code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "vit_msn" def __init__( self , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-0_6 , _a=2_2_4 , _a=1_6 , _a=3 , _a=True , **_a , ) -> int: super().__init__(**_a ) _a : List[str] = hidden_size _a : int = num_hidden_layers _a : Tuple = num_attention_heads _a : Optional[Any] = intermediate_size _a : List[str] = hidden_act _a : int = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : Optional[Any] = initializer_range _a : List[str] = layer_norm_eps _a : Optional[int] = image_size _a : List[Any] = patch_size _a : Optional[Any] = num_channels _a : str = qkv_bias
14
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[str] = tau * frequency / samplerate _a : int = sin(__a ) _a : str = cos(__a ) _a : Optional[int] = _sin / (2 * q_factor) _a : List[Any] = (1 - _cos) / 2 _a : Optional[int] = 1 - _cos _a : Union[str, Any] = 1 + alpha _a : Dict = -2 * _cos _a : Any = 1 - alpha _a : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Union[str, Any] = sin(__a ) _a : Optional[int] = cos(__a ) _a : Optional[Any] = _sin / (2 * q_factor) _a : List[Any] = (1 + _cos) / 2 _a : List[str] = -1 - _cos _a : Tuple = 1 + alpha _a : Optional[int] = -2 * _cos _a : Optional[Any] = 1 - alpha _a : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Union[str, Any] = sin(__a ) _a : Optional[int] = cos(__a ) _a : str = _sin / (2 * q_factor) _a : Optional[Any] = _sin / 2 _a : str = 0 _a : List[str] = -ba _a : Tuple = 1 + alpha _a : Any = -2 * _cos _a : Any = 1 - alpha _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[str] = tau * frequency / samplerate _a : Any = sin(__a ) _a : Optional[int] = cos(__a ) _a : Any = _sin / (2 * q_factor) _a : int = 1 - alpha _a : List[str] = -2 * _cos _a : Optional[Any] = 1 + alpha _a : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Optional[Any] = sin(__a ) _a : Optional[Any] = cos(__a ) _a : Optional[int] = _sin / (2 * q_factor) _a : Dict = 10 ** (gain_db / 40) _a : List[Any] = 1 + alpha * big_a _a : int = -2 * _cos _a : Dict = 1 - alpha * big_a _a : Optional[Any] = 1 + alpha / big_a _a : Dict = -2 * _cos _a : int = 1 - alpha / big_a _a : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : Optional[Any] = tau * frequency / samplerate _a : List[Any] = sin(__a ) _a : Any = cos(__a ) _a : str = _sin / (2 * q_factor) _a : Union[str, Any] = 10 ** (gain_db / 40) _a : Tuple = (big_a + 1) - (big_a - 1) * _cos _a : Tuple = (big_a + 1) + (big_a - 1) * _cos _a : Dict = (big_a - 1) - (big_a + 1) * _cos _a : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos _a : Tuple = 2 * sqrt(__a ) * alpha _a : List[str] = big_a * (pmc + aaa) _a : List[str] = 2 * big_a * mpc _a : Union[str, Any] = big_a * (pmc - aaa) _a : Optional[Any] = ppmc + aaa _a : str = -2 * pmpc _a : str = ppmc - aaa _a : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : int = tau * frequency / samplerate _a : Tuple = sin(__a ) _a : Optional[int] = cos(__a ) _a : Dict = _sin / (2 * q_factor) _a : Tuple = 10 ** (gain_db / 40) _a : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _a : List[Any] = (big_a + 1) + (big_a - 1) * _cos _a : List[str] = (big_a - 1) - (big_a + 1) * _cos _a : Tuple = (big_a - 1) + (big_a + 1) * _cos _a : List[Any] = 2 * sqrt(__a ) * alpha _a : Any = big_a * (ppmc + aaa) _a : Dict = -2 * big_a * pmpc _a : Tuple = big_a * (ppmc - aaa) _a : List[str] = pmc + aaa _a : List[str] = 2 * mpc _a : Optional[Any] = pmc - aaa _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
14
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ = TypeVar('''T''') def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (position - 1) // 2 def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (2 * position) + 1 def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return (2 * position) + 2 class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: _a : list[tuple[T, int]] = [] _a : dict[T, int] = {} _a : int = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def __lowercase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __lowercase ( self , _a , _a ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _a : Union[str, Any] = self.elements self.elements += 1 self._bubble_up(_a ) def __lowercase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _a , _a : str = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _a , _a : List[Any] = self.heap[0] self._bubble_down(_a ) return elem def __lowercase ( self , _a , _a ) -> None: # Update the weight of the given key _a : Optional[int] = self.position_map[elem] _a : Any = (elem, weight) if position > 0: _a : Any = get_parent_position(_a ) _a , _a : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_a ) else: self._bubble_down(_a ) else: self._bubble_down(_a ) def __lowercase ( self , _a ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _a : Union[str, Any] = self.position_map[elem] if curr_pos == 0: return None _a : str = get_parent_position(_a ) _a , _a : List[str] = self.heap[curr_pos] _a , _a : List[str] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_a , _a ) return self._bubble_up(_a ) return None def __lowercase ( self , _a ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _a : Union[str, Any] = self.position_map[elem] _a , _a : List[str] = self.heap[curr_pos] _a : int = get_child_left_position(_a ) _a : Optional[int] = get_child_right_position(_a ) if child_left_position < self.elements and child_right_position < self.elements: _a , _a : Union[str, Any] = self.heap[child_left_position] _a , _a : Tuple = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) if child_left_position < self.elements: _a , _a : List[str] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) else: return None if child_right_position < self.elements: _a , _a : Optional[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_a , _a ) return self._bubble_down(_a ) return None def __lowercase ( self , _a , _a ) -> None: # Swap the nodes at the given positions _a : str = self.heap[nodea_pos][0] _a : str = self.heap[nodea_pos][0] _a , _a : Optional[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _a : List[str] = nodea_pos _a : List[str] = nodea_pos class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: _a : dict[T, dict[T, int]] = {} _a : int = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def __lowercase ( self , _a ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _a : Optional[Any] = {} self.nodes += 1 def __lowercase ( self , _a , _a , _a ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_a ) self.add_node(_a ) _a : int = weight _a : int = weight def __UpperCAmelCase ( __a : GraphUndirectedWeighted[T] ,) -> tuple[dict[T, int], dict[T, T | None]]: """simple docstring""" _a : dict[T, int] = {node: maxsize for node in graph.connections} _a : dict[T, T | None] = {node: None for node in graph.connections} _a : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__a ,__a ) if priority_queue.is_empty(): return dist, parent # initialization _a : List[str] = priority_queue.extract_min() _a : int = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__a ,dist[neighbour] ) _a : List[Any] = node # running prim's algorithm while not priority_queue.is_empty(): _a : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _a : Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__a ,dist[neighbour] ) _a : Optional[Any] = node return dist, parent
14
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL a__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def __UpperCAmelCase ( __a : str ,__a : tuple ,__a : Path ,__a : str ,__a : Optional[Any] ,__a : Dict ,__a : Optional[Any] ,__a : Optional[Any]=False ,) -> Dict: """simple docstring""" output_path.parent.mkdir(parents=__a ,exist_ok=__a ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __a ,__a ,f=output_path.as_posix() ,input_names=__a ,output_names=__a ,dynamic_axes=__a ,do_constant_folding=__a ,use_external_data_format=__a ,enable_onnx_checker=__a ,opset_version=__a ,) else: export( __a ,__a ,f=output_path.as_posix() ,input_names=__a ,output_names=__a ,dynamic_axes=__a ,do_constant_folding=__a ,opset_version=__a ,) @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : int ,__a : bool = False ) -> Optional[Any]: """simple docstring""" _a : int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _a : List[str] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: _a : List[Any] = '''cpu''' _a : Union[str, Any] = Path(__a ) # VAE DECODER _a : Dict = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) _a : Optional[int] = vae_decoder.config.latent_channels # forward only through the decoder part _a : Any = vae_decoder.decode onnx_export( __a ,model_args=( torch.randn(1 ,__a ,25 ,25 ).to(device=__a ,dtype=__a ), False, ) ,output_path=output_path / '''vae_decoder''' / '''model.onnx''' ,ordered_input_names=['''latent_sample''', '''return_dict'''] ,output_names=['''sample'''] ,dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } ,opset=__a ,) del vae_decoder if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') a__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
1
import math import sys def __UpperCAmelCase ( __a : str ) -> str: """simple docstring""" _a : Union[str, Any] = '''''' try: with open(__a ,'''rb''' ) as binary_file: _a : List[str] = binary_file.read() for dat in data: _a : str = F"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def __UpperCAmelCase ( __a : str ) -> str: """simple docstring""" _a : Any = {'''0''': '''0''', '''1''': '''1'''} _a , _a : Union[str, Any] = '''''', '''''' _a : Union[str, Any] = len(__a ) for i in range(len(__a ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _a : Any = lexicon[curr_string] result += last_match_id _a : Optional[Any] = last_match_id + '''0''' if math.loga(__a ).is_integer(): _a : str = {} for curr_key in list(__a ): _a : Optional[int] = lexicon.pop(__a ) _a : Union[str, Any] = new_lex _a : Tuple = last_match_id + '''1''' index += 1 _a : Dict = '''''' return result def __UpperCAmelCase ( __a : str ,__a : str ) -> None: """simple docstring""" _a : List[str] = 8 try: with open(__a ,'''wb''' ) as opened_file: _a : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 ,len(__a ) ,__a ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__a ,2 ).to_bytes(1 ,byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def __UpperCAmelCase ( __a : str ) -> str: """simple docstring""" _a : Union[str, Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _a : Union[str, Any] = data_bits[counter:] _a : Optional[Any] = data_bits[counter + 1 :] return data_bits def __UpperCAmelCase ( __a : str ,__a : str ) -> None: """simple docstring""" _a : List[Any] = read_file_binary(__a ) _a : Any = remove_prefix(__a ) _a : Tuple = decompress_data(__a ) write_file_binary(__a ,__a ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
14
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
a__ = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def __UpperCAmelCase ( __a : str ) -> int: """simple docstring""" _a : Optional[int] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} _a : Union[str, Any] = 0 _a : List[Any] = 0 while place < len(__a ): if (place + 1 < len(__a )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __UpperCAmelCase ( __a : int ) -> str: """simple docstring""" _a : List[str] = [] for arabic, roman in ROMAN: ((_a) , (_a)) : Optional[Any] = divmod(__a ,__a ) result.append(roman * factor ) if number == 0: break return "".join(__a ) if __name__ == "__main__": import doctest doctest.testmod()
14
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
1
import math from collections.abc import Iterator from itertools import takewhile def __UpperCAmelCase ( __a : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__a ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( ) -> Iterator[int]: """simple docstring""" _a : Dict = 2 while True: if is_prime(__a ): yield num num += 1 def __UpperCAmelCase ( __a : int = 2_000_000 ) -> int: """simple docstring""" return sum(takewhile(lambda __a : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
14
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 3.0 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Optional[int]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __lowercase ( self ) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. _a : Tuple = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _a : List[Any] = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _a : Union[str, Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __lowercase ( self ) -> List[str]: _a : int = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": a__ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) a__ = Accelerator(kwargs_handlers=[ddp_scaler]) a__ = torch.nn.Linear(100, 200) a__ = accelerator.prepare(model) # Check the values changed in kwargs a__ = '''''' a__ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
14
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
import argparse from collections import defaultdict def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Tuple ,__a : Tuple ,__a : Dict ,__a : Tuple ) -> List[Any]: """simple docstring""" _a : List[str] = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__a ,'''r''' ) as f: _a : Dict = f.readlines() _a : str = F"""class {class_name}(""" _a : Tuple = F"""{4 * ' '}def {test_name}(""" _a : List[Any] = F"""{8 * ' '}{correct_line.split()[0]}""" _a : Tuple = F"""{16 * ' '}{correct_line.split()[0]}""" _a : Tuple = False _a : str = False _a : Any = False _a : Dict = False _a : Tuple = 0 _a : List[str] = 0 _a : List[Any] = [] for line in lines: if line.startswith(__a ): _a : Tuple = True elif in_class and line.startswith(__a ): _a : List[str] = True elif in_class and in_func and (line.startswith(__a ) or line.startswith(__a )): _a : Tuple = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _a : Dict = True if in_class and in_func and in_line: if ")" not in line: continue else: _a : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * ' '}{correct_line}""" ) _a : Optional[Any] = False else: new_lines.append(__a ) with open(__a ,'''w''' ) as f: for line in new_lines: f.write(__a ) def __UpperCAmelCase ( __a : Dict ,__a : Tuple=None ) -> Union[str, Any]: """simple docstring""" if fail is not None: with open(__a ,'''r''' ) as f: _a : Optional[int] = {l.strip() for l in f.readlines()} else: _a : List[Any] = None with open(__a ,'''r''' ) as f: _a : List[Any] = f.readlines() _a : List[Any] = defaultdict(__a ) for line in correct_lines: _a , _a , _a , _a : Dict = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__a ,__a ,__a ,__a ,__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) a__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
14
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Dict: _a : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=6_4 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=3_2 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=1_0 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ) -> int: _a : List[Any] = parent _a : Union[str, Any] = batch_size _a : str = image_size _a : Optional[int] = patch_size _a : str = num_channels _a : Tuple = make_divisible(5_1_2 * width_multiplier , divisor=8 ) _a : Optional[int] = hidden_act _a : List[Any] = conv_kernel_size _a : Union[str, Any] = output_stride _a : int = classifier_dropout_prob _a : str = use_labels _a : List[Any] = is_training _a : Optional[Any] = num_labels _a : List[Any] = initializer_range _a : List[Any] = scope _a : Optional[Any] = width_multiplier _a : Union[str, Any] = ffn_dropout _a : List[str] = attn_dropout def __lowercase ( self ) -> Optional[int]: _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None _a : Dict = None if self.use_labels: _a : Any = ids_tensor([self.batch_size] , self.num_labels ) _a : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self ) -> Dict: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __lowercase ( self , _a , _a , _a , _a ) -> Optional[int]: _a : Dict = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() _a : Tuple = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self , _a , _a , _a , _a ) -> int: _a : Any = self.num_labels _a : Optional[int] = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , _a , _a , _a , _a ) -> Optional[int]: _a : Dict = self.num_labels _a : int = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _a : Union[str, Any] = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = self.prepare_config_and_inputs() _a , _a , _a , _a : List[Any] = config_and_inputs _a : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : int = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Tuple: _a : List[Any] = MobileViTVaModelTester(self ) _a : str = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __lowercase ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __lowercase ( self ) -> str: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __lowercase ( self ) -> Any: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __lowercase ( self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __lowercase ( self ) -> List[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> int: pass def __lowercase ( self ) -> List[str]: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : int = [*signature.parameters.keys()] _a : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> str: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[Any]: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Any = model(**self._prepare_for_class(_a , _a ) ) _a : Union[str, Any] = outputs.hidden_states _a : Optional[int] = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _a : Union[str, Any] = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Any = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> List[str]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Tuple = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _a : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> List[str]: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) _a : List[str] = self.default_image_processor _a : Optional[int] = prepare_img() _a : List[str] = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : List[str] = model(**_a ) # verify the logits _a : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def __lowercase ( self ) -> Any: _a : Any = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : Optional[Any] = model.to(_a ) _a : Tuple = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : Tuple = prepare_img() _a : List[Any] = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : str = model(**_a ) _a : Optional[int] = outputs.logits # verify the logits _a : Union[str, Any] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , _a ) _a : Any = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) ) @slow def __lowercase ( self ) -> int: _a : Any = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : Union[str, Any] = model.to(_a ) _a : int = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) _a : int = prepare_img() _a : Union[str, Any] = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Any = model(**_a ) _a : Dict = outputs.logits.detach().cpu() _a : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(5_0, 6_0)] ) _a : str = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , _a ) _a : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=_a ) _a : int = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , _a )
14
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = VideoMAEConfig() set_architecture_configs(__a ,__a ) if "finetuned" not in model_name: _a : Optional[Any] = False if "finetuned" in model_name: _a : str = '''huggingface/label-files''' if "kinetics" in model_name: _a : Optional[int] = 400 _a : Union[str, Any] = '''kinetics400-id2label.json''' elif "ssv2" in model_name: _a : List[Any] = 174 _a : List[Any] = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) _a : str = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : str = {int(__a ): v for k, v in idalabel.items()} _a : str = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : List[Any] ,__a : str ) -> List[str]: """simple docstring""" if "small" in model_name: _a : Any = 384 _a : int = 1_536 _a : Optional[int] = 12 _a : Optional[int] = 16 _a : Dict = 12 _a : Any = 3 _a : Any = 192 _a : int = 768 elif "large" in model_name: _a : List[str] = 1_024 _a : Optional[int] = 4_096 _a : Tuple = 24 _a : Optional[Any] = 16 _a : List[Any] = 12 _a : str = 8 _a : Tuple = 512 _a : List[str] = 2_048 elif "huge" in model_name: _a : Optional[int] = 1_280 _a : Optional[Any] = 5_120 _a : Union[str, Any] = 32 _a : str = 16 _a : Optional[Any] = 12 _a : List[str] = 8 _a : Union[str, Any] = 640 _a : Optional[Any] = 2_560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def __UpperCAmelCase ( __a : Union[str, Any] ) -> Dict: """simple docstring""" if "encoder." in name: _a : Tuple = name.replace('''encoder.''' ,'''''' ) if "cls_token" in name: _a : Dict = name.replace('''cls_token''' ,'''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: _a : str = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: _a : Optional[int] = name.replace('''pos_embed''' ,'''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _a : Union[str, Any] = name.replace('''patch_embed.proj''' ,'''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a : Optional[Any] = name.replace('''patch_embed.norm''' ,'''videomae.embeddings.norm''' ) if "decoder.blocks" in name: _a : List[str] = name.replace('''decoder.blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: _a : Union[str, Any] = name.replace('''blocks''' ,'''videomae.encoder.layer''' ) if "attn.proj" in name: _a : str = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name and "bias" not in name: _a : Optional[int] = name.replace('''attn''' ,'''attention.self''' ) if "attn" in name: _a : List[str] = name.replace('''attn''' ,'''attention.attention''' ) if "norm1" in name: _a : int = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: _a : Union[str, Any] = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: _a : List[str] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: _a : int = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: _a : Union[str, Any] = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: _a : List[str] = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: _a : List[str] = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _a : Dict = name.replace('''norm.weight''' ,'''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _a : Dict = name.replace('''norm.bias''' ,'''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: _a : Optional[int] = name.replace('''head''' ,'''classifier''' ) return name def __UpperCAmelCase ( __a : Dict ,__a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): _a : List[str] = orig_state_dict.pop(__a ) if key.startswith('''encoder.''' ): _a : int = key.replace('''encoder.''' ,'''''' ) if "qkv" in key: _a : List[str] = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): _a : Dict = config.decoder_hidden_size _a : List[str] = int(key_split[2] ) _a : Any = '''decoder.decoder_layers.''' if "weight" in key: _a : Tuple = val[:dim, :] _a : Union[str, Any] = val[dim : dim * 2, :] _a : List[Any] = val[-dim:, :] else: _a : Union[str, Any] = config.hidden_size _a : Tuple = int(key_split[1] ) _a : str = '''videomae.encoder.layer.''' if "weight" in key: _a : Optional[int] = val[:dim, :] _a : int = val[dim : dim * 2, :] _a : Union[str, Any] = val[-dim:, :] else: _a : int = val return orig_state_dict def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : List[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) _a : Dict = np.load(__a ) return list(__a ) def __UpperCAmelCase ( __a : Optional[int] ,__a : Any ,__a : Tuple ,__a : Union[str, Any] ) -> List[Any]: """simple docstring""" _a : Optional[Any] = get_videomae_config(__a ) if "finetuned" in model_name: _a : int = VideoMAEForVideoClassification(__a ) else: _a : Tuple = VideoMAEForPreTraining(__a ) # download original checkpoint, hosted on Google Drive _a : Tuple = '''pytorch_model.bin''' gdown.cached_download(__a ,__a ,quiet=__a ) _a : Dict = torch.load(__a ,map_location='''cpu''' ) if "model" in files: _a : Tuple = files['''model'''] else: _a : str = files['''module'''] _a : int = convert_state_dict(__a ,__a ) model.load_state_dict(__a ) model.eval() # verify model on basic input _a : Tuple = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) _a : Union[str, Any] = prepare_video() _a : Any = image_processor(__a ,return_tensors='''pt''' ) if "finetuned" not in model_name: _a : Optional[Any] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' ,filename='''bool_masked_pos.pt''' ) _a : Dict = torch.load(__a ) _a : Optional[int] = model(**__a ) _a : str = outputs.logits _a : Tuple = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _a : Optional[Any] = torch.Size([1, 400] ) _a : str = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": _a : Any = torch.Size([1, 174] ) _a : int = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": _a : List[Any] = torch.Size([1, 1_408, 1_536] ) _a : Dict = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": _a : Union[str, Any] = torch.Size([1, 1_408, 1_536] ) _a : List[str] = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one _a : Union[str, Any] = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": _a : str = torch.Size([1, 1_408, 1_536] ) _a : str = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": _a : int = torch.Size([1, 400] ) _a : Dict = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": _a : Optional[int] = torch.Size([1, 400] ) _a : List[Any] = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": _a : int = torch.Size([1, 400] ) _a : str = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": _a : Tuple = torch.Size([1, 400] ) _a : Union[str, Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": _a : Optional[Any] = torch.Size([1, 1_408, 1_536] ) _a : str = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _a : List[str] = torch.Size([1, 174] ) _a : Optional[Any] = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": _a : List[Any] = torch.Size([1, 1_408, 1_536] ) _a : Tuple = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": _a : Union[str, Any] = torch.Size([1, 174] ) _a : Union[str, Any] = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] ,__a ,atol=1E-4 ) else: print('''Logits:''' ,logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": _a : Optional[int] = outputs.loss assert torch.allclose(__a ,__a ,atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) model.save_pretrained(__a ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__a ,organization='''nielsr''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
