_case ): _UpperCamelCase = preprocess(__snake_case ) _UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _UpperCamelCase = 0x6745_2301 _UpperCamelCase = 0xEFCD_AB89 _UpperCamelCase = 0x98BA_DCFE _UpperCamelCase = 0x1032_5476 _UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__snake_case ): _UpperCamelCase = aa _UpperCamelCase = ba _UpperCamelCase = ca _UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _UpperCamelCase = d ^ (b & (c ^ d)) _UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _UpperCamelCase = c ^ (d & (b ^ c)) _UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: _UpperCamelCase = b ^ c ^ d _UpperCamelCase = (3 * i + 5) % 16 else: _UpperCamelCase = c ^ (b | not_aa(__snake_case )) _UpperCamelCase = (7 * i) % 16 _UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 _UpperCamelCase = d _UpperCamelCase = c _UpperCamelCase = b _UpperCamelCase = sum_aa(__snake_case , left_rotate_aa(__snake_case , shift_amounts[i] ) ) # Add hashed chunk to running total _UpperCamelCase = sum_aa(__snake_case , __snake_case ) _UpperCamelCase = sum_aa(__snake_case , __snake_case ) _UpperCamelCase = sum_aa(__snake_case , __snake_case ) _UpperCamelCase = sum_aa(__snake_case , __snake_case ) _UpperCamelCase = reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) return digest if __name__ == "__main__": import doctest doctest.testmod()
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase = 10 def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): for i in range(__snake_case , __snake_case ): if array[i] == target: return i return -1 def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = 0 _UpperCamelCase = len(__snake_case ) while left <= right: if right - left < precision: return lin_search(__snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = (left + right) // 3 + 1 _UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _UpperCamelCase = one_third - 1 elif array[two_third] < target: _UpperCamelCase = two_third + 1 else: _UpperCamelCase = one_third + 1 _UpperCamelCase = two_third - 1 else: return -1 def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): if left < right: if right - left < precision: return lin_search(__snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = (left + right) // 3 + 1 _UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__snake_case , one_third - 1 , __snake_case , __snake_case ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __snake_case , __snake_case , __snake_case ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __snake_case , __snake_case ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input("Enter numbers separated by comma:\n").strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase = int(input("Enter the number to be found in the list:\n").strip()) _lowerCAmelCase = ite_ternary_search(collection, target) _lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'Iterative search: {target} found at positions: {resulta}') print(f'Recursive search: {target} found at positions: {resulta}') else: print("Not found")
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
from sklearn.metrics import matthews_corrcoef import datasets _lowerCAmelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" _lowerCAmelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" _lowerCAmelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def UpperCamelCase_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def UpperCamelCase_ ( self : List[str] , _A : List[str] , _A : str , _A : str=None ): return { "matthews_correlation": float(matthews_corrcoef(_A , _A , sample_weight=_A ) ), }
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case=False ): _UpperCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _snake_case ( __snake_case , __snake_case , __snake_case=False ): for i in range(config.num_hidden_layers ): if base_model: _UpperCamelCase = '''''' else: _UpperCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _UpperCamelCase = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCamelCase = in_proj_bias[: config.hidden_size] _UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase = in_proj_bias[-config.hidden_size :] def _snake_case ( __snake_case ): _UpperCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = dct.pop(__snake_case ) _UpperCamelCase = val def _snake_case ( ): _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case=True ): _UpperCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCamelCase = 8 # set labels if required if not base_model: _UpperCamelCase = 1000 _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCamelCase = 384 _UpperCamelCase = 1536 _UpperCamelCase = 12 _UpperCamelCase = 6 # load original model from torch hub _UpperCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) _UpperCamelCase = create_rename_keys(__snake_case , base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , __snake_case ) # load HuggingFace model if base_model: _UpperCamelCase = ViTModel(__snake_case , add_pooling_layer=__snake_case ).eval() else: _UpperCamelCase = ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCamelCase = ViTImageProcessor() _UpperCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _UpperCamelCase = encoding['''pixel_values'''] _UpperCamelCase = model(__snake_case ) if base_model: _UpperCamelCase = original_model(__snake_case ) assert torch.allclose(__snake_case , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCamelCase = original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) _lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _snake_case ( __snake_case ): # A local function to see if a dot lands in the circle. def is_in_circle(__snake_case , __snake_case ) -> bool: _UpperCamelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCamelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__snake_case ) ) # The ratio of the area for circle to square is pi/4. _UpperCamelCase = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def _snake_case ( __snake_case , __snake_case , __snake_case = 0.0 , __snake_case = 1.0 , ): return mean( function_to_integrate(uniform(__snake_case , __snake_case ) ) for _ in range(__snake_case ) ) * (max_value - min_value) def _snake_case ( __snake_case , __snake_case = 0.0 , __snake_case = 1.0 ): def identity_function(__snake_case ) -> float: return x _UpperCamelCase = area_under_curve_estimator( __snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print('''******************''' ) def _snake_case ( __snake_case ): def function_to_integrate(__snake_case ) -> float: return sqrt(4.0 - x * x ) _UpperCamelCase = area_under_curve_estimator( __snake_case , __snake_case , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase_ : def __init__( self : List[str] ): _UpperCamelCase = {} def UpperCamelCase_ ( self : Any , _A : str ): _UpperCamelCase = {} def UpperCamelCase_ ( self : Dict , _A : str , _A : str , _A : float ): if nodea not in self.connections: self.add_node(_A ) if nodea not in self.connections: self.add_node(_A ) _UpperCamelCase = probability def UpperCamelCase_ ( self : str ): return list(self.connections ) def UpperCamelCase_ ( self : str , _A : str ): _UpperCamelCase = 0 _UpperCamelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__snake_case , __snake_case , __snake_case ) _UpperCamelCase = Counter(graph.get_nodes() ) _UpperCamelCase = start for _ in range(__snake_case ): _UpperCamelCase = graph.transition(__snake_case ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = "T5Config" class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _lowerCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _lowerCAmelCase = [ { "type": "header", "text": { "type": "plain_text", "text": f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', "emoji": True, }, } ] _lowerCAmelCase = 0 for log in Path().glob("*.log"): _lowerCAmelCase = 0 with open(log, "r") as f: for line in f: _lowerCAmelCase = json.loads(line) if line.get("nodeid", "") != "": _lowerCAmelCase = line["nodeid"] if line.get("duration", None) is not None: _lowerCAmelCase = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _lowerCAmelCase = [] log.unlink() _lowerCAmelCase = "" _lowerCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" _lowerCAmelCase = [] _lowerCAmelCase = {} for test in failed_tests: _lowerCAmelCase = test[0].split("::") _lowerCAmelCase = data[0].split("/")[-1] if data[0] not in filesafailed: _lowerCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _lowerCAmelCase = [test[0] for test in failed_table] _lowerCAmelCase = list(set(files)) # Count number of instances in failed_tests _lowerCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _lowerCAmelCase = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: _lowerCAmelCase = "Too many failed tests, please see the full report in the Action results." _lowerCAmelCase = len(err) + 10 _lowerCAmelCase = message[: 3_000 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: _lowerCAmelCase = "No failed tests! 🤗" print(f'## {message}') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _lowerCAmelCase = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _lowerCAmelCase = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _lowerCAmelCase = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) _lowerCAmelCase = { "type": "context", "elements": [ { "type": "plain_text", "text": f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) _lowerCAmelCase = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _lowerCAmelCase = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _lowerCAmelCase = "" for i, row in enumerate(test_failures): if row[0] != test_class: _lowerCAmelCase = row[0] else: _lowerCAmelCase = "" _lowerCAmelCase = { "type": "section", "text": { "type": "mrkdwn", "text": f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( __snake_case ): _UpperCamelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableDiffusionLatentUpscalePipeline UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } UpperCAmelCase = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase = frozenset([] ) UpperCAmelCase = True @property def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = 1 _UpperCamelCase = 4 _UpperCamelCase = (16, 16) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_A ) return image def UpperCamelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_A , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_A , only_cross_attention=_A , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) _UpperCamelCase = EulerDiscreteScheduler(prediction_type='''sample''' ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) _UpperCamelCase = CLIPTextModel(_A ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCamelCase = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase_ ( self : Dict , _A : int , _A : List[Any]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : str ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = self.get_dummy_inputs(_A ) _UpperCamelCase = pipe(**_A ).images _UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _UpperCamelCase = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) _UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def UpperCamelCase_ ( self : Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCamelCase_ ( self : int ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase_ ( self : str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase_ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCamelCase_ ( self : Optional[int] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCamelCase_ ( self : int ): super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCamelCase_ ( self : Union[str, Any] ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = self.get_dummy_inputs(_A ) _UpperCamelCase = 2 _UpperCamelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _UpperCamelCase = getattr(_A , scheduler_enum.name ) _UpperCamelCase = scheduler_cls.from_config(pipe.scheduler.config ) _UpperCamelCase = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch.manual_seed(33 ) _UpperCamelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _UpperCamelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _UpperCamelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' _UpperCamelCase = pipe(_A , generator=_A , output_type='''latent''' ).images _UpperCamelCase = upscaler( prompt=_A , image=_A , num_inference_steps=20 , guidance_scale=0 , generator=_A , output_type='''np''' , ).images[0] _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = torch.manual_seed(33 ) _UpperCamelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _UpperCamelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) _UpperCamelCase = upscaler( prompt=_A , image=_A , num_inference_steps=20 , guidance_scale=0 , generator=_A , output_type='''np''' , ).images[0] _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