14
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
14
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a__ = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def __UpperCAmelCase ( __a : List[str] ) -> str: """simple docstring""" _a : int = list(s_dict.keys() ) for key in keys: _a : Union[str, Any] = R'''.*/layers_(\d+)''' _a : List[str] = key if re.match(__a ,__a ): _a : Tuple = re.sub(R'''layers_(\d+)''' ,R'''block/\1/layer''' ,__a ) _a : Union[str, Any] = R'''(encoder|decoder)\/''' if re.match(__a ,__a ): _a : Tuple = re.match(__a ,__a ).groups() if groups[0] == "encoder": _a : Union[str, Any] = re.sub(R'''/mlp/''' ,R'''/1/mlp/''' ,__a ) _a : Tuple = re.sub(R'''/pre_mlp_layer_norm/''' ,R'''/1/layer_norm/''' ,__a ) elif groups[0] == "decoder": _a : Dict = re.sub(R'''/mlp/''' ,R'''/2/mlp/''' ,__a ) _a : Optional[Any] = re.sub(R'''/pre_mlp_layer_norm/''' ,R'''/2/layer_norm/''' ,__a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _a : Tuple = new_key.replace(__a ,__a ) print(F"""{key} -> {new_key}""" ) _a : List[Any] = s_dict.pop(__a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a : Optional[int] = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _a : str = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _a : Optional[Any] = s_dict[key].shape[0] _a : Optional[Any] = s_dict[key] for idx in range(__a ): _a : List[str] = expert_weihts[idx] print(F"""{key} -> {key.replace('expert/' ,'nested fstring' )}""" ) s_dict.pop(__a ) return s_dict a__ = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def __UpperCAmelCase ( __a : int ,__a : Any ) -> Union[str, Any]: """simple docstring""" import regex as re with open(__a ,'''r''' ) as f: _a : List[Any] = f.read() _a : Dict = re.findall(R'''(.*) = ([0-9.]*)''' ,__a ) _a : List[Any] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _a : Optional[int] = float(__a ) if '''.''' in value else int(__a ) _a : Dict = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' ,__a )[0] _a : str = str(activation[1] ) _a : Tuple = num_experts _a : Tuple = SwitchTransformersConfig(**__a ) return config def __UpperCAmelCase ( __a : Dict ,__a : Optional[int] ,__a : Dict=None ,__a : int="./" ,__a : Union[str, Any]=8 ) -> Dict: """simple docstring""" print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) _a : List[Any] = checkpoints.load_tax_checkpoint(__a ) if gin_file is not None: _a : Tuple = convert_gin_to_config(__a ,__a ) else: _a : Optional[int] = SwitchTransformersConfig.from_pretrained(__a ) _a : int = SwitchTransformersForConditionalGeneration(__a ) _a : Optional[int] = flax_params['''target'''] _a : Union[str, Any] = flatten_dict(__a ,sep='''/''' ) _a : Any = rename_keys(__a ) _a : Any = unflatten_dict(__a ,sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__a ,__a ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') a__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
14
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
1
def __UpperCAmelCase ( __a : str ,__a : str ) -> list: """simple docstring""" _a : Tuple = len(__a ) _a : str = [] for i in range(len(__a ) - pat_len + 1 ): _a : Any = True for j in range(__a ): if s[i + j] != pattern[j]: _a : Optional[int] = False break if match_found: position.append(__a ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
14
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
1
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = '''ylacombe/bark-small''' _a : Dict = tempfile.mkdtemp() _a : int = '''en_speaker_1''' _a : Dict = '''This is a test string''' _a : int = '''speaker_embeddings_path.json''' _a : List[Any] = '''speaker_embeddings''' def __lowercase ( self , **_a ) -> Dict: return AutoTokenizer.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> int: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : int = self.get_tokenizer() _a : Optional[Any] = BarkProcessor(tokenizer=_a ) processor.save_pretrained(self.tmpdirname ) _a : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __lowercase ( self ) -> List[Any]: _a : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _a : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __lowercase ( self ) -> Optional[int]: _a : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _a : Optional[int] = 3_5 _a : str = 2 _a : Dict = 8 _a : Any = { '''semantic_prompt''': np.ones(_a ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _a : int = processor(text=self.input_string , voice_preset=_a ) _a : Optional[Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from npz file _a : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(_a , **_a ) _a : List[str] = processor(text=self.input_string , voice_preset=_a ) _a : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from the hub _a : Dict = processor(text=self.input_string , voice_preset=self.voice_preset ) def __lowercase ( self ) -> str: _a : int = self.get_tokenizer() _a : Any = BarkProcessor(tokenizer=_a ) _a : int = processor(text=self.input_string ) _a : Optional[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=2_5_6 , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
14
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a__ = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' a__ = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' a__ = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowercase ( self , _a , _a , _a=4 , _a=False ) -> Tuple: _a : int = compute_bleu( reference_corpus=_a , translation_corpus=_a , max_order=_a , smooth=_a ) ((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
14
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
1
import requests from bsa import BeautifulSoup def __UpperCAmelCase ( __a : str = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text ,'''html.parser''' ) _a : str = soup.findAll('''h1''' ) _a : str = soup.findAll('''div''' ,{'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' ,{'''class''': '''panel-title'''} ) values += soup.findAll('''div''' ,{'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a ,__a )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
14
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = DownBlockaD # noqa F405 UpperCAmelCase__ : List[Any] = "down" def __lowercase ( self ) -> Tuple: _a : List[Any] = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = ResnetDownsampleBlockaD # noqa F405 UpperCAmelCase__ : Union[str, Any] = "down" def __lowercase ( self ) -> Optional[Any]: _a : str = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = AttnDownBlockaD # noqa F405 UpperCAmelCase__ : List[Any] = "down" def __lowercase ( self ) -> List[Any]: _a : str = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = CrossAttnDownBlockaD # noqa F405 UpperCAmelCase__ : Any = "down" def __lowercase ( self ) -> Optional[int]: _a , _a : List[Any] = super().prepare_init_args_and_inputs_for_common() _a : List[Any] = 3_2 return init_dict, inputs_dict def __lowercase ( self ) -> Union[str, Any]: _a : Dict = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = SimpleCrossAttnDownBlockaD # noqa F405 UpperCAmelCase__ : Optional[Any] = "down" @property def __lowercase ( self ) -> List[str]: return super().get_dummy_input(include_encoder_hidden_states=_a ) def __lowercase ( self ) -> int: _a , _a : List[Any] = super().prepare_init_args_and_inputs_for_common() _a : int = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __lowercase ( self ) -> Union[str, Any]: _a : str = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = SkipDownBlockaD # noqa F405 UpperCAmelCase__ : Optional[Any] = "down" @property def __lowercase ( self ) -> Any: return super().get_dummy_input(include_skip_sample=_a ) def __lowercase ( self ) -> Dict: _a : List[Any] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = AttnSkipDownBlockaD # noqa F405 UpperCAmelCase__ : Any = "down" @property def __lowercase ( self ) -> Tuple: return super().get_dummy_input(include_skip_sample=_a ) def __lowercase ( self ) -> Optional[int]: _a : int = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = DownEncoderBlockaD # noqa F405 UpperCAmelCase__ : List[str] = "down" @property def __lowercase ( self ) -> Union[str, Any]: return super().get_dummy_input(include_temb=_a ) def __lowercase ( self ) -> int: _a : List[Any] = { '''in_channels''': 3_2, '''out_channels''': 3_2, } _a : List[str] = self.dummy_input return init_dict, inputs_dict def __lowercase ( self ) -> Tuple: _a : int = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = AttnDownEncoderBlockaD # noqa F405 UpperCAmelCase__ : int = "down" @property def __lowercase ( self ) -> int: return super().get_dummy_input(include_temb=_a ) def __lowercase ( self ) -> Tuple: _a : Union[str, Any] = { '''in_channels''': 3_2, '''out_channels''': 3_2, } _a : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = UNetMidBlockaD # noqa F405 UpperCAmelCase__ : Tuple = "mid" def __lowercase ( self ) -> str: _a : Any = { '''in_channels''': 3_2, '''temb_channels''': 1_2_8, } _a : Optional[int] = self.dummy_input return init_dict, inputs_dict def __lowercase ( self ) -> Any: _a : str = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = UNetMidBlockaDCrossAttn # noqa F405 UpperCAmelCase__ : int = "mid" def __lowercase ( self ) -> Union[str, Any]: _a , _a : List[str] = super().prepare_init_args_and_inputs_for_common() _a : Dict = 3_2 return init_dict, inputs_dict def __lowercase ( self ) -> Tuple: _a : Dict = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCAmelCase__ : Tuple = "mid" @property def __lowercase ( self ) -> Union[str, Any]: return super().get_dummy_input(include_encoder_hidden_states=_a ) def __lowercase ( self ) -> int: _a , _a : Dict = super().prepare_init_args_and_inputs_for_common() _a : Optional[int] = 3_2 return init_dict, inputs_dict def __lowercase ( self ) -> List[Any]: _a : Optional[int] = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = UpBlockaD # noqa F405 UpperCAmelCase__ : Any = "up" @property def __lowercase ( self ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __lowercase ( self ) -> Tuple: _a : Any = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ResnetUpsampleBlockaD # noqa F405 UpperCAmelCase__ : Tuple = "up" @property def __lowercase ( self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __lowercase ( self ) -> Union[str, Any]: _a : List[Any] = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = CrossAttnUpBlockaD # noqa F405 UpperCAmelCase__ : List[str] = "up" @property def __lowercase ( self ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __lowercase ( self ) -> Dict: _a , _a : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() _a : List[str] = 3_2 return init_dict, inputs_dict def __lowercase ( self ) -> Union[str, Any]: _a : int = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 UpperCAmelCase__ : List[Any] = "up" @property def __lowercase ( self ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __lowercase ( self ) -> int: _a , _a : int = super().prepare_init_args_and_inputs_for_common() _a : Dict = 3_2 return init_dict, inputs_dict def __lowercase ( self ) -> Tuple: _a : Tuple = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = AttnUpBlockaD # noqa F405 UpperCAmelCase__ : Dict = "up" @property def __lowercase ( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = SkipUpBlockaD # noqa F405 UpperCAmelCase__ : int = "up" @property def __lowercase ( self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __lowercase ( self ) -> str: _a : Optional[Any] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = AttnSkipUpBlockaD # noqa F405 UpperCAmelCase__ : Optional[int] = "up" @property def __lowercase ( self ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __lowercase ( self ) -> Optional[int]: _a : Any = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = UpDecoderBlockaD # noqa F405 UpperCAmelCase__ : str = "up" @property def __lowercase ( self ) -> Optional[int]: return super().get_dummy_input(include_temb=_a ) def __lowercase ( self ) -> int: _a : Any = {'''in_channels''': 3_2, '''out_channels''': 3_2} _a : List[Any] = self.dummy_input return init_dict, inputs_dict def __lowercase ( self ) -> List[str]: _a : int = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = AttnUpDecoderBlockaD # noqa F405 UpperCAmelCase__ : Optional[Any] = "up" @property def __lowercase ( self ) -> Union[str, Any]: return super().get_dummy_input(include_temb=_a ) def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = {'''in_channels''': 3_2, '''out_channels''': 3_2} _a : List[str] = self.dummy_input return init_dict, inputs_dict def __lowercase ( self ) -> str: _a : Union[str, Any] = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
14
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_0_0 , _a=1_3 , _a=3_0 , _a=2 , _a=3 , _a=True , _a=True , _a=3_2 , _a=4 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_0 , _a=0.02 , _a=3 , _a=None , _a=[0, 1, 2, 3] , ) -> List[str]: _a : List[str] = parent _a : Tuple = 1_0_0 _a : Tuple = batch_size _a : List[str] = image_size _a : List[str] = patch_size _a : Dict = num_channels _a : List[str] = is_training _a : Union[str, Any] = use_labels _a : str = hidden_size _a : int = num_hidden_layers _a : Optional[int] = num_attention_heads _a : List[str] = intermediate_size _a : Any = hidden_act _a : Optional[Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : str = type_sequence_label_size _a : Optional[Any] = initializer_range _a : Union[str, Any] = scope _a : Dict = out_indices _a : Dict = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : int = num_patches + 1 def __lowercase ( self ) -> Tuple: _a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = None _a : str = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self ) -> Any: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __lowercase ( self , _a , _a , _a , _a ) -> Union[str, Any]: _a : List[str] = BeitModel(config=_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self , _a , _a , _a , _a ) -> Optional[int]: _a : int = BeitForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() _a : Dict = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowercase ( self , _a , _a , _a , _a ) -> List[str]: _a : str = self.type_sequence_label_size _a : Dict = BeitForImageClassification(_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : Tuple = 1 _a : Optional[int] = BeitForImageClassification(_a ) model.to(_a ) model.eval() _a : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Any = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self , _a , _a , _a , _a ) -> List[str]: _a : Optional[int] = self.num_labels _a : List[Any] = BeitForSemanticSegmentation(_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __lowercase ( self ) -> Tuple: _a : Optional[int] = self.prepare_config_and_inputs() _a , _a , _a , _a : Tuple = config_and_inputs _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = False def __lowercase ( self ) -> Dict: _a : Optional[Any] = BeitModelTester(self ) _a : Any = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=3_7 ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def __lowercase ( self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> List[str]: _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> List[str]: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(_a ) _a : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Union[str, Any] = [*signature.parameters.keys()] _a : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> Dict: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Dict: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __lowercase ( self ) -> Dict: _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __lowercase ( self ) -> Optional[Any]: _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) def __lowercase ( self ) -> List[Any]: if not self.model_tester.is_training: return _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() _a : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_a ), BeitForMaskedImageModeling]: continue _a : Optional[int] = model_class(_a ) model.to(_a ) model.train() _a : Any = self._prepare_for_class(_a , _a , return_labels=_a ) _a : Optional[int] = model(**_a ).loss loss.backward() def __lowercase ( self ) -> Tuple: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _a : Tuple = False _a : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_a ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _a : Optional[Any] = model_class(_a ) model.gradient_checkpointing_enable() model.to(_a ) model.train() _a : Optional[Any] = self._prepare_for_class(_a , _a , return_labels=_a ) _a : str = model(**_a ).loss loss.backward() def __lowercase ( self ) -> Union[str, Any]: _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __lowercase ( self ) -> Any: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : str = BeitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( ) -> str: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> Optional[int]: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Optional[int]: _a : int = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(_a ) _a : Any = self.default_image_processor _a : Tuple = prepare_img() _a : List[str] = image_processor(images=_a , return_tensors='''pt''' ).pixel_values.to(_a ) # prepare bool_masked_pos _a : List[Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(_a ) # forward pass with torch.no_grad(): _a : Dict = model(pixel_values=_a , bool_masked_pos=_a ) _a : Optional[Any] = outputs.logits # verify the logits _a : List[str] = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , _a ) _a : Optional[Any] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_a ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _a , atol=1e-2 ) ) @slow def __lowercase ( self ) -> Optional[Any]: _a : Dict = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(_a ) _a : Tuple = self.default_image_processor _a : Optional[Any] = prepare_img() _a : Tuple = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) _a : Optional[Any] = outputs.logits # verify the logits _a : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , _a ) _a : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_a ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1e-4 ) ) _a : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , _a ) @slow def __lowercase ( self ) -> Optional[Any]: _a : int = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( _a ) _a : Dict = self.default_image_processor _a : Optional[Any] = prepare_img() _a : Optional[Any] = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Any = model(**_a ) _a : Optional[int] = outputs.logits # verify the logits _a : Optional[Any] = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , _a ) _a : Optional[int] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_a ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1e-4 ) ) _a : Dict = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , _a ) @slow def __lowercase ( self ) -> str: _a : List[str] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) _a : Union[str, Any] = model.to(_a ) _a : Union[str, Any] = BeitImageProcessor(do_resize=_a , size=6_4_0 , do_center_crop=_a ) _a : Optional[int] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _a : List[Any] = Image.open(ds[0]['''file'''] ) _a : Tuple = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Dict = model(**_a ) _a : str = outputs.logits # verify the logits _a : int = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , _a ) _a : str = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: _a : List[str] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_a , ) else: _a : Any = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) ) @slow def __lowercase ( self ) -> Optional[Any]: _a : str = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) _a : Dict = model.to(_a ) _a : int = BeitImageProcessor(do_resize=_a , size=6_4_0 , do_center_crop=_a ) _a : Optional[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _a : List[str] = Image.open(ds[0]['''file'''] ) _a : Optional[int] = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : str = model(**_a ) _a : Union[str, Any] = outputs.logits.detach().cpu() _a : str = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(5_0_0, 3_0_0)] ) _a : Dict = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , _a ) _a : str = image_processor.post_process_semantic_segmentation(outputs=_a ) _a : Tuple = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , _a )
14
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations import queue class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> Union[str, Any]: _a : Optional[Any] = data _a : Dict = None _a : Any = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) _a : Optional[Any] = input('''Enter the value of the root node: ''' ).strip().lower() _a : queue.Queue = queue.Queue() _a : Any = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): _a : List[str] = q.get() _a : Any = F"""Enter the left node of {node_found.data}: """ _a : str = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node _a : str = TreeNode(int(__a ) ) _a : int = left_node q.put(__a ) _a : Union[str, Any] = F"""Enter the right node of {node_found.data}: """ _a : List[str] = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node _a : str = TreeNode(int(__a ) ) _a : List[str] = right_node q.put(__a ) raise def __UpperCAmelCase ( __a : TreeNode ) -> None: """simple docstring""" if not isinstance(__a ,__a ) or not node: return print(node.data ,end=''',''' ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( __a : TreeNode ) -> None: """simple docstring""" if not isinstance(__a ,__a ) or not node: return in_order(node.left ) print(node.data ,end=''',''' ) in_order(node.right ) def __UpperCAmelCase ( __a : TreeNode ) -> None: """simple docstring""" if not isinstance(__a ,__a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=''',''' ) def __UpperCAmelCase ( __a : TreeNode ) -> None: """simple docstring""" if not isinstance(__a ,__a ) or not node: return _a : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): _a : Tuple = q.get() print(node_dequeued.data ,end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( __a : TreeNode ) -> None: """simple docstring""" if not isinstance(__a ,__a ) or not node: return _a : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): _a : Tuple = [] while not q.empty(): _a : List[Any] = q.get() print(node_dequeued.data ,end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def __UpperCAmelCase ( __a : TreeNode ) -> None: """simple docstring""" if not isinstance(__a ,__a ) or not node: return _a : list[TreeNode] = [] _a : List[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=''',''' ) stack.append(__a ) _a : List[Any] = n.left # end of while means current node doesn't have left child _a : str = stack.pop() # start to traverse its right child _a : List[str] = n.right def __UpperCAmelCase ( __a : TreeNode ) -> None: """simple docstring""" if not isinstance(__a ,__a ) or not node: return _a : list[TreeNode] = [] _a : Tuple = node while n or stack: while n: stack.append(__a ) _a : Any = n.left _a : Tuple = stack.pop() print(n.data ,end=''',''' ) _a : int = n.right def __UpperCAmelCase ( __a : TreeNode ) -> None: """simple docstring""" if not isinstance(__a ,__a ) or not node: return _a , _a : List[str] = [], [] _a : List[str] = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 _a : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=''',''' ) def __UpperCAmelCase ( __a : str = "" ,__a : Optional[int]=50 ,__a : List[Any]="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _a , _a : Any = divmod(width - len(__a ) - 2 ,2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) a__ = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
14
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