from __future__ import annotations import math def _snake_case ( __snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _UpperCamelCase = [] for num in range(len(__snake_case ) ): _UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: _UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(__snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__snake_case ) == n: return list_nums return [] def _snake_case ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(f'{solution() = }')
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowerCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] _lowerCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] _lowerCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) _lowerCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) _lowerCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def _snake_case ( __snake_case , __snake_case ): for tf_name, hf_name in patterns: _UpperCamelCase = k.replace(__snake_case , __snake_case ) return k def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = BigBirdPegasusConfig(**__snake_case ) _UpperCamelCase = BigBirdPegasusForConditionalGeneration(__snake_case ) _UpperCamelCase = torch_model.state_dict() _UpperCamelCase = {} # separating decoder weights _UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} _UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): _UpperCamelCase = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue _UpperCamelCase = DECODER_PATTERNS _UpperCamelCase = rename_state_dict_key(__snake_case , __snake_case ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _UpperCamelCase = v.T _UpperCamelCase = torch.from_numpy(__snake_case ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): _UpperCamelCase = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue _UpperCamelCase = REMAINING_PATTERNS _UpperCamelCase = rename_state_dict_key(__snake_case , __snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _UpperCamelCase = v.T _UpperCamelCase = torch.from_numpy(__snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _UpperCamelCase = mapping['''model.embed_positions.weight'''] _UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) _UpperCamelCase , _UpperCamelCase = torch_model.load_state_dict(__snake_case , strict=__snake_case ) _UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def _snake_case ( __snake_case ): _UpperCamelCase = tf.train.list_variables(__snake_case ) _UpperCamelCase = {} _UpperCamelCase = ['''global_step'''] for name, shape in tqdm(__snake_case , desc='''converting tf checkpoint to dict''' ): _UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) _UpperCamelCase = array return tf_weights def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = get_tf_weights_as_numpy(__snake_case ) _UpperCamelCase = convert_bigbird_pegasus(__snake_case , __snake_case ) torch_model.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
from __future__ import annotations import math import random from typing import Any class lowerCAmelCase_ : def __init__( self : str ): _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = 0 def UpperCamelCase_ ( self : Dict ): return self.head == self.tail def UpperCamelCase_ ( self : Optional[Any] , _A : Any ): self.data.append(_A ) _UpperCamelCase = self.tail + 1 def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.data[self.head] _UpperCamelCase = self.head + 1 return ret def UpperCamelCase_ ( self : Tuple ): return self.tail - self.head def UpperCamelCase_ ( self : Dict ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class lowerCAmelCase_ : def __init__( self : Any , _A : Any ): _UpperCamelCase = data _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = 1 def UpperCamelCase_ ( self : Dict ): return self.data def UpperCamelCase_ ( self : List[Any] ): return self.left def UpperCamelCase_ ( self : Optional[Any] ): return self.right def UpperCamelCase_ ( self : Optional[Any] ): return self.height def UpperCamelCase_ ( self : List[Any] , _A : Any ): _UpperCamelCase = data def UpperCamelCase_ ( self : Dict , _A : MyNode | None ): _UpperCamelCase = node def UpperCamelCase_ ( self : Optional[int] , _A : MyNode | None ): _UpperCamelCase = node def UpperCamelCase_ ( self : Union[str, Any] , _A : int ): _UpperCamelCase = height def _snake_case ( __snake_case ): if node is None: return 0 return node.get_height() def _snake_case ( __snake_case , __snake_case ): if a > b: return a return b def _snake_case ( __snake_case ): print('''left rotation node:''' , node.get_data() ) _UpperCamelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__snake_case ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__snake_case ) _UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__snake_case ) return ret def _snake_case ( __snake_case ): print('''right rotation node:''' , node.get_data() ) _UpperCamelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__snake_case ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__snake_case ) _UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__snake_case ) return ret def _snake_case ( __snake_case ): _UpperCamelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(__snake_case ) ) return right_rotation(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(__snake_case ) ) return left_rotation(__snake_case ) def _snake_case ( __snake_case , __snake_case ): if node is None: return MyNode(__snake_case ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __snake_case ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _UpperCamelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _UpperCamelCase = right_rotation(__snake_case ) else: _UpperCamelCase = lr_rotation(__snake_case ) else: node.set_right(insert_node(node.get_right() , __snake_case ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _UpperCamelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): _UpperCamelCase = rl_rotation(__snake_case ) else: _UpperCamelCase = left_rotation(__snake_case ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__snake_case ) return node def _snake_case ( __snake_case ): while True: _UpperCamelCase = root.get_right() if right_child is None: break _UpperCamelCase = right_child return root.get_data() def _snake_case ( __snake_case ): while True: _UpperCamelCase = root.get_left() if left_child is None: break _UpperCamelCase = left_child return root.get_data() def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = root.get_left() _UpperCamelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _UpperCamelCase = get_left_most(__snake_case ) root.set_data(__snake_case ) root.set_right(del_node(__snake_case , __snake_case ) ) elif left_child is not None: _UpperCamelCase = left_child elif right_child is not None: _UpperCamelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(__snake_case , __snake_case ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__snake_case , __snake_case ) ) if get_height(__snake_case ) - get_height(__snake_case ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _UpperCamelCase = left_rotation(__snake_case ) else: _UpperCamelCase = rl_rotation(__snake_case ) elif get_height(__snake_case ) - get_height(__snake_case ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _UpperCamelCase = right_rotation(__snake_case ) else: _UpperCamelCase = lr_rotation(__snake_case ) _UpperCamelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__snake_case ) return root class lowerCAmelCase_ : def __init__( self : Any ): _UpperCamelCase = None def UpperCamelCase_ ( self : Dict ): return get_height(self.root ) def UpperCamelCase_ ( self : Any , _A : Any ): print('''insert:''' + str(_A ) ) _UpperCamelCase = insert_node(self.root , _A ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Any ): print('''delete:''' + str(_A ) ) if self.root is None: print('''Tree is empty!''' ) return _UpperCamelCase = del_node(self.root , _A ) def __str__( self : Any , ): # a level traversale, gives a more intuitive look on the tree _UpperCamelCase = '''''' _UpperCamelCase = MyQueue() q.push(self.root ) _UpperCamelCase = self.get_height() if layer == 0: return output _UpperCamelCase = 0 while not q.is_empty(): _UpperCamelCase = q.pop() _UpperCamelCase = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_A ) q.push(_A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _UpperCamelCase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , _A ) - 1: _UpperCamelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _snake_case ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _lowerCAmelCase = AVLtree() _lowerCAmelCase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
from torch import nn def _snake_case ( __snake_case ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}, ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) _UpperCamelCase = import_module('''tasks''' ) try: _UpperCamelCase = getattr(__snake_case , model_args.task_type ) _UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _UpperCamelCase = token_classification_task.get_labels(data_args.labels ) _UpperCamelCase = dict(enumerate(__snake_case ) ) _UpperCamelCase = len(__snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , idalabel=__snake_case , labelaid={label: i for i, label in enumerate(__snake_case )} , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( TokenClassificationDataset( token_classification_task=__snake_case , data_dir=data_args.data_dir , tokenizer=__snake_case , labels=__snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( TokenClassificationDataset( token_classification_task=__snake_case , data_dir=data_args.data_dir , tokenizer=__snake_case , labels=__snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__snake_case , __snake_case ) -> Tuple[List[int], List[int]]: _UpperCamelCase = np.argmax(__snake_case , axis=2 ) _UpperCamelCase , _UpperCamelCase = preds.shape _UpperCamelCase = [[] for _ in range(__snake_case )] _UpperCamelCase = [[] for _ in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase , _UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__snake_case , __snake_case ), "precision": precision_score(__snake_case , __snake_case ), "recall": recall_score(__snake_case , __snake_case ), "f1": fa_score(__snake_case , __snake_case ), } # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) # Predict if training_args.do_predict: _UpperCamelCase = TokenClassificationDataset( token_classification_task=__snake_case , data_dir=data_args.data_dir , tokenizer=__snake_case , labels=__snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = trainer.predict(__snake_case ) _UpperCamelCase , _UpperCamelCase = align_predictions(__snake_case , __snake_case ) _UpperCamelCase = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__snake_case , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions _UpperCamelCase = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__snake_case , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__snake_case , __snake_case , __snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "unispeech-sat" def __init__( self : List[Any] , _A : Dict=32 , _A : int=768 , _A : str=12 , _A : str=12 , _A : Any=3072 , _A : List[str]="gelu" , _A : Any=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=0.0 , _A : List[str]=0.0 , _A : Optional[Any]=0.1 , _A : str=0.1 , _A : List[str]=0.02 , _A : Optional[int]=1e-5 , _A : Dict="group" , _A : str="gelu" , _A : List[str]=(512, 512, 512, 512, 512, 512, 512) , _A : Any=(5, 2, 2, 2, 2, 2, 2) , _A : Dict=(10, 3, 3, 3, 3, 2, 2) , _A : Union[str, Any]=False , _A : str=128 , _A : Tuple=16 , _A : Optional[int]=False , _A : Dict=True , _A : Optional[Any]=0.05 , _A : Any=10 , _A : str=2 , _A : Dict=0.0 , _A : List[str]=10 , _A : Union[str, Any]=0 , _A : List[str]=320 , _A : List[Any]=2 , _A : Optional[Any]=0.1 , _A : Optional[Any]=100 , _A : List[str]=256 , _A : Any=256 , _A : List[Any]=0.1 , _A : Dict="mean" , _A : Dict=False , _A : List[str]=False , _A : List[Any]=256 , _A : Any=(512, 512, 512, 512, 1500) , _A : Any=(5, 3, 3, 1, 1) , _A : Dict=(1, 2, 3, 1, 1) , _A : str=512 , _A : Dict=0 , _A : List[str]=1 , _A : Tuple=2 , _A : Optional[Any]=504 , **_A : int , ): super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = conv_bias _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim ) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = vocab_size _UpperCamelCase = num_clusters _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length _UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = feat_quantizer_dropout _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = xvector_output_dim @property def UpperCamelCase_ ( self : List[str] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _snake_case ( __snake_case ): _UpperCamelCase = prime_factors(__snake_case ) if is_square_free(__snake_case ): return -1 if len(__snake_case ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class lowerCAmelCase_ : def __init__( self : Any , _A : int=None , **_A : Optional[int] ): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) _UpperCamelCase = model _UpperCamelCase = kwargs.get('''model_save_dir''' , _A ) _UpperCamelCase = kwargs.get('''latest_model_name''' , _A ) def __call__( self : Union[str, Any] , **_A : Tuple ): _UpperCamelCase = {k: np.array(_A ) for k, v in kwargs.items()} return self.model.run(_A , _A ) @staticmethod def UpperCamelCase_ ( _A : Union[str, Path] , _A : Dict=None , _A : Tuple=None ): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) _UpperCamelCase = '''CPUExecutionProvider''' return ort.InferenceSession(_A , providers=[provider] , sess_options=_A ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Union[str, Path] , _A : Optional[str] = None , **_A : int ): _UpperCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME _UpperCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) _UpperCamelCase = Path(_A ).joinpath(_A ) try: shutil.copyfile(_A , _A ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _UpperCamelCase = self.model_save_dir.joinpath(_A ) if src_path.exists(): _UpperCamelCase = Path(_A ).joinpath(_A ) try: shutil.copyfile(_A , _A ) except shutil.SameFileError: pass def UpperCamelCase_ ( self : Dict , _A : Union[str, os.PathLike] , **_A : Dict , ): if os.path.isfile(_A ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_A , exist_ok=_A ) # saving model weights/files self._save_pretrained(_A , **_A ) @classmethod def UpperCamelCase_ ( cls : Any , _A : Union[str, Path] , _A : Optional[Union[bool, str, None]] = None , _A : Optional[Union[str, None]] = None , _A : bool = False , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional["ort.SessionOptions"] = None , **_A : List[Any] , ): _UpperCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_A ): _UpperCamelCase = OnnxRuntimeModel.load_model( os.path.join(_A , _A ) , provider=_A , sess_options=_A ) _UpperCamelCase = Path(_A ) # load model from hub else: # download model _UpperCamelCase = hf_hub_download( repo_id=_A , filename=_A , use_auth_token=_A , revision=_A , cache_dir=_A , force_download=_A , ) _UpperCamelCase = Path(_A ).parent _UpperCamelCase = Path(_A ).name _UpperCamelCase = OnnxRuntimeModel.load_model(_A , provider=_A , sess_options=_A ) return cls(model=_A , **_A ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , _A : Union[str, Path] , _A : bool = True , _A : Optional[str] = None , _A : Optional[str] = None , **_A : List[str] , ): _UpperCamelCase = None if len(str(_A ).split('''@''' ) ) == 2: _UpperCamelCase , _UpperCamelCase = model_id.split('''@''' ) return cls._from_pretrained( model_id=_A , revision=_A , cache_dir=_A , force_download=_A , use_auth_token=_A , **_A , )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.json"} _lowerCAmelCase = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } _lowerCAmelCase = {"mgp-str": 27} class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , _A : List[str] , _A : int="[GO]" , _A : Union[str, Any]="[GO]" , _A : Any="[s]" , _A : Dict="[GO]" , **_A : Optional[Any] ): super().__init__( unk_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , **_A , ) with open(_A , encoding='''utf-8''' ) as vocab_handle: _UpperCamelCase = json.load(_A ) _UpperCamelCase = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase_ ( self : Optional[Any] ): return len(self.vocab ) def UpperCamelCase_ ( self : int ): return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict ): _UpperCamelCase = [] for s in text: char_tokens.extend(_A ) return char_tokens def UpperCamelCase_ ( self : str , _A : Dict ): return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self : Dict , _A : List[str] ): return self.decoder.get(_A ) def UpperCamelCase_ ( self : Any , _A : str , _A : Optional[str] = None ): if not os.path.isdir(_A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_A ) ) return _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) return (vocab_file,)
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCAmelCase = "src/diffusers" _lowerCAmelCase = "." # This is to make sure the diffusers module imported is the one in the repo. _lowerCAmelCase = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCAmelCase = spec.loader.load_module() def _snake_case ( __snake_case , __snake_case ): return line.startswith(__snake_case ) or len(__snake_case ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , __snake_case ) is not None def _snake_case ( __snake_case ): _UpperCamelCase = object_name.split('''.''' ) _UpperCamelCase = 0 # First let's find the module where our object lives. _UpperCamelCase = parts[i] while i < len(__snake_case ) and not os.path.isfile(os.path.join(__snake_case , f"""{module}.py""" ) ): i += 1 if i < len(__snake_case ): _UpperCamelCase = os.path.join(__snake_case , parts[i] ) if i >= len(__snake_case ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__snake_case , f"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCamelCase = f.readlines() # Now let's find the class / func in the code! _UpperCamelCase = '''''' _UpperCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(__snake_case ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__snake_case ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _UpperCamelCase = line_index while line_index < len(__snake_case ) and _should_continue(lines[line_index] , __snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCamelCase = lines[start_index:line_index] return "".join(__snake_case ) _lowerCAmelCase = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") _lowerCAmelCase = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") _lowerCAmelCase = re.compile(r"<FILL\s+[^>]*>") def _snake_case ( __snake_case ): _UpperCamelCase = code.split('''\n''' ) _UpperCamelCase = 0 while idx < len(__snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__snake_case ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def _snake_case ( __snake_case ): _UpperCamelCase = len(get_indent(__snake_case ) ) > 0 if has_indent: _UpperCamelCase = f"""class Bla:\n{code}""" _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__snake_case ) _UpperCamelCase = black.format_str(__snake_case , mode=__snake_case ) _UpperCamelCase , _UpperCamelCase = style_docstrings_in_code(__snake_case ) return result[len('''class Bla:\n''' ) :] if has_indent else result def _snake_case ( __snake_case , __snake_case=False ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [] _UpperCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__snake_case ): _UpperCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = search.groups() _UpperCamelCase = find_code_in_diffusers(__snake_case ) _UpperCamelCase = get_indent(__snake_case ) _UpperCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _UpperCamelCase = theoretical_indent _UpperCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _UpperCamelCase = True while line_index < len(__snake_case ) and should_continue: line_index += 1 if line_index >= len(__snake_case ): break _UpperCamelCase = lines[line_index] _UpperCamelCase = _should_continue(__snake_case , __snake_case ) and re.search(f"""^{indent}# End copy""" , __snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCamelCase = lines[start_index:line_index] _UpperCamelCase = ''''''.join(__snake_case ) # Remove any nested `Copied from` comments to avoid circular copies _UpperCamelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__snake_case ) is None] _UpperCamelCase = '''\n'''.join(__snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(__snake_case ) > 0: _UpperCamelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _UpperCamelCase = [_re_replace_pattern.search(__snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = pattern.groups() _UpperCamelCase = re.sub(__snake_case , __snake_case , __snake_case ) if option.strip() == "all-casing": _UpperCamelCase = re.sub(obja.lower() , obja.lower() , __snake_case ) _UpperCamelCase = re.sub(obja.upper() , obja.upper() , __snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _UpperCamelCase = blackify(lines[start_index - 1] + theoretical_code ) _UpperCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _UpperCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _UpperCamelCase = start_index + 1 if overwrite and len(__snake_case ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__snake_case ) return diffs def _snake_case ( __snake_case = False ): _UpperCamelCase = glob.glob(os.path.join(__snake_case , '''**/*.py''' ) , recursive=__snake_case ) _UpperCamelCase = [] for filename in all_files: _UpperCamelCase = is_copy_consistent(__snake_case , __snake_case ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__snake_case ) > 0: _UpperCamelCase = '''\n'''.join(__snake_case ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowerCAmelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _lowerCAmelCase = datasets.load_iris() _lowerCAmelCase = np.array(data["data"]) _lowerCAmelCase = np.array(data["target"]) _lowerCAmelCase = data["target_names"] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase = train_test_split(X, y) def _snake_case ( __snake_case , __snake_case ): return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=5 ): _UpperCamelCase = zip(__snake_case , __snake_case ) # List of distances of all points from the point to be classified _UpperCamelCase = [] for data_point in data: _UpperCamelCase = euclidean_distance(data_point[0] , __snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _UpperCamelCase = [i[1] for i in sorted(__snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _UpperCamelCase = Counter(__snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