1
import warnings from .generation import TFGenerationMixin class UpperCAmelCase_ ( __lowercase ): """simple docstring""" warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , __lowercase , )
14
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[Any] ,__a : List[str] ,__a : Tuple ) -> Dict: """simple docstring""" _a : Optional[int] = FunnelConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) _a : Optional[Any] = FunnelBaseModel(__a ) if base_model else FunnelModel(__a ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) a__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
14
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
1
import argparse import struct import unittest class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> None: _a : List[str] = data # Initialize hash values _a : int = [ 0x6_a_0_9_e_6_6_7, 0xb_b_6_7_a_e_8_5, 0x3_c_6_e_f_3_7_2, 0xa_5_4_f_f_5_3_a, 0x5_1_0_e_5_2_7_f, 0x9_b_0_5_6_8_8_c, 0x1_f_8_3_d_9_a_b, 0x5_b_e_0_c_d_1_9, ] # Initialize round constants _a : Tuple = [ 0x4_2_8_a_2_f_9_8, 0x7_1_3_7_4_4_9_1, 0xb_5_c_0_f_b_c_f, 0xe_9_b_5_d_b_a_5, 0x3_9_5_6_c_2_5_b, 0x5_9_f_1_1_1_f_1, 0x9_2_3_f_8_2_a_4, 0xa_b_1_c_5_e_d_5, 0xd_8_0_7_a_a_9_8, 0x1_2_8_3_5_b_0_1, 0x2_4_3_1_8_5_b_e, 0x5_5_0_c_7_d_c_3, 0x7_2_b_e_5_d_7_4, 0x8_0_d_e_b_1_f_e, 0x9_b_d_c_0_6_a_7, 0xc_1_9_b_f_1_7_4, 0xe_4_9_b_6_9_c_1, 0xe_f_b_e_4_7_8_6, 0x0_f_c_1_9_d_c_6, 0x2_4_0_c_a_1_c_c, 0x2_d_e_9_2_c_6_f, 0x4_a_7_4_8_4_a_a, 0x5_c_b_0_a_9_d_c, 0x7_6_f_9_8_8_d_a, 0x9_8_3_e_5_1_5_2, 0xa_8_3_1_c_6_6_d, 0xb_0_0_3_2_7_c_8, 0xb_f_5_9_7_f_c_7, 0xc_6_e_0_0_b_f_3, 0xd_5_a_7_9_1_4_7, 0x0_6_c_a_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_b_7_0_a_8_5, 0x2_e_1_b_2_1_3_8, 0x4_d_2_c_6_d_f_c, 0x5_3_3_8_0_d_1_3, 0x6_5_0_a_7_3_5_4, 0x7_6_6_a_0_a_b_b, 0x8_1_c_2_c_9_2_e, 0x9_2_7_2_2_c_8_5, 0xa_2_b_f_e_8_a_1, 0xa_8_1_a_6_6_4_b, 0xc_2_4_b_8_b_7_0, 0xc_7_6_c_5_1_a_3, 0xd_1_9_2_e_8_1_9, 0xd_6_9_9_0_6_2_4, 0xf_4_0_e_3_5_8_5, 0x1_0_6_a_a_0_7_0, 0x1_9_a_4_c_1_1_6, 0x1_e_3_7_6_c_0_8, 0x2_7_4_8_7_7_4_c, 0x3_4_b_0_b_c_b_5, 0x3_9_1_c_0_c_b_3, 0x4_e_d_8_a_a_4_a, 0x5_b_9_c_c_a_4_f, 0x6_8_2_e_6_f_f_3, 0x7_4_8_f_8_2_e_e, 0x7_8_a_5_6_3_6_f, 0x8_4_c_8_7_8_1_4, 0x8_c_c_7_0_2_0_8, 0x9_0_b_e_f_f_f_a, 0xa_4_5_0_6_c_e_b, 0xb_e_f_9_a_3_f_7, 0xc_6_7_1_7_8_f_2, ] _a : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowercase ( _a ) -> bytes: _a : Any = b'''\x80''' + (b'''\x00''' * (6_3 - (len(_a ) + 8) % 6_4)) _a : int = struct.pack('''>Q''' , (len(_a ) * 8) ) return data + padding + big_endian_integer def __lowercase ( self ) -> None: # Convert into blocks of 64 bytes _a : Union[str, Any] = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _a : Optional[Any] = list(struct.unpack('''>16L''' , _a ) ) # add 48 0-ed integers words += [0] * 4_8 _a , _a , _a , _a , _a , _a , _a , _a : Any = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array _a : Optional[int] = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) _a : Optional[Any] = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) _a : Any = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression _a : Any = self.ror(_a , 6 ) ^ self.ror(_a , 1_1 ) ^ self.ror(_a , 2_5 ) _a : Tuple = (e & f) ^ ((~e & 0xf_f_f_f_f_f_f_f) & g) _a : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 _a : str = self.ror(_a , 2 ) ^ self.ror(_a , 1_3 ) ^ self.ror(_a , 2_2 ) _a : Optional[int] = (a & b) ^ (a & c) ^ (b & c) _a : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 _a , _a , _a , _a , _a , _a , _a , _a : Tuple = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) _a : Any = [a, b, c, d, e, f, g, h] # Modify final values _a : Optional[int] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] _a : Optional[Any] = ''''''.join([hex(_a )[2:].zfill(8 ) for value in self.hashes] ) def __lowercase ( self , _a , _a ) -> int: return 0xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> None: import hashlib _a : List[str] = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(_a ).hash , hashlib.shaaaa(_a ).hexdigest() ) def __UpperCAmelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''-s''' ,'''--string''' ,dest='''input_string''' ,default='''Hello World!! Welcome to Cryptography''' ,help='''Hash the string''' ,) parser.add_argument( '''-f''' ,'''--file''' ,dest='''input_file''' ,help='''Hash contents of a file''' ) _a : Optional[Any] = parser.parse_args() _a : Dict = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file ,'''rb''' ) as f: _a : Dict = f.read() else: _a : Optional[Any] = bytes(__a ,'''utf-8''' ) print(SHAaaa(__a ).hash ) if __name__ == "__main__": main()
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
1
from math import pow def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ,__a : int ,__a : int ,) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _a : List[str] = int(pow(__a ,__a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _a , _a : Optional[Any] = backtrack( __a ,__a ,current_number + 1 ,__a ,__a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _a , _a : List[str] = backtrack( __a ,__a ,current_number + 1 ,__a ,__a ) return current_sum, solutions_count def __UpperCAmelCase ( __a : int ,__a : int ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(__a ,__a ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
14
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
1
import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> Tuple: _a : Optional[int] = str(id_ ) _a : List[Any] = None _a : List[Any] = None _a : Tuple = [] _a : int = {} # {vertex:distance} def __lt__( self , _a ) -> int: return self.key < other.key def __repr__( self ) -> Optional[int]: return self.id def __lowercase ( self , _a ) -> str: self.neighbors.append(_a ) def __lowercase ( self , _a , _a ) -> Optional[int]: _a : List[str] = weight def __UpperCAmelCase ( __a : Optional[Any] ,__a : Union[str, Any] ,__a : int ,__a : int ) -> Any: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] ,__a ) graph[b - 1].add_edge(graph[a - 1] ,__a ) def __UpperCAmelCase ( __a : list ,__a : Vertex ) -> list: """simple docstring""" _a : Union[str, Any] = [] for u in graph: _a : int = math.inf _a : int = None _a : str = 0 _a : List[Any] = graph[:] while q: _a : Any = min(__a ) q.remove(__a ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a : str = u _a : Dict = u.edges[v.id] for i in range(1 ,len(__a ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __UpperCAmelCase ( __a : list ,__a : Vertex ) -> Iterator[tuple]: """simple docstring""" for u in graph: _a : int = math.inf _a : Dict = None _a : Optional[int] = 0 _a : Union[str, Any] = list(__a ) hq.heapify(__a ) while h: _a : str = hq.heappop(__a ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a : Optional[Any] = u _a : str = u.edges[v.id] hq.heapify(__a ) for i in range(1 ,len(__a ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __UpperCAmelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = 1_0 def __lowercase ( self ) -> List[Any]: _a : Optional[Any] = [1, 2, 3, 4] _a : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def __lowercase ( self ) -> str: _a : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] _a : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def __lowercase ( self ) -> List[str]: _a : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] _a : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def __lowercase ( self ) -> List[str]: _a : Dict = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' _a , _a : Optional[int] = process_story(_a ) self.assertEqual(_a , [] ) def __lowercase ( self ) -> str: _a : Dict = '''''' _a , _a : str = process_story(_a ) self.assertEqual(_a , [] ) self.assertEqual(_a , [] ) def __lowercase ( self ) -> Optional[Any]: _a : int = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) _a , _a : Optional[int] = process_story(_a ) _a : Any = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_a , _a ) _a : List[str] = ['''It was the best of times.'''] self.assertEqual(_a , _a ) def __lowercase ( self ) -> str: _a : List[Any] = torch.tensor([1, 2, 3, 4] ) _a : Optional[int] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_a , 0 ).numpy() , expected.numpy() ) def __lowercase ( self ) -> int: _a : int = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) _a : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_a , 2_3 ).numpy() , expected.numpy() ) def __lowercase ( self ) -> int: _a : Dict = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _a : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_a , 1 ).numpy() , expected.numpy() ) def __lowercase ( self ) -> str: _a : List[Any] = 1_0_1 _a : Optional[int] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) _a : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _a : Dict = compute_token_type_ids(_a , _a ) np.testing.assert_array_equal(_a , _a )
14
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_2 , _a=7 , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=3_2 , _a=2 , _a=4 , _a=3_7 , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=0.02 , _a=0 , _a=None , ) -> Optional[Any]: _a : Optional[Any] = parent _a : int = batch_size _a : Optional[int] = seq_length _a : List[Any] = is_training _a : Dict = use_input_mask _a : Optional[Any] = use_labels _a : Tuple = vocab_size _a : List[Any] = hidden_size _a : str = projection_dim _a : Optional[int] = num_hidden_layers _a : Union[str, Any] = num_attention_heads _a : Union[str, Any] = intermediate_size _a : int = dropout _a : List[Any] = attention_dropout _a : Tuple = max_position_embeddings _a : Dict = initializer_range _a : Union[str, Any] = scope _a : Tuple = bos_token_id def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Optional[int] = None if self.use_input_mask: _a : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _a : int = input_mask.numpy() _a , _a : int = input_mask.shape _a : List[Any] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_a ): _a : int = 1 _a : Dict = 0 _a : str = self.get_config() return config, input_ids, tf.convert_to_tensor(_a ) def __lowercase ( self ) -> List[str]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def __lowercase ( self , _a , _a , _a ) -> Dict: _a : int = TFBlipTextModel(config=_a ) _a : str = model(_a , attention_mask=_a , training=_a ) _a : int = model(_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self ) -> str: _a : Optional[Any] = self.prepare_config_and_inputs() _a , _a , _a : Union[str, Any] = config_and_inputs _a : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase__ : str = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Dict = False def __lowercase ( self ) -> Any: _a : int = BlipTextModelTester(self ) _a : Optional[Any] = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def __lowercase ( self ) -> Any: self.config_tester.run_common_tests() def __lowercase ( self ) -> Union[str, Any]: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[Any]: pass def __lowercase ( self ) -> int: pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def __lowercase ( self ) -> int: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __lowercase ( self ) -> Tuple: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __lowercase ( self ) -> Dict: pass @slow def __lowercase ( self ) -> Any: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = TFBlipTextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self , _a=True ) -> List[str]: super().test_pt_tf_model_equivalence(allow_missing_keys=_a )
14
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = ["flax", "transformers"] def __init__( self , *_a , **_a ) -> Dict: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Optional[int]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCAmelCase_ ( metaclass=__lowercase ): """simple docstring""" UpperCAmelCase__ : str = ["flax", "transformers"] def __init__( self , *_a , **_a ) -> Union[str, Any]: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> List[str]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Tuple: requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCAmelCase_ ( metaclass=__lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["flax", "transformers"] def __init__( self , *_a , **_a ) -> str: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Optional[int]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Dict: requires_backends(cls , ['''flax''', '''transformers'''] ) class UpperCAmelCase_ ( metaclass=__lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = ["flax", "transformers"] def __init__( self , *_a , **_a ) -> str: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Tuple: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __lowercase ( cls , *_a , **_a ) -> Optional[Any]: requires_backends(cls , ['''flax''', '''transformers'''] )
14
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
1
from math import isclose, sqrt def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> tuple[float, float, float]: """simple docstring""" _a : Any = point_y / 4 / point_x _a : Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _a : Optional[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _a : Optional[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _a : List[Any] = outgoing_gradient**2 + 4 _a : int = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _a : Optional[int] = (point_y - outgoing_gradient * point_x) ** 2 - 100 _a : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _a : Dict = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _a : Optional[Any] = x_minus if isclose(__a ,__a ) else x_plus _a : Optional[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __UpperCAmelCase ( __a : float = 1.4 ,__a : float = -9.6 ) -> int: """simple docstring""" _a : int = 0 _a : float = first_x_coord _a : float = first_y_coord _a : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _a , _a , _a : Dict = next_point(__a ,__a ,__a ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
14
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __UpperCAmelCase ( __a : Any ) -> str: """simple docstring""" _a : List[str] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' ,__a ).groups()[0] class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a=None , _a=None ) -> Dict: _a : Optional[int] = file_names _a : List[str] = image_transform _a : List[Any] = label_to_id def __len__( self ) -> Any: return len(self.file_names ) def __getitem__( self , _a ) -> Tuple: _a : Union[str, Any] = self.file_names[idx] _a : Tuple = PIL.Image.open(_a ) _a : Dict = raw_image.convert('''RGB''' ) if self.image_transform is not None: _a : Tuple = self.image_transform(_a ) _a : Dict = extract_label(_a ) if self.label_to_id is not None: _a : Any = self.label_to_id[label] return {"image": image, "label": label} def __UpperCAmelCase ( __a : str ,__a : int ) -> Union[str, Any]: """simple docstring""" if args.with_tracking: _a : Tuple = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,log_with='''all''' ,project_dir=args.project_dir ) else: _a : int = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : List[Any] = config['''lr'''] _a : Optional[Any] = int(config['''num_epochs'''] ) _a : List[Any] = int(config['''seed'''] ) _a : Optional[Any] = int(config['''batch_size'''] ) _a : str = config['''image_size'''] if not isinstance(__a ,(list, tuple) ): _a : Optional[int] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps ,'''isdigit''' ): if args.checkpointing_steps == "epoch": _a : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _a : int = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: _a : Optional[int] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _a : List[str] = os.path.split(__a )[-1].split('''.''' )[0] accelerator.init_trackers(__a ,__a ) # Grab all the image filenames _a : Dict = [os.path.join(args.data_dir ,__a ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences _a : Dict = [extract_label(__a ) for fname in file_names] _a : str = list(set(__a ) ) id_to_label.sort() _a : List[str] = {lbl: i for i, lbl in enumerate(__a )} # Set the seed before splitting the data. np.random.seed(__a ) torch.manual_seed(__a ) torch.cuda.manual_seed_all(__a ) # Split our filenames between train and validation _a : str = np.random.permutation(len(__a ) ) _a : List[Any] = int(0.8 * len(__a ) ) _a : Dict = random_perm[:cut] _a : Any = random_perm[cut:] # For training we use a simple RandomResizedCrop _a : Optional[int] = Compose([RandomResizedCrop(__a ,scale=(0.5, 1.0) ), ToTensor()] ) _a : Any = PetsDataset( [file_names[i] for i in train_split] ,image_transform=__a ,label_to_id=__a ) # For evaluation, we use a deterministic Resize _a : Dict = Compose([Resize(__a ), ToTensor()] ) _a : Optional[Any] = PetsDataset([file_names[i] for i in eval_split] ,image_transform=__a ,label_to_id=__a ) # Instantiate dataloaders. _a : Tuple = DataLoader(__a ,shuffle=__a ,batch_size=__a ,num_workers=4 ) _a : Optional[Any] = DataLoader(__a ,shuffle=__a ,batch_size=__a ,num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : str = create_model('''resnet50d''' ,pretrained=__a ,num_classes=len(__a ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : int = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _a : Optional[int] = False for param in model.get_classifier().parameters(): _a : Any = True # We normalize the batches of images to be a bit faster. _a : int = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) _a : Dict = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _a : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=lr / 25 ) # Instantiate learning rate scheduler _a : Optional[int] = OneCycleLR(optimizer=__a ,max_lr=__a ,epochs=__a ,steps_per_epoch=len(__a ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Any = accelerator.prepare( __a ,__a ,__a ,__a ,__a ) # We need to keep track of how many total steps we have iterated over _a : Optional[int] = 0 # We also need to keep track of the starting epoch so files are named properly _a : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) _a : Tuple = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _a : Optional[Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _a : List[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _a : Optional[int] = os.path.splitext(__a )[0] if "epoch" in training_difference: _a : List[Any] = int(training_difference.replace('''epoch_''' ,'''''' ) ) + 1 _a : str = None else: _a : str = int(training_difference.replace('''step_''' ,'''''' ) ) _a : Any = resume_step // len(__a ) resume_step -= starting_epoch * len(__a ) # Now we train the model for epoch in range(__a ,__a ): model.train() if args.with_tracking: _a : List[Any] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _a : List[Any] = accelerator.skip_first_batches(__a ,__a ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _a : str = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _a : Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} _a : Dict = (batch['''image'''] - mean) / std _a : Optional[int] = model(__a ) _a : Union[str, Any] = torch.nn.functional.cross_entropy(__a ,batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__a ,__a ): _a : List[str] = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _a : Dict = os.path.join(args.output_dir ,__a ) accelerator.save_state(__a ) model.eval() _a : Union[str, Any] = 0 _a : List[str] = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. _a : str = {k: v.to(accelerator.device ) for k, v in batch.items()} _a : Tuple = (batch['''image'''] - mean) / std with torch.no_grad(): _a : int = model(__a ) _a : Tuple = outputs.argmax(dim=-1 ) _a , _a : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) _a : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _a : Any = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(__a ), '''epoch''': epoch, } ,step=__a ,) if checkpointing_steps == "epoch": _a : str = F"""epoch_{epoch}""" if args.output_dir is not None: _a : Optional[int] = os.path.join(args.output_dir ,__a ) accelerator.save_state(__a ) if args.with_tracking: accelerator.end_training() def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' ,required=__a ,help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' ,action='''store_true''' ,help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' ,type=__a ,default=__a ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' ,type=__a ,default=__a ,help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' ,) parser.add_argument( '''--output_dir''' ,type=__a ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,) parser.add_argument( '''--resume_from_checkpoint''' ,type=__a ,default=__a ,help='''If the training should continue from a checkpoint folder.''' ,) parser.add_argument( '''--with_tracking''' ,action='''store_true''' ,help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' ,) parser.add_argument( '''--project_dir''' ,type=__a ,default='''logs''' ,help='''Location on where to store experiment tracking logs` and relevent project information''' ,) _a : str = parser.parse_args() _a : Optional[Any] = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(__a ,__a ) if __name__ == "__main__": main()
14
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
1
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
1
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
1
from __future__ import annotations def __UpperCAmelCase ( __a : list ) -> list: """simple docstring""" if len(__a ) == 0: return [] _a , _a : Tuple = min(__a ), max(__a ) _a : int = int(max_value - min_value ) + 1 _a : list[list] = [[] for _ in range(__a )] for i in my_list: buckets[int(i - min_value )].append(__a ) return [v for bucket in buckets for v in sorted(__a )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
1
import string def __UpperCAmelCase ( __a : str ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): _a : int = '''''' for symbol in message: if symbol in string.ascii_uppercase: _a : Union[str, Any] = string.ascii_uppercase.find(__a ) _a : Optional[int] = num - key if num < 0: _a : Any = num + len(string.ascii_uppercase ) _a : Optional[int] = translated + string.ascii_uppercase[num] else: _a : Optional[int] = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : List[Any] = input('''Encrypted message: ''' ) _a : Union[str, Any] = message.upper() decrypt(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' ,[ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ,__a : List[Any] ,__a : Tuple ,__a : List[Any] ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ,) -> Any: """simple docstring""" _a : int = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } _a , _a : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: _a : Dict = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__a ) assert base_extractor.is_extractable(__a ) _a : Tuple = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(__a ,__a ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _a : Dict = file_path.read_text(encoding='''utf-8''' ) else: _a : List[Any] = output_path.read_text(encoding='''utf-8''' ) _a : List[str] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' ,[ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] ,) def __UpperCAmelCase ( __a : Tuple ,__a : Any ,__a : int ,__a : Optional[int] ,__a : Dict ,__a : List[str] ,__a : Union[str, Any] ,__a : str ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ,) -> List[str]: """simple docstring""" _a : int = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } _a : List[Any] = input_paths[compression_format] if input_path is None: _a : int = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__a ) _a : str = Extractor.infer_extractor_format(__a ) assert extractor_format is not None _a : List[str] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(__a ,__a ,__a ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _a : Any = file_path.read_text(encoding='''utf-8''' ) else: _a : List[Any] = output_path.read_text(encoding='''utf-8''' ) _a : Tuple = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def __UpperCAmelCase ( __a : Optional[Any] ,__a : Any ) -> Tuple: """simple docstring""" import tarfile _a : Tuple = tmp_path / '''data_dot_dot''' directory.mkdir() _a : Any = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(__a ,'''w''' ) as f: f.add(__a ,arcname=os.path.join('''..''' ,text_file.name ) ) return path @pytest.fixture def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" import tarfile _a : Dict = tmp_path / '''data_sym_link''' directory.mkdir() _a : List[str] = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' ,directory / '''subdir''' ,target_is_directory=__a ) with tarfile.TarFile(__a ,'''w''' ) as f: f.add(str(directory / '''subdir''' ) ,arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' ,[('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] ,) def __UpperCAmelCase ( __a : str ,__a : Optional[Any] ,__a : Dict ,__a : List[Any] ,__a : List[str] ,__a : Dict ) -> List[str]: """simple docstring""" _a : Union[str, Any] = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } _a : Optional[int] = insecure_tar_files[insecure_tar_file] _a : Optional[Any] = tmp_path / '''extracted''' TarExtractor.extract(__a ,__a ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __UpperCAmelCase ( __a : List[str] ) -> Optional[Any]: """simple docstring""" _a : Any = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 _a : Union[str, Any] = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(__a ) assert zipfile.is_zipfile(str(__a ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__a ) # but we're right