import math def _snake_case ( __snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case ( __snake_case = 0.1 ): _UpperCamelCase = 3 _UpperCamelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowerCAmelCase = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _lowerCAmelCase = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _lowerCAmelCase = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def UpperCamelCase_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def UpperCamelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : int , _A : int=4 , _A : Union[str, Any]=False ): _UpperCamelCase = compute_bleu( reference_corpus=_A , translation_corpus=_A , max_order=_A , smooth=_A ) ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
from __future__ import annotations class lowerCAmelCase_ : def __init__( self : Optional[Any] , _A : list[list[int]] ): _UpperCamelCase = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(_A ) != 0: _UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_A ) != cols: raise error for value in row: if not isinstance(_A , (int, float) ): raise error _UpperCamelCase = rows else: _UpperCamelCase = [] def UpperCamelCase_ ( self : Optional[Any] ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def UpperCamelCase_ ( self : List[Any] ): return len(self.rows ) @property def UpperCamelCase_ ( self : List[Any] ): return len(self.rows[0] ) @property def UpperCamelCase_ ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def UpperCamelCase_ ( self : Tuple ): return self.order[0] == self.order[1] def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_A ) def UpperCamelCase_ ( self : List[str] ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def UpperCamelCase_ ( self : Optional[Any] ): return bool(self.determinant() ) def UpperCamelCase_ ( self : str , _A : int , _A : int ): _UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_A ).determinant() def UpperCamelCase_ ( self : Optional[int] , _A : int , _A : int ): if (row + column) % 2 == 0: return self.get_minor(_A , _A ) return -1 * self.get_minor(_A , _A ) def UpperCamelCase_ ( self : List[str] ): return Matrix( [ [self.get_minor(_A , _A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def UpperCamelCase_ ( self : Optional[int] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_A ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self : List[Any] ): return str(self.rows ) def __str__( self : List[Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(_A ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def UpperCamelCase_ ( self : List[str] , _A : list[int] , _A : int | None = None ): _UpperCamelCase = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(_A , _A ): raise type_error for value in row: if not isinstance(_A , (int, float) ): raise type_error if len(_A ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(_A ) else: _UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def UpperCamelCase_ ( self : Optional[int] , _A : list[int] , _A : int | None = None ): _UpperCamelCase = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(_A , _A ): raise type_error for value in column: if not isinstance(_A , (int, float) ): raise type_error if len(_A ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: _UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : List[Any] , _A : object ): if not isinstance(_A , _A ): return NotImplemented return self.rows == other.rows def __ne__( self : List[str] , _A : object ): return not self == other def __neg__( self : Any ): return self * -1 def __add__( self : Union[str, Any] , _A : Matrix ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Union[str, Any] , _A : Matrix ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Tuple , _A : Matrix | int | float ): if isinstance(_A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_A , _A ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(_A , _A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self : List[Any] , _A : int ): if not isinstance(_A , _A ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) _UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , _A : list[int] , _A : list[int] ): return sum(row[i] * column[i] for i in range(len(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[Any] , _A : pyspark.sql.DataFrame , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : bool = True , _A : str = None , _A : bool = False , _A : str = None , _A : bool = True , _A : str = "arrow" , **_A : str , ): super().__init__( split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , **_A , ) _UpperCamelCase = load_from_cache_file _UpperCamelCase = file_format _UpperCamelCase = Spark( df=_A , features=_A , cache_dir=_A , working_dir=_A , **_A , ) def UpperCamelCase_ ( self : Optional[Any] ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCamelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_A , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
def _snake_case ( __snake_case , __snake_case ): while a != 0: _UpperCamelCase , _UpperCamelCase = b % a, a return b def _snake_case ( __snake_case , __snake_case ): if gcd(__snake_case , __snake_case ) != 1: _UpperCamelCase = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(__snake_case ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1, 0, a _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0, 1, m while va != 0: _UpperCamelCase = ua // va _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "deta" UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] , _A : Tuple=None , _A : Dict=900 , _A : Union[str, Any]=2048 , _A : Union[str, Any]=6 , _A : List[str]=2048 , _A : str=8 , _A : Optional[int]=6 , _A : List[str]=1024 , _A : Optional[int]=8 , _A : List[str]=0.0 , _A : List[str]=True , _A : Any="relu" , _A : Any=256 , _A : Optional[int]=0.1 , _A : str=0.0 , _A : Dict=0.0 , _A : str=0.02 , _A : Union[str, Any]=1.0 , _A : Union[str, Any]=True , _A : Any=False , _A : Union[str, Any]="sine" , _A : int=5 , _A : Optional[Any]=4 , _A : Any=4 , _A : Union[str, Any]=True , _A : Dict=300 , _A : List[Any]=True , _A : Any=True , _A : Tuple=1 , _A : Optional[int]=5 , _A : str=2 , _A : Tuple=1 , _A : Tuple=1 , _A : Any=5 , _A : Tuple=2 , _A : str=0.1 , _A : List[str]=0.25 , **_A : Dict , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_A , _A ): _UpperCamelCase = backbone_config.pop('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(_A ) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCamelCase_ ( self : Optional[int] ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self : int ): return self.d_model def UpperCamelCase_ ( self : int ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowerCAmelCase = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _snake_case ( __snake_case ): _UpperCamelCase = {} state_dict.pop('''pixel_mean''' , __snake_case ) state_dict.pop('''pixel_std''' , __snake_case ) _UpperCamelCase = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCamelCase = key.replace(__snake_case , __snake_case ) if re.match(__snake_case , __snake_case ): _UpperCamelCase = int(re.match(__snake_case , __snake_case ).group(2 ) ) if layer_nb == 0: _UpperCamelCase = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: _UpperCamelCase = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: _UpperCamelCase = key.replace('''layers.2''' , '''proj_out''' ) _UpperCamelCase = value _UpperCamelCase = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case="ybelkada/segment-anything" ): _UpperCamelCase = hf_hub_download(__snake_case , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: _UpperCamelCase = SamConfig() elif "sam_vit_l" in model_name: _UpperCamelCase = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _UpperCamelCase = SamConfig( vision_config=__snake_case , ) elif "sam_vit_h" in model_name: _UpperCamelCase = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _UpperCamelCase = SamConfig( vision_config=__snake_case , ) _UpperCamelCase = torch.load(__snake_case , map_location='''cpu''' ) _UpperCamelCase = replace_keys(__snake_case ) _UpperCamelCase = SamImageProcessor() _UpperCamelCase = SamProcessor(image_processor=__snake_case ) _UpperCamelCase = SamModel(__snake_case ) hf_model.load_state_dict(__snake_case ) _UpperCamelCase = hf_model.to('''cuda''' ) _UpperCamelCase = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' _UpperCamelCase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('''RGB''' ) _UpperCamelCase = [[[400, 650]]] _UpperCamelCase = [[1]] _UpperCamelCase = processor(images=np.array(__snake_case ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _UpperCamelCase = hf_model(**__snake_case ) _UpperCamelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 _UpperCamelCase = processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _UpperCamelCase = hf_model(**__snake_case ) _UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 _UpperCamelCase = ((75, 275, 1725, 850),) _UpperCamelCase = processor(images=np.array(__snake_case ) , input_boxes=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _UpperCamelCase = hf_model(**__snake_case ) _UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. _UpperCamelCase = [[[400, 650], [800, 650]]] _UpperCamelCase = [[1, 1]] _UpperCamelCase = processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _UpperCamelCase = hf_model(**__snake_case ) _UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() _lowerCAmelCase = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) _lowerCAmelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : def __init__( self : List[Any] , _A : Optional[int] , ): _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = 32 _UpperCamelCase = 2 _UpperCamelCase = 4 _UpperCamelCase = 37 _UpperCamelCase = '''gelu''' _UpperCamelCase = 0.1 _UpperCamelCase = 0.1 _UpperCamelCase = 512 _UpperCamelCase = 16 _UpperCamelCase = 2 _UpperCamelCase = 0.02 _UpperCamelCase = 3 _UpperCamelCase = 4 _UpperCamelCase = None def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Optional[Any] ): ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = self.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self : List[str] , _A : List[str] , _A : Dict , _A : List[Any] , _A : Optional[Any] , _A : int , _A : Dict ): _UpperCamelCase = TFEsmModel(config=_A ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(_A ) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[str] , _A : List[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Tuple , _A : Dict , _A : Tuple , _A : Tuple , _A : List[Any] , ): _UpperCamelCase = True _UpperCamelCase = TFEsmModel(config=_A ) _UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } _UpperCamelCase = model(_A ) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(_A , encoder_hidden_states=_A ) # Also check the case where encoder outputs are not passed _UpperCamelCase = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : int , _A : List[Any] , _A : str , _A : Optional[Any] , _A : Optional[int] , _A : Optional[Any] , _A : Tuple ): _UpperCamelCase = TFEsmForMaskedLM(config=_A ) _UpperCamelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : List[Any] , _A : List[str] , _A : List[str] , _A : Any , _A : Dict , _A : str , _A : Any ): _UpperCamelCase = self.num_labels _UpperCamelCase = TFEsmForTokenClassification(config=_A ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : str ): _UpperCamelCase = TFEsmModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_A ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def UpperCamelCase_ ( self : List[Any] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFEsmModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : str ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _UpperCamelCase = model.get_bias() assert isinstance(_A , _A ) for k, v in name.items(): assert isinstance(_A , tf.Variable ) else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = model(_A )[0] _UpperCamelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _A ) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _UpperCamelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _UpperCamelCase = model(_A )[0] # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