14
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
1
def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : Dict ) -> Optional[Any]: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__a ,n - 1 ,__a ) * a) % mod else: _a : Optional[Any] = binary_exponentiation(__a ,n / 2 ,__a ) return (b * b) % mod # a prime number a__ = 701 a__ = 1000000000 a__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
14
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
1
def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" _a , _a : Union[str, Any] = 1, 1 _a : Any = [] for i in range(1 ,n + 1 ): _a : Optional[int] = prev_numerator + 2 * prev_denominator _a : Union[str, Any] = prev_numerator + prev_denominator if len(str(__a ) ) > len(str(__a ) ): result.append(__a ) _a : List[Any] = numerator _a : List[Any] = denominator return len(__a ) if __name__ == "__main__": print(f'''{solution() = }''')
14
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar a__ = TypeVar('''KEY''') a__ = TypeVar('''VAL''') @dataclass(frozen=__lowercase , slots=__lowercase ) class UpperCAmelCase_ ( Generic[KEY, VAL] ): """simple docstring""" UpperCAmelCase__ : KEY UpperCAmelCase__ : VAL class UpperCAmelCase_ ( _Item ): """simple docstring""" def __init__( self ) -> None: super().__init__(_a , _a ) def __bool__( self ) -> bool: return False a__ = _DeletedItem() class UpperCAmelCase_ ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , _a = 8 , _a = 0.75 ) -> None: _a : Tuple = initial_block_size _a : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _a : Tuple = capacity_factor _a : Optional[Any] = 0 def __lowercase ( self , _a ) -> int: return hash(_a ) % len(self._buckets ) def __lowercase ( self , _a ) -> int: return (ind + 1) % len(self._buckets ) def __lowercase ( self , _a , _a , _a ) -> bool: _a : int = self._buckets[ind] if not stored: _a : Dict = _Item(_a , _a ) self._len += 1 return True elif stored.key == key: _a : int = _Item(_a , _a ) return True else: return False def __lowercase ( self ) -> bool: _a : Optional[int] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_a ) def __lowercase ( self ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False _a : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __lowercase ( self , _a ) -> None: _a : Optional[Any] = self._buckets _a : Dict = [None] * new_size _a : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __lowercase ( self ) -> None: self._resize(len(self._buckets ) * 2 ) def __lowercase ( self ) -> None: self._resize(len(self._buckets ) // 2 ) def __lowercase ( self , _a ) -> Iterator[int]: _a : Union[str, Any] = self._get_bucket_index(_a ) for _ in range(len(self._buckets ) ): yield ind _a : Dict = self._get_next_ind(_a ) def __lowercase ( self , _a , _a ) -> None: for ind in self._iterate_buckets(_a ): if self._try_set(_a , _a , _a ): break def __setitem__( self , _a , _a ) -> None: if self._is_full(): self._size_up() self._add_item(_a , _a ) def __delitem__( self , _a ) -> None: for ind in self._iterate_buckets(_a ): _a : List[Any] = self._buckets[ind] if item is None: raise KeyError(_a ) if item is _deleted: continue if item.key == key: _a : Any = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _a ) -> VAL: for ind in self._iterate_buckets(_a ): _a : int = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_a ) def __len__( self ) -> int: return self._len def __iter__( self ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: _a : str = ''' ,'''.join( F"""{item.key}: {item.val}""" for item in self._buckets if item ) return F"""HashMap({val_string})"""
14
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup a__ = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , **_a ) -> Optional[Any]: requires_backends(self , ['''bs4'''] ) super().__init__(**_a ) def __lowercase ( self , _a ) -> int: _a : Optional[Any] = [] _a : Optional[Any] = [] _a : Optional[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _a : Optional[int] = parent.find_all(child.name , recursive=_a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_a ) else next(i for i, s in enumerate(_a , 1 ) if s is child ) ) _a : Tuple = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __lowercase ( self , _a ) -> List[Any]: _a : List[Any] = BeautifulSoup(_a , '''html.parser''' ) _a : List[str] = [] _a : Optional[Any] = [] _a : Tuple = [] for element in html_code.descendants: if type(_a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _a : Tuple = html.unescape(_a ).strip() if not text_in_this_tag: continue all_doc_strings.append(_a ) _a , _a : Tuple = self.xpath_soup(_a ) stringaxtag_seq.append(_a ) stringaxsubs_seq.append(_a ) if len(_a ) != len(_a ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_a ) != len(_a ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __lowercase ( self , _a , _a ) -> Dict: _a : Any = '''''' for tagname, subs in zip(_a , _a ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _a ) -> BatchFeature: _a : Any = False # Check that strings has a valid type if isinstance(_a , _a ): _a : Any = True elif isinstance(_a , (list, tuple) ): if len(_a ) == 0 or isinstance(html_strings[0] , _a ): _a : Optional[int] = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_a )}.""" ) _a : Any = bool(isinstance(_a , (list, tuple) ) and (isinstance(html_strings[0] , _a )) ) if not is_batched: _a : Optional[Any] = [html_strings] # Get nodes + xpaths _a : List[str] = [] _a : Union[str, Any] = [] for html_string in html_strings: _a , _a , _a : Tuple = self.get_three_from_single(_a ) nodes.append(_a ) _a : Union[str, Any] = [] for node, tag_list, sub_list in zip(_a , _a , _a ): _a : Any = self.construct_xpath(_a , _a ) xpath_strings.append(_a ) xpaths.append(_a ) # return as Dict _a : Tuple = {'''nodes''': nodes, '''xpaths''': xpaths} _a : int = BatchFeature(data=_a , tensor_type=_a ) return encoded_inputs
14
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
1
def __UpperCAmelCase ( __a : str ) -> str: """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) _a : Union[str, Any] = '''''' while len(__a ) % 3 != 0: _a : Tuple = '''0''' + bin_string _a : int = [ bin_string[index : index + 3] for index in range(len(__a ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _a : str = 0 for index, val in enumerate(__a ): oct_val += int(2 ** (2 - index) * int(__a ) ) oct_string += str(__a ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = "convbert" def __init__( self , _a=3_0_5_2_2 , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=1 , _a=0 , _a=2 , _a=7_6_8 , _a=2 , _a=9 , _a=1 , _a=None , **_a , ) -> Tuple: super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a , ) _a : Optional[int] = vocab_size _a : str = hidden_size _a : str = num_hidden_layers _a : List[Any] = num_attention_heads _a : int = intermediate_size _a : List[str] = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : int = max_position_embeddings _a : str = type_vocab_size _a : Union[str, Any] = initializer_range _a : Union[str, Any] = layer_norm_eps _a : str = embedding_size _a : Tuple = head_ratio _a : Tuple = conv_kernel_size _a : Union[str, Any] = num_groups _a : Dict = classifier_dropout class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
14
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations a__ = list[list[int]] # assigning initial values to the grid a__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __UpperCAmelCase ( __a : Matrix ,__a : int ,__a : int ,__a : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __UpperCAmelCase ( __a : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __UpperCAmelCase ( __a : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__a ): _a , _a : Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 ,10 ): if is_safe(__a ,__a ,__a ,__a ): _a : List[str] = digit if sudoku(__a ) is not None: return grid _a : Optional[int] = 0 return None def __UpperCAmelCase ( __a : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__a ,end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') a__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
14
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __UpperCAmelCase ( __a : int ,__a : Dict=1 ) -> str: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str]=0 ) -> Optional[Any]: """simple docstring""" _a : Dict = [] for old_item in old_list: _a : Optional[Any] = old_item.replace('''in_layers.0''' ,'''norm1''' ) _a : int = new_item.replace('''in_layers.2''' ,'''conv1''' ) _a : List[Any] = new_item.replace('''out_layers.0''' ,'''norm2''' ) _a : int = new_item.replace('''out_layers.3''' ,'''conv2''' ) _a : Optional[Any] = new_item.replace('''emb_layers.1''' ,'''time_emb_proj''' ) _a : int = new_item.replace('''skip_connection''' ,'''conv_shortcut''' ) _a : Optional[int] = shave_segments(__a ,n_shave_prefix_segments=__a ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def __UpperCAmelCase ( __a : str ,__a : Tuple=0 ) -> Dict: """simple docstring""" _a : int = [] for old_item in old_list: _a : Union[str, Any] = old_item _a : str = new_item.replace('''norm.weight''' ,'''group_norm.weight''' ) _a : str = new_item.replace('''norm.bias''' ,'''group_norm.bias''' ) _a : Optional[int] = new_item.replace('''proj_out.weight''' ,'''proj_attn.weight''' ) _a : List[str] = new_item.replace('''proj_out.bias''' ,'''proj_attn.bias''' ) _a : Union[str, Any] = shave_segments(__a ,n_shave_prefix_segments=__a ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : Dict ,__a : List[str]=None ,__a : Any=None ,__a : List[str]=None ) -> Any: """simple docstring""" assert isinstance(__a ,__a ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _a : Any = old_checkpoint[path] _a : Any = old_tensor.shape[0] // 3 _a : str = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _a : Tuple = old_tensor.shape[0] // config['''num_head_channels'''] // 3 _a : List[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _a , _a , _a : Optional[Any] = old_tensor.split(channels // num_heads ,dim=1 ) _a : List[str] = query.reshape(__a ) _a : List[str] = key.reshape(__a ) _a : Dict = value.reshape(__a ) for path in paths: _a : Optional[int] = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _a : Optional[int] = new_path.replace('''middle_block.0''' ,'''mid_block.resnets.0''' ) _a : List[Any] = new_path.replace('''middle_block.1''' ,'''mid_block.attentions.0''' ) _a : Tuple = new_path.replace('''middle_block.2''' ,'''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: _a : Dict = new_path.replace(replacement['''old'''] ,replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _a : Any = old_checkpoint[path['''old''']][:, :, 0] else: _a : str = old_checkpoint[path['''old''']] def __UpperCAmelCase ( __a : List[Any] ,__a : Dict ) -> Tuple: """simple docstring""" _a : List[Any] = {} _a : Tuple = checkpoint['''time_embed.0.weight'''] _a : str = checkpoint['''time_embed.0.bias'''] _a : Dict = checkpoint['''time_embed.2.weight'''] _a : int = checkpoint['''time_embed.2.bias'''] _a : Dict = checkpoint['''input_blocks.0.0.weight'''] _a : List[Any] = checkpoint['''input_blocks.0.0.bias'''] _a : Tuple = checkpoint['''out.0.weight'''] _a : str = checkpoint['''out.0.bias'''] _a : str = checkpoint['''out.2.weight'''] _a : int = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only _a : Optional[int] = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) _a : List[Any] = { layer_id: [key for key in checkpoint if F"""input_blocks.{layer_id}""" in key] for layer_id in range(__a ) } # Retrieves the keys for the middle blocks only _a : int = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) _a : str = { layer_id: [key for key in checkpoint if F"""middle_block.{layer_id}""" in key] for layer_id in range(__a ) } # Retrieves the keys for the output blocks only _a : Tuple = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) _a : Optional[Any] = { layer_id: [key for key in checkpoint if F"""output_blocks.{layer_id}""" in key] for layer_id in range(__a ) } for i in range(1 ,__a ): _a : Any = (i - 1) // (config['''num_res_blocks'''] + 1) _a : List[Any] = (i - 1) % (config['''num_res_blocks'''] + 1) _a : str = [key for key in input_blocks[i] if F"""input_blocks.{i}.0""" in key] _a : List[str] = [key for key in input_blocks[i] if F"""input_blocks.{i}.1""" in key] if F"""input_blocks.{i}.0.op.weight""" in checkpoint: _a : Optional[Any] = checkpoint[ F"""input_blocks.{i}.0.op.weight""" ] _a : Any = checkpoint[ F"""input_blocks.{i}.0.op.bias""" ] continue _a : List[Any] = renew_resnet_paths(__a ) _a : Any = {'''old''': F"""input_blocks.{i}.0""", '''new''': F"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} _a : Optional[int] = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path, resnet_op] ,config=__a ) if len(__a ): _a : Union[str, Any] = renew_attention_paths(__a ) _a : List[Any] = { '''old''': F"""input_blocks.{i}.1""", '''new''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } _a : Union[str, Any] = { F"""input_blocks.{i}.1.qkv.bias""": { '''key''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""input_blocks.{i}.1.qkv.weight""": { '''key''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path] ,attention_paths_to_split=__a ,config=__a ,) _a : int = middle_blocks[0] _a : str = middle_blocks[1] _a : int = middle_blocks[2] _a : int = renew_resnet_paths(__a ) assign_to_checkpoint(__a ,__a ,__a ,config=__a ) _a : Dict = renew_resnet_paths(__a ) assign_to_checkpoint(__a ,__a ,__a ,config=__a ) _a : str = renew_attention_paths(__a ) _a : Dict = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( __a ,__a ,__a ,attention_paths_to_split=__a ,config=__a ) for i in range(__a ): _a : str = i // (config['''num_res_blocks'''] + 1) _a : Union[str, Any] = i % (config['''num_res_blocks'''] + 1) _a : List[Any] = [shave_segments(__a ,2 ) for name in output_blocks[i]] _a : str = {} for layer in output_block_layers: _a , _a : Optional[Any] = layer.split('''.''' )[0], shave_segments(__a ,1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__a ) else: _a : int = [layer_name] if len(__a ) > 1: _a : Dict = [key for key in output_blocks[i] if F"""output_blocks.{i}.0""" in key] _a : List[Any] = [key for key in output_blocks[i] if F"""output_blocks.{i}.1""" in key] _a : Tuple = renew_resnet_paths(__a ) _a : Tuple = renew_resnet_paths(__a ) _a : str = {'''old''': F"""output_blocks.{i}.0""", '''new''': F"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(__a ,__a ,__a ,additional_replacements=[meta_path] ,config=__a ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _a : List[Any] = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) _a : List[str] = checkpoint[ F"""output_blocks.{i}.{index}.conv.weight""" ] _a : Union[str, Any] = checkpoint[ F"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(__a ) == 2: _a : Tuple = [] if len(__a ): _a : Optional[int] = renew_attention_paths(__a ) _a : str = { '''old''': F"""output_blocks.{i}.1""", '''new''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } _a : Tuple = { F"""output_blocks.{i}.1.qkv.bias""": { '''key''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""output_blocks.{i}.1.qkv.weight""": { '''key''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path] ,attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None ,config=__a ,) else: _a : str = renew_resnet_paths(__a ,n_shave_prefix_segments=1 ) for path in resnet_0_paths: _a : Any = '''.'''.join(['''output_blocks''', str(__a ), path['''old''']] ) _a : Tuple = '''.'''.join(['''up_blocks''', str(__a ), '''resnets''', str(__a ), path['''new''']] ) _a : Optional[int] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') a__ = parser.parse_args() a__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: a__ = json.loads(f.read()) a__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] a__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: a__ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) a__ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) a__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
14
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
import os from typing import Dict, List, Tuple, TypeVar, Union a__ = TypeVar('''T''') a__ = Union[List[T], Tuple[T, ...]] a__ = Union[T, List[T], Dict[str, T]] a__ = Union[str, bytes, os.PathLike]
14
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Tuple: _a : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_a , '''num_attention_heads''' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=6_4 , _a=3 , _a=3 , _a=2 , _a=1 , _a=1_6 , _a=[1_2_8, 2_5_6, 3_8_4] , _a=[4, 6, 8] , _a=[2, 3, 4] , _a=[1_6, 1_6, 1_6] , _a=0 , _a=[2, 2, 2] , _a=[2, 2, 2] , _a=0.02 , _a=True , _a=True , _a=2 , ) -> Tuple: _a : Optional[int] = parent _a : Optional[Any] = batch_size _a : Any = image_size _a : int = num_channels _a : str = kernel_size _a : Dict = stride _a : List[Any] = padding _a : Union[str, Any] = hidden_sizes _a : str = num_attention_heads _a : Optional[int] = depths _a : Any = key_dim _a : Any = drop_path_rate _a : List[str] = patch_size _a : str = attention_ratio _a : Union[str, Any] = mlp_ratio _a : Any = initializer_range _a : Any = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _a : Any = is_training _a : Tuple = use_labels _a : str = num_labels _a : List[Any] = initializer_range def __lowercase ( self ) -> List[str]: _a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] , self.num_labels ) _a : str = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> Optional[Any]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : str = LevitModel(config=_a ) model.to(_a ) model.eval() _a : str = model(_a ) _a : List[Any] = (self.image_size, self.image_size) _a , _a : Optional[int] = image_size[0], image_size[1] for _ in range(4 ): _a : Dict = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _a : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : Optional[Any] = self.num_labels _a : List[Any] = LevitForImageClassification(_a ) model.to(_a ) model.eval() _a : Tuple = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Dict: _a : List[str] = self.prepare_config_and_inputs() _a , _a , _a : int = config_and_inputs _a : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCAmelCase__ : int = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : Any = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Optional[int]: _a : str = LevitModelTester(self ) _a : Optional[int] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=3_7 ) def __lowercase ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self ) -> int: return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def __lowercase ( self ) -> int: pass @unittest.skip(reason='''Levit does not output attentions''' ) def __lowercase ( self ) -> List[str]: pass def __lowercase ( self ) -> Tuple: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) _a : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[int] = [*signature.parameters.keys()] _a : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[Any] = model(**self._prepare_for_class(_a , _a ) ) _a : str = outputs.hidden_states _a : List[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(_a ) , _a ) _a : Union[str, Any] = (self.model_tester.image_size, self.model_tester.image_size) _a , _a : List[Any] = image_size[0], image_size[1] for _ in range(4 ): _a : Dict = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _a : int = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Tuple: pass def __lowercase ( self , _a , _a , _a=False ) -> str: _a : List[Any] = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowercase ( self ) -> Optional[int]: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> str: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __lowercase ( self ) -> Tuple: if not self.model_tester.is_training: return _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() _a : Union[str, Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _a : int = model_class(_a ) model.to(_a ) model.train() _a : List[str] = self._prepare_for_class(_a , _a , return_labels=_a ) _a : Optional[int] = model(**_a ).loss loss.backward() def __lowercase ( self ) -> Optional[int]: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _a : Any = False _a : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _a : Dict = model_class(_a ) model.gradient_checkpointing_enable() model.to(_a ) model.train() _a : Dict = self._prepare_for_class(_a , _a , return_labels=_a ) _a : Optional[Any] = model(**_a ).loss loss.backward() def __lowercase ( self ) -> Optional[Any]: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : int = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): _a : Optional[int] = problem_type['''title'''] _a : Optional[Any] = problem_type['''num_labels'''] _a : Optional[Any] = model_class(_a ) model.to(_a ) model.train() _a : List[Any] = self._prepare_for_class(_a , _a , return_labels=_a ) if problem_type["num_labels"] > 1: _a : int = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _a : Union[str, Any] = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_a ) as warning_list: _a : List[Any] = model(**_a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __lowercase ( self ) -> Any: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : int = LevitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( ) -> int: """simple docstring""" _a : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> List[Any]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowercase ( self ) -> Dict: _a : List[str] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _a ) _a : int = self.default_image_processor _a : int = prepare_img() _a : List[str] = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Union[str, Any] = model(**_a ) # verify the logits _a : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : List[Any] = torch.tensor([1.0448, -0.3745, -1.8317] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
1
import os from datetime import datetime as dt from github import Github a__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : List[str] = Github(os.environ['''GITHUB_TOKEN'''] ) _a : Tuple = g.get_repo('''huggingface/diffusers''' ) _a : str = repo.get_issues(state='''open''' ) for issue in open_issues: _a : Optional[int] = sorted(issue.get_comments() ,key=lambda __a : i.created_at ,reverse=__a ) _a : Union[str, Any] = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
14
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=2 , _a=True , _a=False , _a=1_0 , _a=3 , _a=3_2 * 4 , _a=3_2 * 6 , _a=4 , _a=3_2 , ) -> Union[str, Any]: _a : int = parent _a : List[str] = batch_size _a : Optional[int] = is_training _a : Tuple = use_auxiliary_loss _a : Tuple = num_queries _a : List[str] = num_channels _a : Tuple = min_size _a : Union[str, Any] = max_size _a : Optional[Any] = num_labels _a : int = mask_feature_size def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) _a : Any = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) _a : List[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() _a : int = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() _a : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self ) -> List[str]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __lowercase ( self ) -> List[Any]: _a , _a , _a , _a , _a : Optional[int] = self.prepare_config_and_inputs() _a : str = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __lowercase ( self , _a , _a ) -> Optional[Any]: _a : Dict = output.encoder_hidden_states _a : Tuple = output.pixel_decoder_hidden_states _a : Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_config.decoder_layers ) def __lowercase ( self , _a , _a , _a , _a=False ) -> Tuple: with torch.no_grad(): _a : Tuple = MaskFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(pixel_values=_a , pixel_mask=_a ) _a : int = model(_a , output_hidden_states=_a ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def __lowercase ( self , _a , _a , _a , _a , _a ) -> Tuple: _a : Tuple = MaskFormerForInstanceSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _a : Optional[Any] = model(pixel_values=_a , pixel_mask=_a ) _a : str = model(_a ) comm_check_on_output(_a ) _a : Tuple = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase__ : Dict = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = False def __lowercase ( self ) -> str: _a : str = MaskFormerModelTester(self ) _a : Any = ConfigTester(self , config_class=_a , has_text_modality=_a ) def __lowercase ( self ) -> str: self.config_tester.run_common_tests() def __lowercase ( self ) -> str: _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_a , **_a , output_hidden_states=_a ) def __lowercase ( self ) -> str: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Optional[int]: pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def __lowercase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def __lowercase ( self ) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Tuple: pass def __lowercase ( self ) -> str: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: _a : Any = MaskFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self ) -> List[str]: _a : Any = (self.model_tester.min_size,) * 2 _a : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=_a ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=_a ), '''class_labels''': torch.zeros(2 , 1_0 , device=_a ).long(), } _a : Any = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_a ) _a : List[Any] = model(**_a ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self ) -> Any: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_a , **_a , output_hidden_states=_a ) def __lowercase ( self ) -> List[str]: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = model_class(_a ).to(_a ) _a : str = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self ) -> List[Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _a : Tuple = self.all_model_classes[1] _a , _a , _a , _a , _a : int = self.model_tester.prepare_config_and_inputs() _a : Dict = model_class(_a ) model.to(_a ) model.train() _a : Optional[int] = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def __lowercase ( self ) -> Dict: # only MaskFormerForInstanceSegmentation has the loss _a : List[str] = self.all_model_classes[1] _a , _a , _a , _a , _a : Tuple = self.model_tester.prepare_config_and_inputs() _a : Union[str, Any] = True _a : Tuple = True _a : Optional[Any] = model_class(_a ) model.to(_a ) model.train() _a : Optional[int] = model(_a , mask_labels=_a , class_labels=_a ) _a : Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _a : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _a : Union[str, Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _a : Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a__ = 1E-4 def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def __lowercase ( self ) -> Any: _a : Dict = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_a ) _a : Optional[int] = self.default_image_processor _a : List[Any] = prepare_img() _a : int = image_processor(_a , return_tensors='''pt''' ).to(_a ) _a : List[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_a , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _a : List[str] = model(**_a ) _a : Union[str, Any] = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) _a : Optional[Any] = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) _a : Tuple = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def __lowercase ( self ) -> Optional[Any]: _a : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_a ) .eval() ) _a : Optional[int] = self.default_image_processor _a : Optional[int] = prepare_img() _a : Union[str, Any] = image_processor(_a , return_tensors='''pt''' ).to(_a ) _a : Tuple = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_a , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _a : Any = model(**_a ) # masks_queries_logits _a : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _a : Optional[int] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _a : Tuple = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits _a : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _a : Dict = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def __lowercase ( self ) -> str: _a : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_a ) .eval() ) _a : Dict = self.default_image_processor _a : str = prepare_img() _a : Union[str, Any] = image_processor(_a , return_tensors='''pt''' ).to(_a ) _a : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_a , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _a : int = model(**_a ) # masks_queries_logits _a : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _a : Union[str, Any] = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _a : str = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits _a : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _a : Union[str, Any] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def __lowercase ( self ) -> Union[str, Any]: _a : Dict = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_a ) .eval() ) _a : Optional[Any] = self.default_image_processor _a : str = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) _a : List[str] = inputs['''pixel_values'''].to(_a ) _a : Dict = [el.to(_a ) for el in inputs['''mask_labels''']] _a : List[str] = [el.to(_a ) for el in inputs['''class_labels''']] with torch.no_grad(): _a : Tuple = model(**_a ) self.assertTrue(outputs.loss is not None )
14
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) _a : Tuple = size if size is not None else {'''shortest_edge''': 3_8_4} _a : Optional[Any] = get_size_dict(_a , default_to_square=_a ) _a : int = do_resize _a : Union[str, Any] = size # Default value set here for backwards compatibility where the value in config is None _a : str = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _a : List[Any] = resample _a : Optional[Any] = do_rescale _a : str = rescale_factor _a : str = do_normalize _a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowercase ( self , _a , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: _a : List[str] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) _a : str = size['''shortest_edge'''] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _a : Dict = int(shortest_edge / crop_pct ) _a : Optional[Any] = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) _a : Dict = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> str: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : List[Any] = do_resize if do_resize is not None else self.do_resize _a : str = crop_pct if crop_pct is not None else self.crop_pct _a : int = resample if resample is not None else self.resample _a : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _a : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _a : List[str] = image_mean if image_mean is not None else self.image_mean _a : List[str] = image_std if image_std is not None else self.image_std _a : Optional[Any] = size if size is not None else self.size _a : Optional[int] = get_size_dict(_a , default_to_square=_a ) _a : Any = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a : Union[str, Any] = [to_numpy_array(_a ) for image in images] if do_resize: _a : Optional[int] = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images] if do_rescale: _a : int = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : List[Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : Optional[int] = [to_channel_dimension_format(_a , _a ) for image in images] _a : int = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
14
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = "microsoft/speecht5_tts" UpperCAmelCase__ : int = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) UpperCAmelCase__ : List[Any] = "text_reader" UpperCAmelCase__ : Optional[Any] = SpeechTaProcessor UpperCAmelCase__ : Union[str, Any] = SpeechTaForTextToSpeech UpperCAmelCase__ : Union[str, Any] = SpeechTaHifiGan UpperCAmelCase__ : Dict = ["text"] UpperCAmelCase__ : str = ["audio"] def __lowercase ( self ) -> Tuple: if self.post_processor is None: _a : str = '''microsoft/speecht5_hifigan''' super().setup() def __lowercase ( self , _a , _a=None ) -> Optional[Any]: _a : Union[str, Any] = self.pre_processor(text=_a , return_tensors='''pt''' , truncation=_a ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) _a : Dict = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) _a : List[str] = torch.tensor(embeddings_dataset[7_3_0_5]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowercase ( self , _a ) -> List[str]: with torch.no_grad(): return self.model.generate_speech(**_a ) def __lowercase ( self , _a ) -> Tuple: with torch.no_grad(): return self.post_processor(_a ).cpu().detach()
14
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
1
from collections import deque from math import floor from random import random from time import time class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> List[str]: _a : Any = {} def __lowercase ( self , _a , _a , _a=1 ) -> Tuple: if self.graph.get(_a ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a : Union[str, Any] = [[w, v]] if not self.graph.get(_a ): _a : Dict = [] def __lowercase ( self ) -> Union[str, Any]: return list(self.graph ) def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.graph.get(_a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_a ) def __lowercase ( self , _a=-2 , _a=-1 ) -> Dict: if s == d: return [] _a : Optional[int] = [] _a : int = [] if s == -2: _a : Optional[int] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _a : Union[str, Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_a ) != 0: _a : Any = stack[len(_a ) - 1] else: _a : Dict = ss # check if se have reached the starting point if len(_a ) == 0: return visited def __lowercase ( self , _a=-1 ) -> List[str]: if c == -1: _a : List[str] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(_a ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _a : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(_a , _a , 1 ) def __lowercase ( self , _a=-2 ) -> List[Any]: _a : Any = deque() _a : List[str] = [] if s == -2: _a : Any = list(self.graph )[0] d.append(_a ) visited.append(_a ) while d: _a : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowercase ( self , _a ) -> Optional[Any]: _a : Optional[int] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowercase ( self , _a ) -> int: return len(self.graph[u] ) def __lowercase ( self , _a=-2 ) -> int: _a : str = [] _a : str = [] if s == -2: _a : Any = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _a : Dict = s _a : Union[str, Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a : Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_a ) != 0: _a : List[Any] = stack[len(_a ) - 1] else: _a : Dict = ss # check if se have reached the starting point if len(_a ) == 0: return sorted_nodes def __lowercase ( self ) -> Any: _a : List[str] = [] _a : Optional[Any] = [] _a : Optional[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _a : Any = -2 _a : Optional[int] = [] _a : str = s _a : List[Any] = False _a : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a : int = len(_a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() _a : Union[str, Any] = True if len(_a ) != 0: _a : Any = stack[len(_a ) - 1] else: _a : Optional[int] = False indirect_parents.append(_a ) _a : Dict = s _a : Union[str, Any] = ss # check if se have reached the starting point if len(_a ) == 0: return list(_a ) def __lowercase ( self ) -> Any: _a : Any = [] _a : Union[str, Any] = [] _a : List[str] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _a : List[str] = -2 _a : Dict = [] _a : str = s _a : Optional[Any] = False _a : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a : int = len(_a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _a : Optional[Any] = True if len(_a ) != 0: _a : Tuple = stack[len(_a ) - 1] else: _a : Union[str, Any] = False indirect_parents.append(_a ) _a : Union[str, Any] = s _a : List[Any] = ss # check if se have reached the starting point if len(_a ) == 0: return False def __lowercase ( self , _a=-2 , _a=-1 ) -> List[str]: _a : Dict = time() self.dfs(_a , _a ) _a : Tuple = time() return end - begin def __lowercase ( self , _a=-2 ) -> Optional[int]: _a : int = time() self.bfs(_a ) _a : List[Any] = time() return end - begin class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> Optional[Any]: _a : Union[str, Any] = {} def __lowercase ( self , _a , _a , _a=1 ) -> List[Any]: # check if the u exists if self.graph.get(_a ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a : int = [[w, v]] # add the other way if self.graph.get(_a ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a : int = [[w, u]] def __lowercase ( self , _a , _a ) -> List[Any]: if self.graph.get(_a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_a ) # the other way round if self.graph.get(_a ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_a ) def __lowercase ( self , _a=-2 , _a=-1 ) -> Any: if s == d: return [] _a : str = [] _a : Optional[Any] = [] if s == -2: _a : List[str] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _a : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_a ) != 0: _a : Dict = stack[len(_a ) - 1] else: _a : Union[str, Any] = ss # check if se have reached the starting point if len(_a ) == 0: return visited def __lowercase ( self , _a=-1 ) -> int: if c == -1: _a : Any = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(_a ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _a : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(_a , _a , 1 ) def __lowercase ( self , _a=-2 ) -> Tuple: _a : Optional[Any] = deque() _a : List[Any] = [] if s == -2: _a : int = list(self.graph )[0] d.append(_a ) visited.append(_a ) while d: _a : List[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowercase ( self , _a ) -> Optional[Any]: return len(self.graph[u] ) def __lowercase ( self ) -> List[Any]: _a : List[str] = [] _a : Optional[Any] = [] _a : str = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _a : Any = -2 _a : int = [] _a : Optional[Any] = s _a : str = False _a : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a : Optional[int] = len(_a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a : int = node[1] break # check if all the children are visited if s == ss: stack.pop() _a : str = True if len(_a ) != 0: _a : List[Any] = stack[len(_a ) - 1] else: _a : List[Any] = False indirect_parents.append(_a ) _a : Tuple = s _a : Tuple = ss # check if se have reached the starting point if len(_a ) == 0: return list(_a ) def __lowercase ( self ) -> List[str]: _a : str = [] _a : Optional[int] = [] _a : List[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _a : Tuple = -2 _a : List[Any] = [] _a : Dict = s _a : List[str] = False _a : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a : Union[str, Any] = len(_a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _a : Union[str, Any] = True if len(_a ) != 0: _a : Optional[Any] = stack[len(_a ) - 1] else: _a : List[str] = False indirect_parents.append(_a ) _a : Dict = s _a : str = ss # check if se have reached the starting point if len(_a ) == 0: return False def __lowercase ( self ) -> Union[str, Any]: return list(self.graph ) def __lowercase ( self , _a=-2 , _a=-1 ) -> Union[str, Any]: _a : Optional[Any] = time() self.dfs(_a , _a ) _a : str = time() return end - begin def __lowercase ( self , _a=-2 ) -> Dict: _a : Union[str, Any] = time() self.bfs(_a ) _a : Optional[int] = time() return end - begin
14
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor a__ = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , *_a , **_a ) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
14
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate a__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) a__ = [] a__ = [] a__ = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} a__ = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', '''emoji''': True, }, } ] a__ = 0 for log in Path().glob('''*.log'''): a__ = 0 with open(log, '''r''') as f: for line in f: a__ = json.loads(line) if line.get('''nodeid''', '''''') != "": a__ = line['''nodeid'''] if line.get('''duration''', None) is not None: a__ = f'''{line["duration"]:.4f}''' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) a__ = [] log.unlink() a__ = '''''' a__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" a__ = [] a__ = {} for test in failed_tests: a__ = test[0].split('''::''') a__ = data[0].split('''/''')[-1] if data[0] not in filesafailed: a__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) a__ = [test[0] for test in failed_table] a__ = list(set(files)) # Count number of instances in failed_tests a__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) a__ = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: a__ = '''Too many failed tests, please see the full report in the Action results.''' a__ = len(err) + 10 a__ = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: a__ = '''No failed tests! 🤗''' print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient a__ = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": a__ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) a__ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) a__ = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) a__ = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) a__ = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name a__ = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: a__ = row[0] else: a__ = '''''' a__ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
14
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
1
def __UpperCAmelCase ( __a : List[Any] ) -> Any: """simple docstring""" _a : Tuple = 0 _a : List[str] = len(__a ) for i in range(n - 1 ): for j in range(i + 1 ,__a ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __UpperCAmelCase ( __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if len(__a ) <= 1: return arr, 0 _a : List[Any] = len(__a ) // 2 _a : List[str] = arr[0:mid] _a : Optional[int] = arr[mid:] _a , _a : str = count_inversions_recursive(__a ) _a , _a : Tuple = count_inversions_recursive(__a ) _a , _a : int = _count_cross_inversions(__a ,__a ) _a : Union[str, Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def __UpperCAmelCase ( __a : List[Any] ,__a : Any ) -> Union[str, Any]: """simple docstring""" _a : str = [] _a : Optional[int] = 0 while i < len(__a ) and j < len(__a ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__a ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__a ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __UpperCAmelCase ( ) -> Any: """simple docstring""" _a : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _a : Dict = count_inversions_bf(__a ) _a , _a : Dict = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' ,__a ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _a : Optional[int] = count_inversions_bf(__a ) _a , _a : Union[str, Any] = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' ,__a ) # an empty list should also have zero inversions _a : Optional[int] = [] _a : List[Any] = count_inversions_bf(__a ) _a , _a : str = count_inversions_recursive(__a ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' ,__a ) if __name__ == "__main__": main()
14
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a__ = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } a__ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __UpperCAmelCase ( __a : Any ,__a : List[str]=False ) -> List[Any]: """simple docstring""" _a , _a : List[Any] = create_model( '''HTSAT-tiny''' ,'''roberta''' ,__a ,precision='''fp32''' ,device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' ,enable_fusion=__a ,fusion_type='''aff_2d''' if enable_fusion else None ,) return model, model_cfg def __UpperCAmelCase ( __a : str ) -> Union[str, Any]: """simple docstring""" _a : Any = {} _a : int = R'''.*sequential.(\d+).*''' _a : List[Any] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a : List[Any] = key.replace(__a ,__a ) if re.match(__a ,__a ): # replace sequential layers with list _a : int = re.match(__a ,__a ).group(1 ) _a : List[str] = key.replace(F"""sequential.{sequential_layer}.""" ,F"""layers.{int(__a )//3}.linear.""" ) elif re.match(__a ,__a ): _a : Optional[Any] = int(re.match(__a ,__a ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _a : Optional[int] = 1 if projecton_layer == 0 else 2 _a : List[str] = key.replace(F"""_projection.{projecton_layer}.""" ,F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _a : List[str] = value _a : Union[str, Any] = mixed_qkv.size(0 ) // 3 _a : Tuple = mixed_qkv[:qkv_dim] _a : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] _a : Dict = mixed_qkv[qkv_dim * 2 :] _a : Optional[int] = query_layer _a : Tuple = key_layer _a : Tuple = value_layer else: _a : Tuple = value return model_state_dict def __UpperCAmelCase ( __a : Tuple ,__a : Optional[int] ,__a : Dict ,__a : Dict=False ) -> Any: """simple docstring""" _a , _a : Optional[Any] = init_clap(__a ,enable_fusion=__a ) clap_model.eval() _a : Tuple = clap_model.state_dict() _a : Union[str, Any] = rename_state_dict(__a ) _a : Union[str, Any] = ClapConfig() _a : Dict = enable_fusion _a : Dict = ClapModel(__a ) # ignore the spectrogram embedding layer model.load_state_dict(__a ,strict=__a ) model.save_pretrained(__a ) transformers_config.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') a__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowercase ( self ) -> Dict: _a : Optional[Any] = 1 _a : str = 3 _a : List[str] = (3_2, 3_2) _a : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def __lowercase ( self ) -> List[str]: torch.manual_seed(0 ) _a : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __lowercase ( self ) -> int: torch.manual_seed(0 ) _a : Optional[Any] = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(_a ) @property def __lowercase ( self ) -> List[Any]: def extract(*_a , **_a ): class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> Union[str, Any]: _a : Union[str, Any] = torch.ones([0] ) def __lowercase ( self , _a ) -> Union[str, Any]: self.pixel_values.to(_a ) return self return Out() return extract def __lowercase ( self ) -> Union[str, Any]: _a : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : int = self.dummy_cond_unet _a : List[Any] = PNDMScheduler(skip_prk_steps=_a ) _a : Optional[Any] = self.dummy_vae _a : List[str] = self.dummy_text_encoder _a : List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _a : int = 7_7 _a : List[str] = self.dummy_image.to(_a ) _a : str = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a : int = AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) _a : Optional[int] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) _a : str = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) _a : Optional[int] = '''A painting of a squirrel eating a burger''' _a : Dict = torch.Generator(device=_a ).manual_seed(0 ) _a : Optional[Any] = alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_a , ) _a : int = output.images _a : List[Any] = torch.Generator(device=_a ).manual_seed(0 ) _a : Union[str, Any] = alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_a , return_dict=_a , )[0] _a : int = image[0, -3:, -3:, -1] _a : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _a : Optional[int] = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowercase ( self ) -> List[str]: _a : int = self.dummy_cond_unet _a : List[Any] = PNDMScheduler(skip_prk_steps=_a ) _a : List[str] = self.dummy_vae _a : str = self.dummy_text_encoder _a : List[str] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _a : int = 7_7 _a : Optional[int] = self.dummy_image.to(_a ) # put models in fp16 _a : int = unet.half() _a : int = vae.half() _a : List[str] = bert.half() # make sure here that pndm scheduler skips prk _a : List[str] = AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) _a : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) _a : Any = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) _a : List[str] = '''A painting of a squirrel eating a burger''' _a : Optional[Any] = torch.manual_seed(0 ) _a : List[str] = alt_pipe( [prompt] , generator=_a , num_inference_steps=2 , output_type='''np''' , image=_a , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowercase ( self ) -> str: _a : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 _a : str = init_image.resize((7_6_0, 5_0_4) ) _a : Union[str, Any] = '''BAAI/AltDiffusion''' _a : Any = AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _a : Any = '''A fantasy landscape, trending on artstation''' _a : str = torch.manual_seed(0 ) _a : Any = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='''np''' , ) _a : List[Any] = output.images[0] _a : List[str] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) _a : Optional[Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _a : str = init_image.resize((7_6_8, 5_1_2) ) _a : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) _a : Dict = '''BAAI/AltDiffusion''' _a : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _a : int = '''A fantasy landscape, trending on artstation''' _a : str = torch.manual_seed(0 ) _a : Optional[Any] = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='''np''' , ) _a : Any = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
14
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
1
from jiwer import compute_measures import datasets a__ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' a__ = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' a__ = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def __lowercase ( self , _a=None , _a=None , _a=False ) -> Optional[int]: if concatenate_texts: return compute_measures(_a , _a )["wer"] else: _a : Optional[int] = 0 _a : Tuple = 0 for prediction, reference in zip(_a , _a ): _a : str = compute_measures(_a , _a ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
14