10
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
1
def _snake_case ( __snake_case , __snake_case ): if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def _snake_case ( __snake_case , __snake_case ): if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
10
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : str ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) _UpperCamelCase = text_generator.model.config.eos_token_id _UpperCamelCase = '''<pad>''' _UpperCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output _UpperCamelCase = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) _UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCamelCase_ ( self : int , _A : str , _A : Union[str, Any] , _A : Any ): _UpperCamelCase = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''Hello I believe in''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) _UpperCamelCase = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) _UpperCamelCase = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCamelCase_ ( self : Any , _A : List[Any] , _A : Union[str, Any] ): _UpperCamelCase = text_generator.model _UpperCamelCase = text_generator.tokenizer _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) _UpperCamelCase = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) _UpperCamelCase = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) _UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): _UpperCamelCase = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) _UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch # Classic `model_kwargs` _UpperCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : Optional[int] ): import torch _UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''Hello world''' _UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": _UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: _UpperCamelCase = logging.get_logger('''transformers.generation.utils''' ) _UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: _UpperCamelCase = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
10
1
def _snake_case ( __snake_case , __snake_case ): assert x is not None assert y is not None _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) # declaring the array for storing the dp values _UpperCamelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _UpperCamelCase = 1 if x[i - 1] == y[j - 1] else 0 _UpperCamelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _UpperCamelCase = '''''' _UpperCamelCase , _UpperCamelCase = m, n while i > 0 and j > 0: _UpperCamelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _UpperCamelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowerCAmelCase = "AGGTAB" _lowerCAmelCase = "GXTXAYB" _lowerCAmelCase = 4 _lowerCAmelCase = "GTAB" _lowerCAmelCase, _lowerCAmelCase = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
10
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
1
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): def constraint_to_multiple_of(__snake_case , __snake_case , __snake_case=0 , __snake_case=None ): _UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCamelCase = math.ceil(val / multiple ) * multiple return x _UpperCamelCase = (output_size, output_size) if isinstance(__snake_case , __snake_case ) else output_size _UpperCamelCase , _UpperCamelCase = get_image_size(__snake_case ) _UpperCamelCase , _UpperCamelCase = output_size # determine new height and width _UpperCamelCase = output_height / input_height _UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCamelCase = scale_width else: # fit height _UpperCamelCase = scale_height _UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__snake_case ) _UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__snake_case ) return (new_height, new_width) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = False , _A : int = 1 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = keep_aspect_ratio _UpperCamelCase = ensure_multiple_of _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : bool = False , _A : int = 1 , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : int = None , _A : bool = None , _A : int = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A ) _UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase_ ( self : Any , _A : Any , _A : List[Tuple] = None ): _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(_A ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCAmelCase_ : def __init__( self : str , _A : Tuple , _A : Tuple=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : Optional[int]=True , _A : Any=99 , _A : str=32 , _A : List[str]=5 , _A : List[Any]=4 , _A : Tuple=37 , _A : Dict="gelu" , _A : int=0.1 , _A : List[Any]=0.1 , _A : Dict=512 , _A : int=16 , _A : List[Any]=2 , _A : Union[str, Any]=0.02 , _A : int=3 , _A : Union[str, Any]=4 , _A : List[Any]=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = self.vocab_size - 1 def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _UpperCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Union[str, Any] , *_A : List[str] ): _UpperCamelCase = OpenAIGPTModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , head_mask=_A ) _UpperCamelCase = model(_A , token_type_ids=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[Any] , _A : int , _A : str , _A : int , *_A : Optional[Any] ): _UpperCamelCase = OpenAIGPTLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Tuple , _A : str , _A : Optional[int] , _A : List[str] , *_A : List[str] ): _UpperCamelCase = OpenAIGPTDoubleHeadsModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : Optional[int] , _A : Union[str, Any] , _A : List[str] , _A : Optional[Any] , *_A : List[Any] ): _UpperCamelCase = self.num_labels _UpperCamelCase = OpenAIGPTForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCAmelCase = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Optional[Any] , _A : Tuple , _A : Optional[int] , _A : List[Any] , _A : Optional[Any] , _A : Optional[int] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase_ ( self : Dict , _A : int , _A : Any , _A : Dict=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_A , ) _UpperCamelCase = inputs_dict['''labels'''] _UpperCamelCase = inputs_dict['''labels'''] _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_A , ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = OpenAIGPTModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , n_embd=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A ) @slow def UpperCamelCase_ ( self : List[str] ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = OpenAIGPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(_A ) _UpperCamelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_A ) # the president is _UpperCamelCase = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCamelCase = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
10
import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(_A , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCamelCase_ ( self : str , _A : List[str] , _A : Optional[Any] , _A : List[str] , _A : Optional[int]=None ): _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCamelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase = black.format_str(_A , mode=_A ) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , _A ) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , _A , overwrite_result=re.sub('''DDPM''' , '''Test''' , _A ) , )
10
1
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase = field( default=0.1, metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." }, ) UpperCAmelCase = field( default=0.1, metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."}, ) UpperCAmelCase = field( default=0.0_5, metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) }, ) UpperCAmelCase = field(default=0.0, metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "The number of processes to use for the preprocessing."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) UpperCAmelCase = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"], metadata={"help": "A list of characters to remove from the transcripts."}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = 42 UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None def __call__( self : Union[str, Any] , _A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=_A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class lowerCAmelCase_ ( __lowercase ): def UpperCamelCase_ ( self : Dict , _A : nn.Module , _A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _UpperCamelCase = self._prepare_inputs(_A ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(_A , _A ) else: _UpperCamelCase = self.compute_loss(_A , _A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _UpperCamelCase = f"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__snake_case ): _UpperCamelCase = re.sub(__snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(__snake_case , remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(__snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(__snake_case ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(__snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( __snake_case , batched=__snake_case , batch_size=-1 , keep_in_memory=__snake_case , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(__snake_case )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(__snake_case ) _UpperCamelCase = len(__snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(__snake_case , __snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__snake_case , return_attention_mask=__snake_case ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(__snake_case ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(__snake_case ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__snake_case ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(__snake_case ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(__snake_case ) return batch _UpperCamelCase = train_dataset.map( __snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( __snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(__snake_case ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(__snake_case , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(__snake_case ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=__snake_case ) _UpperCamelCase = wer_metric.compute(predictions=__snake_case , references=__snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=__snake_case , padding=__snake_case ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , compute_metrics=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(__snake_case ) _UpperCamelCase = min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) return results if __name__ == "__main__": main()