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : Optional[Any] = XGLMConfig UpperCAmelCase__ : int = {} UpperCAmelCase__ : Optional[Any] = "gelu" def __init__( self , _a , _a=1_4 , _a=7 , _a=True , _a=True , _a=True , _a=9_9 , _a=3_2 , _a=2 , _a=4 , _a=3_7 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=0.02 , ) -> Dict: _a : List[str] = parent _a : Optional[Any] = batch_size _a : Dict = seq_length _a : Tuple = is_training _a : List[str] = use_input_mask _a : Optional[Any] = use_labels _a : Dict = vocab_size _a : List[Any] = d_model _a : Any = num_hidden_layers _a : List[Any] = num_attention_heads _a : Tuple = ffn_dim _a : Any = activation_function _a : List[str] = activation_dropout _a : Tuple = attention_dropout _a : Union[str, Any] = max_position_embeddings _a : int = initializer_range _a : Union[str, Any] = None _a : Any = 0 _a : Tuple = 2 _a : Union[str, Any] = 1 def __lowercase ( self ) -> Optional[int]: return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def __lowercase ( self ) -> Any: _a : Dict = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _a : Any = None if self.use_input_mask: _a : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Dict = self.get_config() _a : Tuple = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowercase ( self ) -> int: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_a , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_a , ) def __lowercase ( self ) -> Optional[int]: _a : List[str] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Dict = config_and_inputs _a : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase__ : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase__ : Tuple = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> str: _a : str = TFXGLMModelTester(self ) _a : List[str] = ConfigTester(self , config_class=_a , n_embd=3_7 ) def __lowercase ( self ) -> Tuple: self.config_tester.run_common_tests() @slow def __lowercase ( self ) -> List[str]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] = TFXGLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def __lowercase ( self ) -> str: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self , _a=True ) -> Dict: _a : Any = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) _a : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _a : Union[str, Any] = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _a : Any = model.generate(_a , do_sample=_a , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _a ) @slow def __lowercase ( self ) -> List[str]: _a : List[Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) _a : Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) _a : Optional[Any] = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) _a : Optional[int] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): _a : List[str] = model.generate(_a , do_sample=_a , seed=[7, 0] ) _a : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=_a ) _a : int = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_a , _a ) @slow def __lowercase ( self ) -> Union[str, Any]: _a : int = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) _a : Union[str, Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) _a : Tuple = '''left''' # use different length sentences to test batching _a : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] _a : Optional[int] = tokenizer(_a , return_tensors='''tf''' , padding=_a ) _a : int = inputs['''input_ids'''] _a : Optional[Any] = model.generate(input_ids=_a , attention_mask=inputs['''attention_mask'''] , max_new_tokens=1_2 ) _a : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids _a : Optional[Any] = model.generate(input_ids=_a , max_new_tokens=1_2 ) _a : Dict = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids _a : int = model.generate(input_ids=_a , max_new_tokens=1_2 ) _a : Union[str, Any] = tokenizer.batch_decode(_a , skip_special_tokens=_a ) _a : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) _a : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) _a : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] )
14
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
1
import random def __UpperCAmelCase ( __a : int ) -> bool: """simple docstring""" _a : str = num - 1 _a : Dict = 0 while s % 2 == 0: _a : Dict = s // 2 t += 1 for _ in range(5 ): _a : Dict = random.randrange(2 ,num - 1 ) _a : List[str] = pow(__a ,__a ,__a ) if v != 1: _a : Any = 0 while v != (num - 1): if i == t - 1: return False else: _a : List[Any] = i + 1 _a : List[Any] = (v**2) % num return True def __UpperCAmelCase ( __a : int ) -> bool: """simple docstring""" if num < 2: return False _a : str = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__a ) def __UpperCAmelCase ( __a : int = 1_024 ) -> int: """simple docstring""" while True: _a : List[Any] = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(__a ): return num if __name__ == "__main__": a__ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
14
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = FunnelTokenizer UpperCAmelCase__ : List[str] = FunnelTokenizerFast UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Union[str, Any] = True def __lowercase ( self ) -> Tuple: super().setUp() _a : str = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , **_a ) -> Union[str, Any]: return FunnelTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , **_a ) -> Dict: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Any: _a : Dict = '''UNwant\u00E9d,running''' _a : Tuple = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> int: _a : Any = self.tokenizer_class(self.vocab_file ) _a : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> Tuple: _a : int = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: _a : Any = tokenizer('''UNwant\u00E9d,running''' ) _a : Optional[int] = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) _a : Tuple = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
14
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path a__ = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __UpperCAmelCase ( __a : List[Any]=True ) -> str: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = None UpperCAmelCase__ : List[str] = None def __lowercase ( self , _a , _a ) -> Optional[Any]: with TemporaryDirectory() as tmp_dir: _a : Dict = dataset_module_factory(_a , cache_dir=_a ) _a : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=_a ) _a : DatasetBuilder = builder_cls( cache_dir=_a , config_name=_a , hash=dataset_module.hash , ) _a : int = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_a ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) _a : Optional[int] = cached_path(_a , cache_dir=_a ) self.assertTrue(os.path.exists(_a ) ) @pytest.mark.integration def __UpperCAmelCase ( __a : Optional[int] ) -> List[Any]: """simple docstring""" _a : List[str] = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' _a : List[str] = dataset_module_factory('''wikipedia''' ,cache_dir=__a ) _a : Tuple = import_main_class(dataset_module.module_path ) _a : DatasetBuilder = builder_cls( cache_dir=__a ,config_name='''20220301.frr''' ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _a : int = None builder_instance.download_and_prepare() _a : Tuple = builder_instance.as_dataset() assert ds @pytest.mark.integration def __UpperCAmelCase ( __a : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = dataset_module_factory('''wikipedia''' ,cache_dir=__a ) _a : Optional[int] = import_main_class(dataset_module.module_path ,dataset=__a ) _a : DatasetBuilder = builder_cls( cache_dir=__a ,config_name='''20220301.frr''' ,hash=dataset_module.hash ,) _a : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(__a ,__a ) assert "train" in ds assert isinstance(ds['''train'''] ,__a ) assert next(iter(ds['''train'''] ) )
14
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] UpperCAmelCase__ : List[Any] = "CLIPImageProcessor" UpperCAmelCase__ : List[str] = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Tuple: _a : Dict = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : int = kwargs.pop('''feature_extractor''' ) _a : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , **_a ) -> List[str]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _a : Optional[Any] = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: _a : Optional[int] = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: _a : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __lowercase ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> List[Any]: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Tuple: _a : int = self.tokenizer.model_input_names _a : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = (UnCLIPScheduler,) def __lowercase ( self , **_a ) -> Optional[Any]: _a : Tuple = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __lowercase ( self ) -> List[str]: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __lowercase ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __lowercase ( self ) -> List[str]: for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=_a ) def __lowercase ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> Optional[Any]: for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __lowercase ( self ) -> Tuple: _a : Optional[int] = self.scheduler_classes[0] _a : str = self.get_scheduler_config(variance_type='''fixed_small_log''' ) _a : List[str] = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.999_4987 ) ) < 1e-5 def __lowercase ( self ) -> Optional[Any]: _a : List[str] = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config(variance_type='''learned_range''' ) _a : Tuple = scheduler_class(**_a ) _a : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=_a ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=_a ) - -0.001_0011 < 1e-5 def __lowercase ( self ) -> Optional[Any]: _a : Union[str, Any] = self.scheduler_classes[0] _a : int = self.get_scheduler_config() _a : List[Any] = scheduler_class(**_a ) _a : List[Any] = scheduler.timesteps _a : Tuple = self.dummy_model() _a : List[str] = self.dummy_sample_deter _a : Union[str, Any] = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual _a : Union[str, Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 _a : Union[str, Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample _a : Tuple = pred_prev_sample _a : int = torch.sum(torch.abs(_a ) ) _a : Dict = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def __lowercase ( self ) -> Union[str, Any]: _a : str = self.scheduler_classes[0] _a : Any = self.get_scheduler_config() _a : Tuple = scheduler_class(**_a ) scheduler.set_timesteps(2_5 ) _a : Optional[int] = scheduler.timesteps _a : Dict = self.dummy_model() _a : Tuple = self.dummy_sample_deter _a : Dict = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual _a : Dict = model(_a , _a ) if i + 1 == timesteps.shape[0]: _a : Tuple = None else: _a : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _a : str = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample _a : Tuple = pred_prev_sample _a : Any = torch.sum(torch.abs(_a ) ) _a : str = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> List[Any]: pass
14
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a__ = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , **_a ) -> List[str]: super().__init__(**_a ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type(_a ) def __call__( self , _a , _a = None , **_a , ) -> List[str]: if "text_queries" in kwargs: _a : Optional[Any] = kwargs.pop('''text_queries''' ) if isinstance(_a , (str, Image.Image) ): _a : Tuple = {'''image''': image, '''candidate_labels''': candidate_labels} else: _a : str = image _a : int = super().__call__(_a , **_a ) return results def __lowercase ( self , **_a ) -> Union[str, Any]: _a : Union[str, Any] = {} if "threshold" in kwargs: _a : Dict = kwargs['''threshold'''] if "top_k" in kwargs: _a : Tuple = kwargs['''top_k'''] return {}, {}, postprocess_params def __lowercase ( self , _a ) -> List[str]: _a : int = load_image(inputs['''image'''] ) _a : Union[str, Any] = inputs['''candidate_labels'''] if isinstance(_a , _a ): _a : Tuple = candidate_labels.split(''',''' ) _a : Dict = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_a ): _a : Union[str, Any] = self.tokenizer(_a , return_tensors=self.framework ) _a : Optional[Any] = self.image_processor(_a , return_tensors=self.framework ) yield { "is_last": i == len(_a ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __lowercase ( self , _a ) -> str: _a : Optional[int] = model_inputs.pop('''target_size''' ) _a : int = model_inputs.pop('''candidate_label''' ) _a : str = model_inputs.pop('''is_last''' ) _a : Union[str, Any] = self.model(**_a ) _a : List[str] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def __lowercase ( self , _a , _a=0.1 , _a=None ) -> Any: _a : str = [] for model_output in model_outputs: _a : str = model_output['''candidate_label'''] _a : int = BaseModelOutput(_a ) _a : Tuple = self.image_processor.post_process_object_detection( outputs=_a , threshold=_a , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): _a : Optional[Any] = outputs['''scores'''][index].item() _a : List[str] = self._get_bounding_box(outputs['''boxes'''][index][0] ) _a : Dict = {'''score''': score, '''label''': label, '''box''': box} results.append(_a ) _a : str = sorted(_a , key=lambda _a : x["score"] , reverse=_a ) if top_k: _a : Any = results[:top_k] return results def __lowercase ( self , _a ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) _a , _a , _a , _a : Dict = box.int().tolist() _a : int = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
14
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
1
def __UpperCAmelCase ( __a : int = 1_000 ) -> int: """simple docstring""" _a : str = 2**power _a : str = 0 while n: _a , _a : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
14
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = "nllb-moe" UpperCAmelCase__ : Optional[int] = ["past_key_values"] UpperCAmelCase__ : List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _a=1_2_8_1_1_2 , _a=1_0_2_4 , _a=1_2 , _a=4_0_9_6 , _a=1_6 , _a=1_2 , _a=4_0_9_6 , _a=1_6 , _a=0.05 , _a=0.05 , _a=True , _a=True , _a="relu" , _a=1_0_2_4 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.02 , _a=2 , _a=True , _a=False , _a="float32" , _a=False , _a=1_2_8 , _a=6_4 , _a=4 , _a=4 , _a=0.001 , _a=0.001 , _a="all" , _a=False , _a=False , _a=1.0 , _a=0.2 , _a=1 , _a=0 , _a=2 , _a=False , **_a , ) -> str: _a : Optional[Any] = vocab_size _a : Tuple = max_position_embeddings _a : Any = d_model _a : List[Any] = encoder_ffn_dim _a : List[Any] = encoder_layers _a : Tuple = encoder_attention_heads _a : Any = decoder_ffn_dim _a : List[Any] = decoder_layers _a : Optional[Any] = decoder_attention_heads _a : Tuple = dropout _a : Dict = attention_dropout _a : Union[str, Any] = activation_dropout _a : List[Any] = activation_function _a : Dict = init_std _a : List[Any] = encoder_layerdrop _a : List[Any] = decoder_layerdrop _a : Optional[int] = use_cache _a : Optional[Any] = encoder_layers _a : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True _a : int = router_z_loss_coef _a : List[str] = router_aux_loss_coef _a : int = decoder_sparse_step _a : List[Any] = encoder_sparse_step _a : Tuple = num_experts _a : str = expert_capacity _a : str = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) _a : int = router_dtype _a : Optional[Any] = router_ignore_padding_tokens _a : Tuple = batch_prioritized_routing _a : Optional[int] = second_expert_policy _a : Optional[Any] = normalize_router_prob_before_dropping _a : Optional[int] = moe_eval_capacity_token_fraction _a : Optional[Any] = moe_token_dropout _a : Union[str, Any] = output_router_logits super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , **_a , )
14
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a__ = '''src/diffusers''' # Matches is_xxx_available() a__ = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla a__ = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') a__ = ''' {0} = None ''' a__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' a__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def __UpperCAmelCase ( __a : Dict ) -> str: """simple docstring""" _a : Optional[Any] = _re_backend.findall(__a ) if len(__a ) == 0: return None return "_and_".join(__a ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with open(os.path.join(__a ,'''__init__.py''' ) ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking _a : List[Any] = 0 _a : Optional[int] = {} # Go through the end of the file while line_index < len(__a ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _a : Any = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 _a : List[str] = [] # Until we unindent, add backend objects to the list while line_index < len(__a ) and len(lines[line_index] ) > 1: _a : Optional[Any] = lines[line_index] _a : Any = _re_single_line_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__a ) > 0: _a : Dict = objects else: line_index += 1 return backend_specific_objects def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__a ) elif name.islower(): return DUMMY_FUNCTION.format(__a ,__a ) else: return DUMMY_CLASS.format(__a ,__a ) def __UpperCAmelCase ( __a : List[Any]=None ) -> Tuple: """simple docstring""" if backend_specific_objects is None: _a : Optional[int] = read_init() # For special correspondence backend to module name as used in the function requires_modulename _a : Optional[Any] = {} for backend, objects in backend_specific_objects.items(): _a : Optional[int] = '''[''' + ''', '''.join(F"""\"{b}\"""" for b in backend.split('''_and_''' ) ) + ''']''' _a : Optional[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__a ,__a ) for o in objects] ) _a : Optional[Any] = dummy_file return dummy_files def __UpperCAmelCase ( __a : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" _a : Any = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _a : Dict = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _a : Union[str, Any] = os.path.join(__a ,'''utils''' ) _a : List[Any] = { backend: os.path.join(__a ,F"""dummy_{short_names.get(__a ,__a )}_objects.py""" ) for backend in dummy_files.keys() } _a : List[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__a ): with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Dict = f.read() else: _a : str = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(__a ,__a )}_objects.py as the main """ '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F"""diffusers.utils.dummy_{short_names.get(__a ,__a )}_objects.py. Run `make fix-copies` """ '''to fix this.''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
14
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) a__ = '''\ Text data. Second line of data.''' a__ = '''file''' @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" _a : int = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') _a : Optional[int] = bytes(__a ,'''utf-8''' ) with zstd.open(__a ,'''wb''' ) as f: f.write(__a ) return path @pytest.fixture def __UpperCAmelCase ( __a : List[str] ) -> str: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir ,__a ) ,'''w''' ) as f: f.write(__a ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' ,['''gzip''', '''xz''', '''zstd'''] ) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ,__a : Optional[Any] ,__a : str ,__a : str ,__a : Optional[int] ) -> str: """simple docstring""" _a : Any = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} _a : Union[str, Any] = input_paths[compression_format] _a : Dict = tmp_path / '''cache''' _a : List[str] = DownloadConfig(cache_dir=__a ,extract_compressed_file=__a ) _a : str = cached_path(__a ,download_config=__a ) with open(__a ) as f: _a : List[Any] = f.read() with open(__a ) as f: _a : Any = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' ,[True, False] ) @pytest.mark.parametrize('''default_cache_dir''' ,[True, False] ) def __UpperCAmelCase ( __a : str ,__a : int ,__a : str ,__a : Dict ,__a : Tuple ) -> int: """simple docstring""" _a : Union[str, Any] = '''custom_cache''' _a : Union[str, Any] = '''custom_extracted_dir''' _a : Union[str, Any] = tmp_path / '''custom_extracted_path''' if default_extracted: _a : List[Any] = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' ,__a ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' ,str(__a ) ) _a : Tuple = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a : Dict = xz_file _a : int = ( DownloadConfig(extract_compressed_file=__a ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir ,extract_compressed_file=__a ) ) _a : int = cached_path(__a ,download_config=__a ) assert Path(__a ).parent.parts[-2:] == expected def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = str(Path(__a ).resolve() ) assert cached_path(__a ) == text_file # relative path _a : Optional[int] = str(Path(__a ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__a ) == text_file def __UpperCAmelCase ( __a : Optional[Any] ) -> Dict: """simple docstring""" _a : Union[str, Any] = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__a ): cached_path(__a ) # relative path _a : Tuple = '''./__missing_file__.txt''' with pytest.raises(__a ): cached_path(__a ) def __UpperCAmelCase ( __a : Union[str, Any] ) -> List[str]: """simple docstring""" _a : Tuple = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__a ) as f: _a : List[Any] = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' ,__a ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' ,__a ) def __UpperCAmelCase ( __a : Any ) -> int: """simple docstring""" _a : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): http_get('''https://huggingface.co''' ,temp_file=__a ) with pytest.raises(__a ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' ,__a ) def __UpperCAmelCase ( __a : Tuple ) -> Tuple: """simple docstring""" _a : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): ftp_get('''ftp://huggingface.co''' ,temp_file=__a ) with pytest.raises(__a ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' ,__a ) def __UpperCAmelCase ( __a : Dict ) -> Dict: """simple docstring""" _a : Tuple = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): fsspec_get('''s3://huggingface.co''' ,temp_file=__a ) with pytest.raises(__a ): fsspec_head('''s3://huggingface.co''' )
14
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "xlm-roberta-xl" def __init__( self , _a=2_5_0_8_8_0 , _a=2_5_6_0 , _a=3_6 , _a=3_2 , _a=1_0_2_4_0 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_4 , _a=1 , _a=0.02 , _a=1e-0_5 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> Optional[int]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : List[Any] = vocab_size _a : Any = hidden_size _a : int = num_hidden_layers _a : Tuple = num_attention_heads _a : Optional[int] = hidden_act _a : Optional[Any] = intermediate_size _a : List[Any] = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : int = max_position_embeddings _a : Dict = type_vocab_size _a : Union[str, Any] = initializer_range _a : str = layer_norm_eps _a : str = position_embedding_type _a : Optional[int] = use_cache _a : str = classifier_dropout class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
14
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=9_9 , _a=1_3 , _a=1_6 , _a=7 , _a=True , _a=True , _a=True , _a=False , _a=True , _a=2 , _a=3_2 , _a=4 , _a=4 , _a=3_0 , _a=0 , _a=1 , _a=2 , _a=None , ) -> Any: _a : int = parent _a : List[Any] = batch_size _a : int = decoder_seq_length # For common tests _a : List[Any] = self.decoder_seq_length _a : Tuple = is_training _a : str = use_attention_mask _a : Tuple = use_labels _a : List[str] = vocab_size _a : Tuple = d_model _a : List[str] = d_model _a : Optional[int] = decoder_layers _a : Dict = decoder_layers _a : Dict = decoder_ffn_dim _a : Tuple = decoder_attention_heads _a : List[str] = decoder_attention_heads _a : Optional[int] = eos_token_id _a : int = bos_token_id _a : str = pad_token_id _a : Tuple = decoder_start_token_id _a : List[Any] = use_cache _a : Any = max_position_embeddings _a : Any = None _a : List[Any] = decoder_seq_length _a : str = 2 _a : List[str] = 1 def __lowercase ( self ) -> Dict: _a : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _a : Tuple = None if self.use_attention_mask: _a : str = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _a : str = None if self.use_labels: _a : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _a : Optional[Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __lowercase ( self , _a , _a , _a , _a , ) -> List[Any]: _a : List[Any] = True _a : str = TrOCRDecoder(config=_a ).to(_a ).eval() _a : Optional[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _a : List[Any] = model(_a , use_cache=_a ) _a : str = model(_a ) _a : List[Any] = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) _a : Tuple = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids _a : Tuple = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _a : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) _a : Any = model(_a )['''last_hidden_state'''] _a : Optional[Any] = model(_a , past_key_values=_a )['''last_hidden_state'''] # select random slice _a : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a : Optional[Any] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _a : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_a , _a , atol=1e-3 ) def __lowercase ( self ) -> Optional[Any]: _a : Dict = self.prepare_config_and_inputs() _a , _a , _a , _a : Union[str, Any] = config_and_inputs _a : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase__ : Optional[Any] = (TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : List[str] = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase__ : Dict = True UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Tuple: _a : Tuple = TrOCRStandaloneDecoderModelTester(self , is_training=_a ) _a : Dict = ConfigTester(self , config_class=_a ) def __lowercase ( self ) -> Optional[Any]: pass def __lowercase ( self ) -> Optional[Any]: pass def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def __lowercase ( self ) -> Union[str, Any]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_a ) def __lowercase ( self ) -> List[str]: return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def __lowercase ( self ) -> str: pass