10
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): def __init__( self : Any , **_A : Optional[int] ): requires_backends(self , ['''bs4'''] ) super().__init__(**_A ) def UpperCamelCase_ ( self : Dict , _A : List[str] ): _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCamelCase = parent.find_all(child.name , recursive=_A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_A ) else next(i for i, s in enumerate(_A , 1 ) if s is child ) ) _UpperCamelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCamelCase_ ( self : List[Any] , _A : int ): _UpperCamelCase = BeautifulSoup(_A , '''html.parser''' ) _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] for element in html_code.descendants: if type(_A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _UpperCamelCase = html.unescape(_A ).strip() if not text_in_this_tag: continue all_doc_strings.append(_A ) _UpperCamelCase , _UpperCamelCase = self.xpath_soup(_A ) stringaxtag_seq.append(_A ) stringaxsubs_seq.append(_A ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCamelCase_ ( self : int , _A : int , _A : int ): _UpperCamelCase = '''''' for tagname, subs in zip(_A , _A ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : str , _A : Optional[Any] ): _UpperCamelCase = False # Check that strings has a valid type if isinstance(_A , _A ): _UpperCamelCase = True elif isinstance(_A , (list, tuple) ): if len(_A ) == 0 or isinstance(html_strings[0] , _A ): _UpperCamelCase = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_A )}.""" ) _UpperCamelCase = bool(isinstance(_A , (list, tuple) ) and (isinstance(html_strings[0] , _A )) ) if not is_batched: _UpperCamelCase = [html_strings] # Get nodes + xpaths _UpperCamelCase = [] _UpperCamelCase = [] for html_string in html_strings: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.get_three_from_single(_A ) nodes.append(_A ) _UpperCamelCase = [] for node, tag_list, sub_list in zip(_A , _A , _A ): _UpperCamelCase = self.construct_xpath(_A , _A ) xpath_strings.append(_A ) xpaths.append(_A ) # return as Dict _UpperCamelCase = {'''nodes''': nodes, '''xpaths''': xpaths} _UpperCamelCase = BatchFeature(data=_A , tensor_type=_A ) return encoded_inputs
10
import math class lowerCAmelCase_ : def __init__( self : Tuple , _A : int=0 ): # a graph with Node 0,1,...,N-1 _UpperCamelCase = n _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # adjacency matrix for weight _UpperCamelCase = [ [math.inf for j in range(0 , _A )] for i in range(0 , _A ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase_ ( self : Dict , _A : str , _A : List[str] , _A : Optional[Any] ): _UpperCamelCase = w def UpperCamelCase_ ( self : Optional[int] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
10
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _snake_case ( ): _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=__snake_case , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=__snake_case , default=5 ) parser.add_argument('''--batch_size''' , type=__snake_case , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=__snake_case , default=1 ) parser.add_argument('''--freeze''' , type=__snake_case , default=__snake_case ) parser.add_argument('''--learning_rate''' , type=__snake_case , default=5E-4 ) parser.add_argument('''--seed''' , type=__snake_case , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=__snake_case , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=__snake_case , default=10 ) parser.add_argument('''--weight_decay''' , type=__snake_case , default=0.01 ) parser.add_argument('''--output_dir''' , type=__snake_case , default='''./results''' ) return parser.parse_args() _lowerCAmelCase = load("accuracy") def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = eval_pred _UpperCamelCase = np.argmax(__snake_case , axis=1 ) return metric.compute(predictions=__snake_case , references=__snake_case ) class lowerCAmelCase_ ( __lowercase ): def __init__( self : Optional[int] , _A : Any ): super().__init__() _UpperCamelCase = trainer def UpperCamelCase_ ( self : int , _A : List[str] , _A : List[str] , _A : Union[str, Any] , **_A : Tuple ): if control.should_evaluate: _UpperCamelCase = deepcopy(_A ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def _snake_case ( ): _UpperCamelCase = get_args() set_seed(args.seed ) _UpperCamelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCamelCase = dataset.train_test_split(test_size=0.2 ) _UpperCamelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCamelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCamelCase = tokenizer.eos_token _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCamelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCamelCase = False _UpperCamelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(__snake_case ): _UpperCamelCase = tokenizer(example['''src'''] , truncation=__snake_case , max_length=1024 ) _UpperCamelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCamelCase = train_test_validation.map( __snake_case , batched=__snake_case , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCamelCase = DataCollatorWithPadding(tokenizer=__snake_case ) _UpperCamelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) print('''Training...''' ) trainer.add_callback(CustomCallback(__snake_case ) ) trainer.train() if __name__ == "__main__": main()
10
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case=None , __snake_case=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = list_field( default=[], metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) }, ) UpperCAmelCase = list_field( default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) UpperCAmelCase = list_field( default=[8, 32, 128, 512], metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Use FP16 to accelerate inference."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Benchmark training of model"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Verbose memory tracing"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."}, ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" }, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Trace memory line by line"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save result to a CSV file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Save all print statements in a log file"} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to print environment information"} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) }, ) UpperCAmelCase = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv."}, ) UpperCAmelCase = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv."}, ) UpperCAmelCase = field( default=F"""train_time_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving time results to csv for training."}, ) UpperCAmelCase = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving memory results to csv for training."}, ) UpperCAmelCase = field( default=F"""env_info_{round(time() )}.csv""", metadata={"help": "CSV filename used if saving environment information."}, ) UpperCAmelCase = field( default=F"""log_{round(time() )}.csv""", metadata={"help": "Log filename used if print statements are saved in log."}, ) UpperCAmelCase = field(default=3, metadata={"help": "Times an experiment will be run."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) }, ) def UpperCamelCase_ ( self : Union[str, Any] ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _A , ) def UpperCamelCase_ ( self : str ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self : List[Any] ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCamelCase_ ( self : Optional[int] ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
10
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _snake_case ( __snake_case ): _UpperCamelCase = np.inf def set_batch_size(__snake_case ) -> None: nonlocal batch_size if isinstance(__snake_case , __snake_case ): _UpperCamelCase = min(__snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__snake_case , __snake_case ): _UpperCamelCase = min(__snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__snake_case , __snake_case ) and feature.dtype == "binary": _UpperCamelCase = min(__snake_case , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__snake_case , __snake_case ) return None if batch_size is np.inf else batch_size class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[str] , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[int] = None , **_A : Dict , ): super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) _UpperCamelCase = path_or_paths if isinstance(_A , _A ) else {self.split: path_or_paths} _UpperCamelCase = _PACKAGED_DATASETS_MODULES['''parquet'''][1] _UpperCamelCase = Parquet( cache_dir=_A , data_files=_A , features=_A , hash=_A , **_A , ) def UpperCamelCase_ ( self : List[str] ): # Build iterable dataset if self.streaming: _UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) _UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase_ : def __init__( self : Optional[Any] , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , **_A : List[str] , ): _UpperCamelCase = dataset _UpperCamelCase = path_or_buf _UpperCamelCase = batch_size or get_writer_batch_size(dataset.features ) _UpperCamelCase = parquet_writer_kwargs def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: _UpperCamelCase = self._write(file_obj=_A , batch_size=_A , **self.parquet_writer_kwargs ) else: _UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=_A , **self.parquet_writer_kwargs ) return written def UpperCamelCase_ ( self : Tuple , _A : BinaryIO , _A : int , **_A : Union[str, Any] ): _UpperCamelCase = 0 _UpperCamelCase = parquet_writer_kwargs.pop('''path_or_buf''' , _A ) _UpperCamelCase = self.dataset.features.arrow_schema _UpperCamelCase = pq.ParquetWriter(_A , schema=_A , **_A ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _A ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): _UpperCamelCase = query_table( table=self.dataset._data , key=slice(_A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_A ) written += batch.nbytes writer.close() return written
10
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *__snake_case , __snake_case = None , __snake_case=True , __snake_case=2 ): from .. import __version__ _UpperCamelCase = take_from _UpperCamelCase = () if not isinstance(args[0] , __snake_case ): _UpperCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) _UpperCamelCase = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) _UpperCamelCase = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) _UpperCamelCase = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _UpperCamelCase = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _UpperCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: _UpperCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCamelCase = call_frame.filename _UpperCamelCase = call_frame.lineno _UpperCamelCase = call_frame.function _UpperCamelCase , _UpperCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
10
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _lowerCAmelCase = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def _snake_case ( __snake_case=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = None UpperCAmelCase = None def UpperCamelCase_ ( self : Any , _A : Union[str, Any] , _A : str ): with TemporaryDirectory() as tmp_dir: _UpperCamelCase = dataset_module_factory(_A , cache_dir=_A ) _UpperCamelCase = import_main_class(dataset_module.module_path , dataset=_A ) _UpperCamelCase = builder_cls( cache_dir=_A , config_name=_A , hash=dataset_module.hash , ) _UpperCamelCase = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_A ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) _UpperCamelCase = cached_path(_A , cache_dir=_A ) self.assertTrue(os.path.exists(_A ) ) @pytest.mark.integration def _snake_case ( __snake_case ): _UpperCamelCase = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' _UpperCamelCase = dataset_module_factory('''wikipedia''' , cache_dir=__snake_case ) _UpperCamelCase = import_main_class(dataset_module.module_path ) _UpperCamelCase = builder_cls( cache_dir=__snake_case , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _UpperCamelCase = None builder_instance.download_and_prepare() _UpperCamelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( __snake_case ): _UpperCamelCase = dataset_module_factory('''wikipedia''' , cache_dir=__snake_case ) _UpperCamelCase = import_main_class(dataset_module.module_path , dataset=__snake_case ) _UpperCamelCase = builder_cls( cache_dir=__snake_case , config_name='''20220301.frr''' , hash=dataset_module.hash , ) _UpperCamelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(__snake_case , __snake_case ) assert "train" in ds assert isinstance(ds['''train'''] , __snake_case ) assert next(iter(ds['''train'''] ) )
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _UpperCamelCase = '''lm_head''' _UpperCamelCase = getattr(__snake_case , __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case , __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=True ): if config_path is not None: _UpperCamelCase = UniSpeechConfig.from_pretrained(__snake_case ) else: _UpperCamelCase = UniSpeechConfig() if is_finetuned: if dict_path: _UpperCamelCase = Dictionary.load_from_json(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase = target_dict.pad_index _UpperCamelCase = target_dict.bos_index _UpperCamelCase = target_dict.eos_index _UpperCamelCase = len(target_dict.symbols ) _UpperCamelCase = os.path.join(__snake_case , '''vocab.json''' ) if not os.path.isdir(__snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) _UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCamelCase = 42 _UpperCamelCase = 43 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__snake_case , __snake_case ) _UpperCamelCase = WavaVecaPhonemeCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__snake_case , ) _UpperCamelCase = True if config.feat_extract_norm == '''layer''' else False _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) _UpperCamelCase = UniSpeechForCTC(__snake_case ) else: _UpperCamelCase = UniSpeechForPreTraining(__snake_case ) if is_finetuned: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _UpperCamelCase = model[0].eval() recursively_load_weights(__snake_case , __snake_case , __snake_case ) hf_unispeech.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowerCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["pixel_values"] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_A : List[str] , ): super().__init__(**_A ) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} _UpperCamelCase = get_size_dict(_A , default_to_square=_A ) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(_A , param_name='''crop_size''' ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[Any] , ): _UpperCamelCase = get_size_dict(_A , default_to_square=_A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCamelCase = int((256 / 224) * size['''shortest_edge'''] ) _UpperCamelCase = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) _UpperCamelCase = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( _A , size=(size_dict['''height'''], size_dict['''width''']) , resample=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : List[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ): _UpperCamelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def UpperCamelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ): return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase_ ( self : str , _A : ImageInput , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = None , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[TensorType] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Optional[int] , ): _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(_A , default_to_square=_A ) _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(_A , param_name='''crop_size''' ) _UpperCamelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCamelCase = [self.resize(_A , _A , _A ) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(_A , _A ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(_A , _A ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(_A , _A , _A ) for image in images] _UpperCamelCase = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
10
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Any=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[str]=True , _A : List[Any]=True , _A : Optional[int]=False , _A : Any=False , _A : int=False , _A : Optional[Any]=2 , _A : Any=99 , _A : str=0 , _A : Union[str, Any]=32 , _A : List[Any]=5 , _A : Tuple=4 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : int=512 , _A : Union[str, Any]=12 , _A : List[str]=2 , _A : int=0.02 , _A : Optional[Any]=3 , _A : Any=4 , _A : Optional[int]="last" , _A : Any=None , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self : str ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Tuple , _A : List[str] , _A : List[Any] , _A : Any , _A : str , _A : Optional[int] , ): _UpperCamelCase = FlaubertModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , lengths=_A , langs=_A ) _UpperCamelCase = model(_A , langs=_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[Any] , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , _A : int , _A : str , _A : List[Any] , _A : Any , ): _UpperCamelCase = FlaubertWithLMHeadModel(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Tuple , _A : List[str] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : str , _A : List[str] , _A : Tuple , _A : Optional[int] , _A : Dict , ): _UpperCamelCase = FlaubertForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Tuple , _A : str , _A : Tuple , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : Dict , _A : List[Any] , ): _UpperCamelCase = FlaubertForQuestionAnswering(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) _UpperCamelCase = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(_A , start_positions=_A , end_positions=_A ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : str , _A : int , _A : int , _A : Optional[int] , _A : Optional[int] , _A : int , _A : List[str] , ): _UpperCamelCase = FlaubertForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] , _A : List[str] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : int , _A : List[Any] , _A : str , _A : List[str] , ): _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(_A ) model.to(_A ) model.eval() _UpperCamelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Tuple , _A : Dict , _A : str , _A : Optional[Any] , _A : List[str] , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] , _A : List[str] , ): _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Dict , _A : Dict , _A : Tuple , _A : int , _A : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self : str , _A : Any , _A : List[str] , _A : Optional[int]=False ): _UpperCamelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCamelCase_ ( self : str ): _UpperCamelCase = FlaubertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , emb_dim=37 ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_A ) @slow def UpperCamelCase_ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=_A ) _UpperCamelCase = self._prepare_for_class(_A , _A ) _UpperCamelCase = torch.jit.trace( _A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A , os.path.join(_A , '''traced_model.pt''' ) ) _UpperCamelCase = torch.jit.load(os.path.join(_A , '''traced_model.pt''' ) , map_location=_A ) loaded(inputs_dict['''input_ids'''].to(_A ) , inputs_dict['''attention_mask'''].to(_A ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _UpperCamelCase = model(_A )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
10
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase_ : @staticmethod def UpperCamelCase_ ( *_A : Optional[int] , **_A : Optional[Any] ): pass @is_pipeline_test @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase_ ( self : Optional[Any] , _A : List[Any] , _A : Optional[Any] , _A : List[str] ): _UpperCamelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _UpperCamelCase = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : str ): _UpperCamelCase = object_detector(examples[0] , threshold=0.0 ) _UpperCamelCase = len(_A ) self.assertGreater(_A , 0 ) self.assertEqual( _A , [ { '''score''': ANY(_A ), '''label''': ANY(_A ), '''box''': {'''xmin''': ANY(_A ), '''ymin''': ANY(_A ), '''xmax''': ANY(_A ), '''ymax''': ANY(_A )}, } for i in range(_A ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase_ ( self : List[Any] ): pass @require_torch def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _UpperCamelCase = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) _UpperCamelCase = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline('''zero-shot-object-detection''' ) _UpperCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) _UpperCamelCase = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase_ ( self : List[Any] ): pass @require_torch @slow def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = 0.2 _UpperCamelCase = pipeline('''zero-shot-object-detection''' ) _UpperCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=_A , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def UpperCamelCase_ ( self : Any ): _UpperCamelCase = 2 _UpperCamelCase = pipeline('''zero-shot-object-detection''' ) _UpperCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=_A , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "swinv2" UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , _A : Optional[Any]=224 , _A : Dict=4 , _A : Dict=3 , _A : List[str]=96 , _A : Any=[2, 2, 6, 2] , _A : Any=[3, 6, 12, 24] , _A : List[Any]=7 , _A : int=4.0 , _A : Optional[Any]=True , _A : Dict=0.0 , _A : Union[str, Any]=0.0 , _A : Any=0.1 , _A : Dict="gelu" , _A : int=False , _A : Optional[Any]=0.02 , _A : Union[str, Any]=1e-5 , _A : str=32 , **_A : str , ): super().__init__(**_A ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(_A ) _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(_A ) - 1) ) _UpperCamelCase = (0, 0, 0, 0)
10
from __future__ import annotations _lowerCAmelCase = [True] * 1_000_001 _lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCAmelCase = False i += 1 def _snake_case ( __snake_case ): return seive[n] def _snake_case ( __snake_case ): return any(digit in '''02468''' for digit in str(__snake_case ) ) def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def _snake_case ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'{len(find_circular_primes()) = }')
10
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") _lowerCAmelCase, _lowerCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") _lowerCAmelCase = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: _lowerCAmelCase = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowerCAmelCase = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
10