14
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase__ : ClassVar[Features] = Features({"text": Value("string" )} ) UpperCAmelCase__ : ClassVar[Features] = Features({} ) UpperCAmelCase__ : str = "text" @property def __lowercase ( self ) -> Dict[str, str]: return {self.text_column: "text"}
14
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def __UpperCAmelCase ( __a : Any ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _a : List[Any] = k.replace(__a ,__a ) if k.startswith('''encoder''' ): _a : Dict = k.replace('''.attn''' ,'''.self_attn''' ) _a : Optional[int] = k.replace('''norm1''' ,'''self_attn_layer_norm''' ) _a : Union[str, Any] = k.replace('''norm2''' ,'''final_layer_norm''' ) elif k.startswith('''decoder''' ): _a : int = k.replace('''norm1''' ,'''self_attn_layer_norm''' ) _a : Any = k.replace('''norm2''' ,'''encoder_attn_layer_norm''' ) _a : List[Any] = k.replace('''norm3''' ,'''final_layer_norm''' ) return k def __UpperCAmelCase ( __a : Union[str, Any] ) -> List[Any]: """simple docstring""" _a : List[str] = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: _a : List[str] = sd.pop(__a ) _a : Any = k.replace('''layernorm_embedding''' ,'''layer_norm''' ) assert new_k not in sd _a : str = v a__ = ['''START'''] @torch.no_grad() def __UpperCAmelCase ( __a : Union[str, Any] ,__a : str ,__a : Union[str, Any] ) -> str: """simple docstring""" _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' ) _a : Optional[int] = model['''model'''] _a : Tuple = BlenderbotConfig.from_json_file(__a ) _a : Tuple = BlenderbotForConditionalGeneration(__a ) _a : Union[str, Any] = m.model.state_dict().keys() _a : str = [] _a : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _a : str = rename_state_dict_key(__a ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _a : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__a ) m.model.load_state_dict(__a ,strict=__a ) m.half() m.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) a__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
14
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
1
import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE__ : str = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class lowerCamelCase_ ( unittest.TestCase ): def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) __magic_name__ :Optional[int] = self.diffusers_dir shutil.copy( os.path.join(__lowerCAmelCase , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" __magic_name__ :Tuple = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __magic_name__ :List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __magic_name__ :List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __magic_name__ :Dict = black.format_str(__lowerCAmelCase , mode=__lowerCAmelCase ) __magic_name__ :int = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(__lowerCAmelCase , '''w''' , newline='''\n''' ) as f: f.write(__lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__lowerCAmelCase ) with open(__lowerCAmelCase , '''r''' ) as f: self.assertTrue(f.read() , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , __lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , __lowerCAmelCase ) , ) # Copy consistency with a really long name __magic_name__ :List[Any] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub('''Bert''' , __lowerCAmelCase , __lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , __lowerCAmelCase , overwrite_result=re.sub('''DDPM''' , '''Test''' , __lowerCAmelCase ) , )
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''yjernite/retribert-base-uncased''': 5_1_2, } __snake_case = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = PRETRAINED_INIT_CONFIGURATION _lowercase = RetriBertTokenizer _lowercase = ["""input_ids""", """attention_mask"""] def __init__( self: Optional[int],A_: int=None,A_: Optional[Any]=None,A_: List[Any]=True,A_: Any="[UNK]",A_: List[Any]="[SEP]",A_: Optional[Any]="[PAD]",A_: Dict="[CLS]",A_: Union[str, Any]="[MASK]",A_: Optional[Any]=True,A_: Dict=None,**A_: Dict,): '''simple docstring''' super().__init__( A_,tokenizer_file=A_,do_lower_case=A_,unk_token=A_,sep_token=A_,pad_token=A_,cls_token=A_,mask_token=A_,tokenize_chinese_chars=A_,strip_accents=A_,**A_,) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase',A_ ) != do_lower_case or normalizer_state.get('strip_accents',A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars',A_ ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(A_,normalizer_state.pop('type' ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**A_ ) __UpperCamelCase = do_lower_case def snake_case_ ( self: List[str],A_: Tuple,A_: List[Any]=None ): '''simple docstring''' __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self: Optional[int],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self: str,A_: str,A_: Optional[str] = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(A_,name=A_ ) return tuple(A_ )
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[List, PIL.Image.Image, torch.Tensor] ) -> List[Any]: warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): _A = [image] if isinstance(image[0] , PIL.Image.Image ): _A , _A = image[0].size _A , _A = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _A = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] _A = np.concatenate(_snake_case , axis=0 ) _A = np.array(_snake_case ).astype(np.floataa ) / 255.0 _A = image.transpose(0 , 3 , 1 , 2 ) _A = 2.0 * image - 1.0 _A = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): _A = torch.cat(_snake_case , dim=0 ) return image def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[List, PIL.Image.Image, torch.Tensor] ) -> Optional[Any]: if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): _A = [mask] if isinstance(mask[0] , PIL.Image.Image ): _A , _A = mask[0].size _A , _A = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] _A = np.concatenate(_snake_case , axis=0 ) _A = mask.astype(np.floataa ) / 255.0 _A = 0 _A = 1 _A = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): _A = torch.cat(_snake_case , dim=0 ) return mask class lowerCamelCase__ ( _A): """simple docstring""" a__ : UNetaDModel a__ : RePaintScheduler def __init__( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> Optional[Any]: super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , __lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] , __lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] , __lowerCAmelCase : int = 2_50 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : int = 10 , __lowerCAmelCase : int = 10 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: _A = image _A = _preprocess_image(__lowerCAmelCase ) _A = original_image.to(device=self.device , dtype=self.unet.dtype ) _A = _preprocess_mask(__lowerCAmelCase ) _A = mask_image.to(device=self.device , dtype=self.unet.dtype ) _A = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _A = original_image.shape _A = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.device ) _A = eta _A = self.scheduler.timesteps[0] + 1 _A = generator[0] if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _A = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # compute previous image: x_t -> x_t-1 _A = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t _A = self.scheduler.undo_step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = t _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
2
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
'''simple docstring''' lowerCAmelCase : List[Any] = range(2, 20 + 1) lowerCAmelCase : Union[str, Any] = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def A_( A : Any , A : Dict , A : str , A : str): UpperCamelCase = sum(a_i[j] for j in range(A , len(A))) UpperCamelCase = sum(a_i[j] * base[j] for j in range(min(len(A) , A))) UpperCamelCase , UpperCamelCase = 0, 0 UpperCamelCase = n - i UpperCamelCase = memo.get(A) if sub_memo is not None: UpperCamelCase = sub_memo.get(A) if jumps is not None and len(A) > 0: # find and make the largest jump without going over UpperCamelCase = -1 for _k in range(len(A) - 1 , -1 , -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCamelCase = _k break if max_jump >= 0: UpperCamelCase , UpperCamelCase , UpperCamelCase = jumps[max_jump] # since the difference between jumps is cached, add c UpperCamelCase = diff + c for j in range(min(A , len(A))): UpperCamelCase , UpperCamelCase = divmod(A , 10) if new_c > 0: add(A , A , A) else: UpperCamelCase = [] else: UpperCamelCase = {c: []} UpperCamelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCamelCase , UpperCamelCase = next_term(A , k - 1 , i + dn , A) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCamelCase , UpperCamelCase = compute(A , A , i + dn , A) diff += _diff dn += terms_jumped UpperCamelCase = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCamelCase = 0 while j < len(A): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k)) return (diff, dn) def A_( A : int , A : Optional[int] , A : str , A : List[str]): if i >= n: return 0, i if k > len(A): a_i.extend([0 for _ in range(k - len(A))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCamelCase = i UpperCamelCase , UpperCamelCase , UpperCamelCase = 0, 0, 0 for j in range(len(A)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCamelCase = ds_c + ds_b diff += addend UpperCamelCase = 0 for j in range(A): UpperCamelCase = a_i[j] + addend UpperCamelCase , UpperCamelCase = divmod(A , 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A) return diff, i - start_i def A_( A : str , A : Dict , A : Tuple): for j in range(A , len(A)): UpperCamelCase = digits[j] + addend if s >= 10: UpperCamelCase , UpperCamelCase = divmod(A , 10) UpperCamelCase = addend // 10 + quotient else: UpperCamelCase = s UpperCamelCase = addend // 10 if addend == 0: break while addend > 0: UpperCamelCase , UpperCamelCase = divmod(A , 10) digits.append(A) def A_( A : int = 10**15): UpperCamelCase = [1] UpperCamelCase = 1 UpperCamelCase = 0 while True: UpperCamelCase , UpperCamelCase = next_term(A , 20 , i + dn , A) dn += terms_jumped if dn == n - i: break UpperCamelCase = 0 for j in range(len(A)): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
3
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCamelCase : int = '''pt''' elif is_tf_available(): __UpperCamelCase : Optional[Any] = '''tf''' else: __UpperCamelCase : int = '''jax''' class a ( a__ , unittest.TestCase ): snake_case__ = ByTaTokenizer snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ByTaTokenizer.from_pretrained('google/byt5-small' ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=20 , _snake_case=5 ): """simple docstring""" lowerCAmelCase = [] for i in range(len(_snake_case ) ): try: lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase = list(filter(lambda _snake_case : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _snake_case ) ) lowerCAmelCase = list(filter(lambda _snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_snake_case ) , _snake_case ) ) if max_length is not None and len(_snake_case ) > max_length: lowerCAmelCase = toks[:max_length] if min_length is not None and len(_snake_case ) < min_length and len(_snake_case ) > 0: while len(_snake_case ) < min_length: lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase = [t[0] for t in toks] # Ensure consistency lowerCAmelCase = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case ) if " " not in output_txt and len(_snake_case ) > 1: lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_snake_case ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_snake_case ) ) if with_prefix_space: lowerCAmelCase = ' ' + output_txt lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) return output_txt, output_ids def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) lowerCAmelCase = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = 'Unicode €.' lowerCAmelCase = tokenizer(_snake_case ) lowerCAmelCase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , _snake_case ) # decoding lowerCAmelCase = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case , 'Unicode €.</s>' ) lowerCAmelCase = tokenizer('e è é ê ë' ) lowerCAmelCase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , _snake_case ) # decoding lowerCAmelCase = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on lowerCAmelCase = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) if FRAMEWORK != "jax": lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_snake_case , _snake_case ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _snake_case ) self.assertIn('attention_mask' , _snake_case ) self.assertNotIn('decoder_input_ids' , _snake_case ) self.assertNotIn('decoder_attention_mask' , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = [ 'Summary of the text.', 'Another summary.', ] lowerCAmelCase = tokenizer( text_target=_snake_case , max_length=32 , padding='max_length' , truncation=_snake_case , return_tensors=_snake_case ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.ta_base_tokenizer lowerCAmelCase = ['A long paragraph for summarization. </s>'] lowerCAmelCase = ['Summary of the text. </s>'] # fmt: off lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] lowerCAmelCase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on lowerCAmelCase = tokenizer(_snake_case , text_target=_snake_case ) self.assertEqual(_snake_case , batch['input_ids'][0] ) self.assertEqual(_snake_case , batch['labels'][0] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running' lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case ) lowerCAmelCase = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) shutil.rmtree(_snake_case ) lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case ) lowerCAmelCase = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase = tokenizer.__class__.from_pretrained(_snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case ) with open(os.path.join(_snake_case , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase = json.load(_snake_case ) with open(os.path.join(_snake_case , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase = json.load(_snake_case ) lowerCAmelCase = [F'<extra_id_{i}>' for i in range(1_25 )] lowerCAmelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCAmelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_snake_case , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_snake_case , _snake_case ) with open(os.path.join(_snake_case , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_snake_case , _snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase = tokenizer_class.from_pretrained( _snake_case , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_snake_case )] lowerCAmelCase = tokenizer_class.from_pretrained( _snake_case , additional_special_tokens=_snake_case , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case ) lowerCAmelCase = tokenizer_class.from_pretrained(_snake_case ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizers(fast=_snake_case , do_lower_case=_snake_case ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] lowerCAmelCase = tokenizer.convert_tokens_to_string(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] lowerCAmelCase = 0 lowerCAmelCase = tokenizer.convert_ids_to_tokens( _snake_case , skip_special_tokens=_snake_case ) for attr in attributes_list: setattr(_snake_case , attr + '_id' , _snake_case ) self.assertEqual(getattr(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(getattr(_snake_case , attr + '_id' ) , _snake_case ) setattr(_snake_case , attr + '_id' , _snake_case ) self.assertEqual(getattr(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(getattr(_snake_case , attr + '_id' ) , _snake_case ) setattr(_snake_case , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens_ids' ) , [] ) setattr(_snake_case , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(4 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.move_to([-1, -1, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.add(_lowercase ) _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): rect.set_stroke(_lowercase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_lowercase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_lowercase , buff=0.0 ) self.add(_lowercase ) cpu_targs.append(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , aligned_edge=_lowercase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowercase , _lowercase ) _lowerCAmelCase = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase = MarkupText( F'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase ) , Write(_lowercase ) ) self.play(Write(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = fill.copy().set_fill(_lowercase , opacity=0.7 ) target.move_to(_lowercase ) first_animations.append(GrowFromCenter(_lowercase , run_time=1 ) ) _lowerCAmelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "LayoutLMv3ImageProcessor" lowerCamelCase_ = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self :Dict , __A :Union[str, Any]=None , __A :Union[str, Any]=None , **__A :Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :Dict , __A :List[str] , __A :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __A :Union[List[List[int]], List[List[List[int]]]] = None , __A :Optional[Union[List[int], List[List[int]]]] = None , __A :bool = True , __A :Union[bool, str, PaddingStrategy] = False , __A :Union[bool, str, TruncationStrategy] = None , __A :Optional[int] = None , __A :int = 0 , __A :Optional[int] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = True , __A :Optional[Union[str, TensorType]] = None , **__A :Optional[Any] , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor SCREAMING_SNAKE_CASE__ = self.image_processor(images=__A , return_tensors=__A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = [text] # add batch dimension (as the image processor always adds a batch dimension) SCREAMING_SNAKE_CASE__ = features["""words"""] SCREAMING_SNAKE_CASE__ = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel values SCREAMING_SNAKE_CASE__ = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: SCREAMING_SNAKE_CASE__ = self.get_overflowing_images(__A , encoded_inputs["""overflow_to_sample_mapping"""] ) SCREAMING_SNAKE_CASE__ = images return encoded_inputs def _snake_case ( self :str , __A :Optional[int] , __A :int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__A ) != len(__A ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__A )} and {len(__A )}''' ) return images_with_overflow def _snake_case ( self :List[Any] , *__A :int , **__A :Optional[int] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Tuple , *__A :int , **__A :str ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :str ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _snake_case ( self :List[Any] ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Dict ) -> Any: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" def _snake_case ( _snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True _A = 4 _A = (1 << p) - 1 for _ in range(p - 2 ): _A = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
7
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = ["image_processor", "tokenizer"] A__ : str = "LayoutLMv3ImageProcessor" A__ : Tuple = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Optional[int] , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , **_snake_case : int ): """simple docstring""" A__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _snake_case , ) A__ = kwargs.pop('feature_extractor' ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_snake_case , _snake_case ) def __call__( self : Optional[int] , _snake_case : List[str] , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _snake_case : Union[List[List[int]], List[List[List[int]]]] = None , _snake_case : Optional[Union[List[int], List[List[int]]]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Optional[Any] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor A__ = self.image_processor(images=_snake_case , return_tensors=_snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_snake_case , _snake_case ): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features['words'] A__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel values A__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: A__ = self.get_overflowing_images(_snake_case , encoded_inputs['overflow_to_sample_mapping'] ) A__ = images return encoded_inputs def _a ( self : int , _snake_case : List[str] , _snake_case : Union[str, Any] ): """simple docstring""" A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_snake_case ) != len(_snake_case ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(_snake_case )} and {len(_snake_case )}''' ) return images_with_overflow def _a ( self : Union[str, Any] , *_snake_case : List[Any] , **_snake_case : Any ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _a ( self : List[str] , *_snake_case : Optional[int] , **_snake_case : int ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _a ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _a ( self : Any ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _snake_case , ) return self.image_processor_class @property def _a ( self : int ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _snake_case , ) return self.image_processor
9
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__lowercase )}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( default=__lowercase, metadata={"help": "The input training data file (a text file)."} ) UpperCAmelCase = field( default=__lowercase, metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "An optional input train ref data file for whole word mask in Chinese."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether ot not to use whole word mask."} ) UpperCAmelCase = field( default=0.1_5, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) UpperCAmelCase = field( default=1 / 6, metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) }, ) UpperCAmelCase = field( default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) UpperCAmelCase = field( default=-1, metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( __snake_case , __snake_case , __snake_case = False , __snake_case = None , ): def _dataset(__snake_case , __snake_case=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=__snake_case , file_path=__snake_case , block_size=args.block_size , ref_path=__snake_case , ) return LineByLineTextDataset(tokenizer=__snake_case , file_path=__snake_case , block_size=args.block_size ) else: return TextDataset( tokenizer=__snake_case , file_path=__snake_case , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__snake_case , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__snake_case ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCamelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _UpperCamelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: _UpperCamelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: _UpperCamelCase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) _UpperCamelCase = AutoModelWithLMHead.from_config(__snake_case ) model.resize_token_embeddings(len(__snake_case ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: _UpperCamelCase = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCamelCase = min(data_args.block_size , tokenizer.max_len ) # Get datasets _UpperCamelCase = ( get_dataset(__snake_case , tokenizer=__snake_case , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCamelCase = ( get_dataset(__snake_case , tokenizer=__snake_case , evaluate=__snake_case , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCamelCase = DataCollatorForPermutationLanguageModeling( tokenizer=__snake_case , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _UpperCamelCase = DataCollatorForWholeWordMask( tokenizer=__snake_case , mlm_probability=data_args.mlm_probability ) else: _UpperCamelCase = DataCollatorForLanguageModeling( tokenizer=__snake_case , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , data_collator=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , prediction_loss_only=__snake_case , ) # Training if training_args.do_train: _UpperCamelCase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__snake_case ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = math.exp(eval_output['''eval_loss'''] ) _UpperCamelCase = {'''perplexity''': perplexity} _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , __snake_case , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
from manim import * class _snake_case ( UpperCAmelCase_ ): def lowercase__ ( self): '''simple docstring''' lowercase__ : str = Rectangle(height=0.5 , width=0.5) lowercase__ : Tuple = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0) lowercase__ : List[Any] = [mem.copy() for i in range(6)] lowercase__ : Tuple = [mem.copy() for i in range(6)] lowercase__ : List[str] = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : Tuple = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : List[Any] = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : Dict = Text("""CPU""" , font_size=24) lowercase__ : List[str] = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_) cpu.move_to([-2.5, -0.5, 0]) self.add(SCREAMING_SNAKE_CASE_) lowercase__ : str = [mem.copy() for i in range(1)] lowercase__ : Any = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : Optional[int] = Text("""GPU""" , font_size=24) lowercase__ : Union[str, Any] = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_) gpu.align_to(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) gpu.set_x(gpu.get_x() - 1) self.add(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = [mem.copy() for i in range(6)] lowercase__ : str = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : Optional[Any] = Text("""Model""" , font_size=24) lowercase__ : Tuple = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_) model.move_to([3, -1.0, 0]) self.play( Create(SCREAMING_SNAKE_CASE_ , run_time=1) , Create(SCREAMING_SNAKE_CASE_ , run_time=1) , Create(SCREAMING_SNAKE_CASE_ , run_time=1) , ) lowercase__ : Optional[Any] = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) lowercase__ : Any = Square(side_length=2.2) key.move_to([-5, 2, 0]) lowercase__ : Optional[int] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) step_a.move_to([2, 2, 0]) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=2.5) , Write(SCREAMING_SNAKE_CASE_) , Write(SCREAMING_SNAKE_CASE_)) self.add(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = [] lowercase__ : str = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0.0).set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.7) cpu_target.move_to(SCREAMING_SNAKE_CASE_) cpu_target.generate_target() lowercase__ : Union[str, Any] = 0.4_6 / 4 lowercase__ : Tuple = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=SCREAMING_SNAKE_CASE_) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=SCREAMING_SNAKE_CASE_ , buff=0.0) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=SCREAMING_SNAKE_CASE_ , buff=0.0) cpu_targs.append(SCREAMING_SNAKE_CASE_) first_animations.append(rect.animate(run_time=0.5).set_stroke(SCREAMING_SNAKE_CASE_)) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE_ , run_time=1.5)) self.play(*SCREAMING_SNAKE_CASE_) self.play(*SCREAMING_SNAKE_CASE_) self.wait()
12
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ ( ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __lowerCamelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' ) return image def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Tuple: __lowerCamelCase : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> int: __lowerCamelCase : List[Any] = dct.pop(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = val def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ) -> List[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowerCamelCase : Tuple = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) __lowerCamelCase : int = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __lowerCamelCase : List[Any] = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) ) __lowerCamelCase : Any = qkv_bias def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Optional[int]: __lowerCamelCase : int = 3_64 if 'coco' in model_name else 2_24 __lowerCamelCase : List[Any] = BlipaVisionConfig(image_size=UpperCAmelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __lowerCamelCase : Union[str, Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=UpperCAmelCase_ ).to_dict() elif "opt-6.7b" in model_name: __lowerCamelCase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=UpperCAmelCase_ ).to_dict() elif "t5-xl" in model_name: __lowerCamelCase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowerCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __lowerCamelCase : Tuple = BlipaConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=False ) -> Dict: __lowerCamelCase : Tuple = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __lowerCamelCase : Union[str, Any] = tokenizer('\n' , add_special_tokens=UpperCAmelCase_ ).input_ids[0] __lowerCamelCase , __lowerCamelCase : str = get_blipa_config(UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) __lowerCamelCase : Tuple = BlipaForConditionalGeneration(UpperCAmelCase_ ).eval() __lowerCamelCase : int = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __lowerCamelCase , __lowerCamelCase : int = model_name_to_original[model_name] # load original model print('Loading original model...' ) __lowerCamelCase : Any = 'cuda' if torch.cuda.is_available() else 'cpu' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = load_model_and_preprocess( name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ ) original_model.eval() print('Done!' ) # update state dict keys __lowerCamelCase : Dict = original_model.state_dict() __lowerCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowerCamelCase : Optional[Any] = state_dict.pop(UpperCAmelCase_ ) if key.startswith('Qformer.bert' ): __lowerCamelCase : Dict = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __lowerCamelCase : int = key.replace('self' , 'attention' ) if "opt_proj" in key: __lowerCamelCase : Any = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __lowerCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __lowerCamelCase : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): __lowerCamelCase : Optional[int] = key.replace('t5' , 'language' ) __lowerCamelCase : str = val # read in qv biases read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : List[str] = hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __lowerCamelCase : Optional[Any] = load_demo_image() __lowerCamelCase : Any = vis_processors['eval'](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) __lowerCamelCase : Dict = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ ) # create processor __lowerCamelCase : Tuple = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) __lowerCamelCase : List[str] = BlipaProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) __lowerCamelCase : str = processor(images=UpperCAmelCase_ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) original_model.to(UpperCAmelCase_ ) hf_model.to(UpperCAmelCase_ ) with torch.no_grad(): if "opt" in model_name: __lowerCamelCase : Optional[Any] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __lowerCamelCase : List[str] = hf_model(UpperCAmelCase_ , UpperCAmelCase_ ).logits else: __lowerCamelCase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __lowerCamelCase : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __lowerCamelCase : Dict = hf_model(UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __lowerCamelCase : List[Any] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=UpperCAmelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __lowerCamelCase : Tuple = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=UpperCAmelCase_ ) else: # cast to same type __lowerCamelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(UpperCAmelCase_ ) , UpperCAmelCase_ , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __lowerCamelCase : str = '' __lowerCamelCase : str = tokenizer(UpperCAmelCase_ , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = original_model.generate({'image': original_pixel_values} ) __lowerCamelCase : int = hf_model.generate( UpperCAmelCase_ , UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , UpperCAmelCase_ ) __lowerCamelCase : Any = input_ids.shape[1] __lowerCamelCase : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCAmelCase_ ) __lowerCamelCase : Dict = [text.strip() for text in output_text] print('HF generation:' , UpperCAmelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() A__ : Optional[int] = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) A__ : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
from scipy.stats import spearmanr import datasets A : int = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' A : Any = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' A : Union[str, Any] = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=False ) -> Tuple: """simple docstring""" lowercase__ = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
15
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int]=0 ): # Format the message. if name is None: SCREAMING_SNAKE_CASE = None else: SCREAMING_SNAKE_CASE = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" SCREAMING_SNAKE_CASE = fmt.format(A__ ) # Print and recurse (if needed). if isinstance(A__ , A__ ): if msg is not None: print(A__ ) for k in val.keys(): recursive_print(A__ , val[k] , spaces + 2 ) elif isinstance(A__ , torch.Tensor ): print(A__ , ":" , val.size() ) else: print(A__ , ":" , A__ ) def __a ( A__ : Tuple , A__ : List[Any] , A__ : Tuple , A__ : Optional[Any] , A__ : Dict ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. SCREAMING_SNAKE_CASE = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE = param.view(*A__ ) SCREAMING_SNAKE_CASE = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE = param.view(*A__ ) SCREAMING_SNAKE_CASE = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE = param.view(*A__ ) return param def __a ( A__ : Optional[Any] , A__ : Tuple , A__ : Any ): # The converted output model. SCREAMING_SNAKE_CASE = {} # old versions did not store training args SCREAMING_SNAKE_CASE = input_state_dict.get("args" , A__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE = ds_args.hidden_size SCREAMING_SNAKE_CASE = ds_args.num_layers SCREAMING_SNAKE_CASE = ds_args.num_attention_heads SCREAMING_SNAKE_CASE = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE = input_state_dict["checkpoint_version"] else: SCREAMING_SNAKE_CASE = 0.0 # The model. SCREAMING_SNAKE_CASE = input_state_dict["model"] # The language model. SCREAMING_SNAKE_CASE = model["language_model"] # The embeddings. SCREAMING_SNAKE_CASE = lm["embedding"] # The word embeddings. SCREAMING_SNAKE_CASE = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. SCREAMING_SNAKE_CASE = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. SCREAMING_SNAKE_CASE = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE = layer_re.match(A__ ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): SCREAMING_SNAKE_CASE = "ln_1" if op_name.startswith("input" ) else "ln_2" SCREAMING_SNAKE_CASE = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , A__ , A__ ) SCREAMING_SNAKE_CASE = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE = torch.tensor(-1E4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE = masked_bias SCREAMING_SNAKE_CASE = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ ) # Store. No change of shape. SCREAMING_SNAKE_CASE = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE = transformer["final_layernorm.weight"] SCREAMING_SNAKE_CASE = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE = word_embeddings # It should be done! return output_state_dict def __a ( ): # Create the argument parser. SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=A__ , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=A__ , help="An optional config json file describing the pre-trained model." , ) SCREAMING_SNAKE_CASE = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" ) else: SCREAMING_SNAKE_CASE = torch.load(args.path_to_checkpoint , map_location="cpu" ) SCREAMING_SNAKE_CASE = input_state_dict.get("args" , A__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE = "gelu_fast" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE = "gelu_new" else: SCREAMING_SNAKE_CASE = "gelu" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE = "gelu_new" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=A__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.0_2 , summary_type="cls_index" , summary_use_proj=A__ , summary_activation=A__ , summary_proj_to_labels=A__ , summary_first_dropout=0.1 , scale_attn_weights=A__ , use_cache=A__ , bos_token_id=50256 , eos_token_id=50256 , ) else: SCREAMING_SNAKE_CASE = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE = ["GPT2LMHeadModel"] # Convert. print("Converting" ) SCREAMING_SNAKE_CASE = convert_megatron_checkpoint(A__ , A__ , A__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(A__ , A__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE = "gpt2" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: SCREAMING_SNAKE_CASE = "gpt2" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(A__ ) SCREAMING_SNAKE_CASE = type(A__ ).__name__ SCREAMING_SNAKE_CASE = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(A__ ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(A__ ) # Store the state_dict to file. SCREAMING_SNAKE_CASE = os.path.join(A__ , "pytorch_model.bin" ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(A__ , A__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
16
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( _lowercase ): _lowercase : str = (DDPMParallelScheduler,) def lowerCAmelCase_ ( self : List[Any] , **__A : int ): __A : int = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__A ) return config def lowerCAmelCase_ ( self : List[str] ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def lowerCAmelCase_ ( self : int ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def lowerCAmelCase_ ( self : Any ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def lowerCAmelCase_ ( self : Any ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__A ) def lowerCAmelCase_ ( self : List[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def lowerCAmelCase_ ( self : int ): self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , ) def lowerCAmelCase_ ( self : int ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def lowerCAmelCase_ ( self : int ): for t in [0, 500, 999]: self.check_over_forward(time_step=__A ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : str = self.scheduler_classes[0] __A : Tuple = self.get_scheduler_config() __A : int = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def lowerCAmelCase_ ( self : Optional[int] ): __A : int = self.scheduler_classes[0] __A : Optional[int] = self.get_scheduler_config() __A : List[Any] = scheduler_class(**__A ) __A : Any = len(__A ) __A : Tuple = self.dummy_model() __A : Union[str, Any] = self.dummy_sample_deter __A : List[Any] = self.dummy_sample_deter + 0.1 __A : Optional[Any] = self.dummy_sample_deter - 0.1 __A : Dict = samplea.shape[0] __A : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 ) __A : Dict = torch.arange(__A )[0:3, None].repeat(1 , __A ) __A : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __A : Dict = scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __A : List[str] = torch.sum(torch.abs(__A ) ) __A : List[str] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def lowerCAmelCase_ ( self : Optional[int] ): __A : int = self.scheduler_classes[0] __A : int = self.get_scheduler_config() __A : Dict = scheduler_class(**__A ) __A : Optional[Any] = len(__A ) __A : Tuple = self.dummy_model() __A : Optional[Any] = self.dummy_sample_deter __A : List[str] = torch.manual_seed(0 ) for t in reversed(range(__A ) ): # 1. predict noise residual __A : str = model(__A , __A ) # 2. predict previous mean of sample x_t-1 __A : List[str] = scheduler.step(__A , __A , __A , generator=__A ).prev_sample __A : Union[str, Any] = pred_prev_sample __A : List[Any] = torch.sum(torch.abs(__A ) ) __A : Union[str, Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def lowerCAmelCase_ ( self : int ): __A : int = self.scheduler_classes[0] __A : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) __A : int = scheduler_class(**__A ) __A : Dict = len(__A ) __A : Any = self.dummy_model() __A : str = self.dummy_sample_deter __A : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(__A ) ): # 1. predict noise residual __A : Optional[Any] = model(__A , __A ) # 2. predict previous mean of sample x_t-1 __A : Tuple = scheduler.step(__A , __A , __A , generator=__A ).prev_sample __A : Dict = pred_prev_sample __A : Union[str, Any] = torch.sum(torch.abs(__A ) ) __A : Union[str, Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def lowerCAmelCase_ ( self : Any ): __A : List[str] = self.scheduler_classes[0] __A : Any = self.get_scheduler_config() __A : Optional[Any] = scheduler_class(**__A ) __A : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__A ) __A : List[Any] = scheduler.timesteps for i, timestep in enumerate(__A ): if i == len(__A ) - 1: __A : List[str] = -1 else: __A : int = timesteps[i + 1] __A : Any = scheduler.previous_timestep(__A ) __A : Any = prev_t.item() self.assertEqual(__A , __A ) def lowerCAmelCase_ ( self : Any ): __A : str = self.scheduler_classes[0] __A : int = self.get_scheduler_config() __A : Optional[int] = scheduler_class(**__A ) __A : Any = [100, 87, 50, 51, 0] with self.assertRaises(__A , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__A ) def lowerCAmelCase_ ( self : Any ): __A : List[str] = self.scheduler_classes[0] __A : Dict = self.get_scheduler_config() __A : Tuple = scheduler_class(**__A ) __A : Tuple = [100, 87, 50, 1, 0] __A : Union[str, Any] = len(__A ) with self.assertRaises(__A , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__A , timesteps=__A ) def lowerCAmelCase_ ( self : Any ): __A : Tuple = self.scheduler_classes[0] __A : Optional[int] = self.get_scheduler_config() __A : Dict = scheduler_class(**__A ) __A : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__A )
17
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1000 ): '''simple docstring''' _lowerCAmelCase = 1 _lowerCAmelCase = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE_ , digit + 1 ): _lowerCAmelCase = [] _lowerCAmelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
18
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _UpperCAmelCase( lowerCamelCase ): # to overwrite at feature extractactor specific tests lowercase__ = None lowercase__ = None @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(__a , '''feature_size''')) self.assertTrue(hasattr(__a , '''sampling_rate''')) self.assertTrue(hasattr(__a , '''padding_value''')) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(__a) == len(__a) for x, y in zip(__a , processed_features[input_name]))) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a) _UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''') _UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a) _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''') _UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a) _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''') _UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self , __a=False) -> Union[str, Any]: '''simple docstring''' def _inputs_have_equal_length(__a): _UpperCamelCase = len(input[0]) for input_slice in input[1:]: if len(__a) != length: return False return True def _inputs_are_equal(__a , __a): if len(__a) != len(__a): return False for input_slice_a, input_slice_a in zip(__a , __a): if not np.allclose(np.asarray(__a) , np.asarray(__a) , atol=1e-3): return False return True _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__a) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = self.feat_extract_tester.seq_length_diff _UpperCamelCase = self.feat_extract_tester.max_seq_length + pad_diff _UpperCamelCase = self.feat_extract_tester.min_seq_length _UpperCamelCase = self.feat_extract_tester.batch_size _UpperCamelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _UpperCamelCase = feat_extract.pad(__a , padding=__a) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''') _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''max_length''' , max_length=len(speech_inputs[-1])) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''np''') _UpperCamelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__a): feat_extract.pad(__a , padding='''max_length''')[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=__a , return_tensors='''np''') _UpperCamelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_are_equal(__a , __a)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy _UpperCamelCase = feat_extract.pad(__a , pad_to_multiple_of=10) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , pad_to_multiple_of=10) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__a) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__a , return_tensors='''np''' , ) _UpperCamelCase = input_a[input_name] self.assertTrue(all(len(__a) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(__a , __a)) _UpperCamelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__a) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct _UpperCamelCase = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1e-3) def UpperCAmelCase ( self , __a=False) -> List[Any]: '''simple docstring''' def _inputs_have_equal_length(__a): _UpperCamelCase = len(input[0]) for input_slice in input[1:]: if len(__a) != length: return False return True def _inputs_are_equal(__a , __a): if len(__a) != len(__a): return False for input_slice_a, input_slice_a in zip(__a , __a): if not np.allclose(np.asarray(__a) , np.asarray(__a) , atol=1e-3): return False return True _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__a) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) # truncate to smallest _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , truncation=__a) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''max_length''' , max_length=len(speech_inputs[0])) _UpperCamelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__a)) self.assertFalse(_inputs_have_equal_length(__a)) # truncate to smallest with np _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , return_tensors='''np''' , truncation=__a , ) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , return_tensors='''np''') _UpperCamelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__a)) # truncate to middle _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[1]) , truncation=__a , return_tensors='''np''' , ) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[1]) , truncation=__a) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[1]) , return_tensors='''np''') _UpperCamelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_are_equal(__a , __a)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__a)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a): feat_extract.pad(__a , truncation=__a)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a): feat_extract.pad(__a , padding='''longest''' , truncation=__a)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a): feat_extract.pad(__a , padding='''longest''' , truncation=__a)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__a): feat_extract.pad(__a , padding='''max_length''' , truncation=__a)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _UpperCamelCase = 12 _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__a , truncation=__a , ) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__a , ) _UpperCamelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _UpperCamelCase = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: _UpperCamelCase = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(__a)) self.assertFalse(_inputs_have_equal_length(__a)) def UpperCAmelCase ( self) -> str: '''simple docstring''' self._check_padding(numpify=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' self._check_padding(numpify=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' self._check_truncation(numpify=__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self._check_truncation(numpify=__a) @require_torch def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''np''')[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''pt''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) @require_tf def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''np''')[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''tf''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1e-2) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.feat_extract_dict _UpperCamelCase = True _UpperCamelCase = self.feature_extraction_class(**__a) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = [len(__a) for x in speech_inputs] _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''np''') self.assertIn('''attention_mask''' , __a) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , __a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.feat_extract_dict _UpperCamelCase = True _UpperCamelCase = self.feature_extraction_class(**__a) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = [len(__a) for x in speech_inputs] _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = min(__a) _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=__a , truncation=__a , return_tensors='''np''') self.assertIn('''attention_mask''' , __a) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
19
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
20
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0