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DebertaVaTokenizer UpperCAmelCase = DebertaVaTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def UpperCamelCase_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = DebertaVaTokenizer(_A , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict , _A : Union[str, Any] ): _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''<pad>''' _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(_A ) , 3_0001 ) def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase_ ( self : List[str] ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : int ): # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # fmt: off _UpperCamelCase = ''' \tHeLLo!how \n Are yoU? ''' _UpperCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on _UpperCamelCase = DebertaVaTokenizer(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , do_lower_case=_A , split_by_punct=_A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_A , add_special_tokens=_A ) ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_A , add_special_tokens=_A ) ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(_A ) _UpperCamelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''This is a test''' _UpperCamelCase = [13, 1, 4398, 25, 21, 1289] _UpperCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] _UpperCamelCase = DebertaVaTokenizer(_A , keep_accents=_A ) _UpperCamelCase = DebertaVaTokenizerFast(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) # fmt: off _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] _UpperCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on _UpperCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DebertaVaTokenizer(_A ) _UpperCamelCase = tokenizer.encode('''sequence builders''' ) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _A , ) @slow def UpperCamelCase_ ( self : Optional[Any] ): # fmt: off _UpperCamelCase = {'''input_ids''': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
10
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase , _UpperCamelCase = coefficient_matrix.shape _UpperCamelCase , _UpperCamelCase = constant_matrix.shape if rowsa != colsa: _UpperCamelCase = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__snake_case ) if colsa != 1: _UpperCamelCase = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__snake_case ) if rowsa != rowsa: _UpperCamelCase = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__snake_case ) if len(__snake_case ) != rowsa: _UpperCamelCase = ( '''Number of initial values must be equal to number of rows in coefficient ''' f"""matrix but received {len(__snake_case )} and {rowsa}""" ) raise ValueError(__snake_case ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) _UpperCamelCase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _UpperCamelCase , _UpperCamelCase = table.shape strictly_diagonally_dominant(__snake_case ) # Iterates the whole matrix for given number of times for _ in range(__snake_case ): _UpperCamelCase = [] for row in range(__snake_case ): _UpperCamelCase = 0 for col in range(__snake_case ): if col == row: _UpperCamelCase = table[row][col] elif col == cols - 1: _UpperCamelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _UpperCamelCase = (temp + val) / denom new_val.append(__snake_case ) _UpperCamelCase = new_val return [float(__snake_case ) for i in new_val] def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = table.shape _UpperCamelCase = True for i in range(0 , __snake_case ): _UpperCamelCase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
1
_lowerCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = True _UpperCamelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__snake_case , __snake_case , __snake_case ) order.append(__snake_case ) return order def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = True _UpperCamelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__snake_case , __snake_case , __snake_case ) return component def _snake_case ( __snake_case ): _UpperCamelCase = len(__snake_case ) * [False] _UpperCamelCase = {vert: [] for vert in range(len(__snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__snake_case ) _UpperCamelCase = [] for i, was_visited in enumerate(__snake_case ): if not was_visited: order += topology_sort(__snake_case , __snake_case , __snake_case ) _UpperCamelCase = [] _UpperCamelCase = len(__snake_case ) * [False] for i in range(len(__snake_case ) ): _UpperCamelCase = order[len(__snake_case ) - i - 1] if not visited[vert]: _UpperCamelCase = find_components(__snake_case , __snake_case , __snake_case ) components_list.append(__snake_case ) return components_list
10
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = "▁" _lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = BertGenerationTokenizer UpperCAmelCase = False UpperCAmelCase = True def UpperCamelCase_ ( self : List[str] ): super().setUp() _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_A ) , 1002 ) def UpperCamelCase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = BertGenerationTokenizer(_A , keep_accents=_A ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [1_8536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCamelCase_ ( self : int ): _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) _UpperCamelCase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(_A ) _UpperCamelCase = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) _UpperCamelCase = BertGenerationConfig() _UpperCamelCase = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCamelCase_ ( self : Dict ): # fmt: off _UpperCamelCase = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
10
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCAmelCase = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
10
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _lowerCAmelCase = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _lowerCAmelCase = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _lowerCAmelCase = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _lowerCAmelCase = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _lowerCAmelCase = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = DPRContextEncoderTokenizer class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = DPRQuestionEncoderTokenizer _lowerCAmelCase = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _lowerCAmelCase = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _lowerCAmelCase = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__lowercase ) class lowerCAmelCase_ : def __call__( self : Union[str, Any] , _A : List[Any] , _A : Optional[str] = None , _A : Optional[str] = None , _A : Union[bool, str] = False , _A : Union[bool, str] = False , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , **_A : str , ): if titles is None and texts is None: return super().__call__( _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) elif titles is None or texts is None: _UpperCamelCase = titles if texts is None else texts return super().__call__( _A , _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) _UpperCamelCase = titles if not isinstance(_A , _A ) else [titles] _UpperCamelCase = texts if not isinstance(_A , _A ) else [texts] _UpperCamelCase = len(_A ) _UpperCamelCase = questions if not isinstance(_A , _A ) else [questions] * n_passages assert len(_A ) == len( _A ), F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" _UpperCamelCase = super().__call__(_A , _A , padding=_A , truncation=_A )['''input_ids'''] _UpperCamelCase = super().__call__(_A , add_special_tokens=_A , padding=_A , truncation=_A )['''input_ids'''] _UpperCamelCase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A , _A ) ] } if return_attention_mask is not False: _UpperCamelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _UpperCamelCase = attention_mask return self.pad(_A , padding=_A , max_length=_A , return_tensors=_A ) def UpperCamelCase_ ( self : Tuple , _A : BatchEncoding , _A : DPRReaderOutput , _A : int = 16 , _A : int = 64 , _A : int = 4 , ): _UpperCamelCase = reader_input['''input_ids'''] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = reader_output[:3] _UpperCamelCase = len(_A ) _UpperCamelCase = sorted(range(_A ) , reverse=_A , key=relevance_logits.__getitem__ ) _UpperCamelCase = [] for doc_id in sorted_docs: _UpperCamelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _UpperCamelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCamelCase = sequence_ids.index(self.pad_token_id ) else: _UpperCamelCase = len(_A ) _UpperCamelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_A , top_spans=_A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_A , start_index=_A , end_index=_A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase_ ( self : Any , _A : List[int] , _A : List[int] , _A : int , _A : int , ): _UpperCamelCase = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _UpperCamelCase = sorted(_A , key=lambda _A : x[1] , reverse=_A ) _UpperCamelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" _UpperCamelCase = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowercase ) class lowerCAmelCase_ ( __lowercase, __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = ["input_ids", "attention_mask"] UpperCAmelCase = DPRReaderTokenizer
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _lowerCAmelCase = datasets.logging.get_logger(__name__) _lowerCAmelCase = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" _lowerCAmelCase = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" _lowerCAmelCase = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" _lowerCAmelCase = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def UpperCamelCase_ ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def UpperCamelCase_ ( self : List[Any] , _A : int ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) _UpperCamelCase = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: _UpperCamelCase = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _UpperCamelCase = self.config_name.upper() else: raise KeyError( F"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer _UpperCamelCase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _UpperCamelCase = score.BleurtScorer(os.path.join(_A , _A ) ) def UpperCamelCase_ ( self : Dict , _A : List[str] , _A : Dict ): _UpperCamelCase = self.scorer.score(references=_A , candidates=_A ) return {"scores": scores}
10
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = ShapEPipeline UpperCAmelCase = ["prompt"] UpperCAmelCase = ["prompt"] UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase_ ( self : Union[str, Any] ): return 32 @property def UpperCamelCase_ ( self : int ): return 32 @property def UpperCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 8 @property def UpperCamelCase_ ( self : int ): _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } _UpperCamelCase = PriorTransformer(**_A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } _UpperCamelCase = ShapERenderer(**_A ) return model def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.dummy_prior _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = self.dummy_tokenizer _UpperCamelCase = self.dummy_renderer _UpperCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) _UpperCamelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCamelCase_ ( self : Tuple , _A : Tuple , _A : Optional[int]=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCamelCase_ ( self : Any ): _UpperCamelCase = '''cpu''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = pipe(**self.get_dummy_inputs(_A ) ) _UpperCamelCase = output.images[0] _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = torch_device == '''cpu''' _UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _UpperCamelCase = batch_size * [inputs[key]] _UpperCamelCase = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) _UpperCamelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = torch.Generator(device=_A ).manual_seed(0 ) _UpperCamelCase = pipe( '''a shark''' , generator=_A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
10
1