code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = ["""pixel_values"""] def __init__( self :Optional[int] , __snake_case :bool = True , __snake_case :Union[int, float] = 1 / 2_55 , __snake_case :bool = True , __snake_case :int = 8 , **__snake_case :int , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : Optional[Any] =do_rescale __magic_name__ : List[Any] =rescale_factor __magic_name__ : Dict =do_pad __magic_name__ : Tuple =pad_size def A__ ( self :List[str] , __snake_case :np.ndarray , __snake_case :float , __snake_case :Optional[Union[str, ChannelDimension]] = None , **__snake_case :Tuple ): '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def A__ ( self :List[Any] , __snake_case :np.ndarray , __snake_case :int , __snake_case :Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' __magic_name__ , __magic_name__ : Optional[int] =get_image_size(__snake_case ) __magic_name__ : List[Any] =(old_height // size + 1) * size - old_height __magic_name__ : Union[str, Any] =(old_width // size + 1) * size - old_width return pad(__snake_case , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=__snake_case ) def A__ ( self :Union[str, Any] , __snake_case :ImageInput , __snake_case :Optional[bool] = None , __snake_case :Optional[float] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[int] = None , __snake_case :Optional[Union[str, TensorType]] = None , __snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST , **__snake_case :Tuple , ): '''simple docstring''' __magic_name__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : str =rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : Dict =do_pad if do_pad is not None else self.do_pad __magic_name__ : Union[str, Any] =pad_size if pad_size is not None else self.pad_size __magic_name__ : int =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __magic_name__ : Optional[int] =[to_numpy_array(__snake_case ) for image in images] if do_rescale: __magic_name__ : Any =[self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_pad: __magic_name__ : Optional[Any] =[self.pad(__snake_case , size=__snake_case ) for image in images] __magic_name__ : Any =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __magic_name__ : Dict ={"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
21
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
'''simple docstring''' _snake_case : int = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
22
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder snake_case__ : Union[str, Any] = """__DUMMY_TRANSFORMERS_USER__""" snake_case__ : Optional[int] = """Dummy User""" snake_case__ : Any = """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""" snake_case__ : List[Any] = """https://hub-ci.huggingface.co""" snake_case__ : Dict = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" snake_case__ : Dict = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" snake_case__ : Optional[int] = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def _snake_case (__lowercase): monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , __lowercase) @pytest.fixture def _snake_case (__lowercase): monkeypatch.setattr('datasets.config.HF_ENDPOINT' , __lowercase) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , __lowercase) @pytest.fixture def _snake_case (__lowercase): monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , __lowercase) @pytest.fixture def _snake_case (__lowercase , __lowercase): HfFolder.save_token(__lowercase) yield HfFolder.delete_token() @pytest.fixture(scope='session') def _snake_case (): return HfApi(endpoint=__lowercase) @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = HfFolder.get_token() HfFolder.save_token(__lowercase) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__lowercase) @pytest.fixture def _snake_case (__lowercase): def _cleanup_repo(__lowercase): hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset') return _cleanup_repo @pytest.fixture def _snake_case (__lowercase): @contextmanager def _temporary_repo(__lowercase): try: yield repo_id finally: cleanup_repo(__lowercase) return _temporary_repo @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = f"""repo_txt_data-{int(time.time() * 10e3)}""" UpperCamelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase) , path_in_repo='data/text_data.txt' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case (__lowercase , __lowercase , __lowercase): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = f"""repo_zipped_txt_data-{int(time.time() * 10e3)}""" UpperCamelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase) , path_in_repo='data.zip' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case (__lowercase , __lowercase , __lowercase): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = f"""repo_zipped_img_data-{int(time.time() * 10e3)}""" UpperCamelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase) , path_in_repo='data.zip' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case (__lowercase , __lowercase , __lowercase): return hf_private_dataset_repo_zipped_img_data_
23
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : str = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : List[str] = XGLMTokenizer __lowercase : Union[str, Any] = XGLMTokenizerFast __lowercase : Optional[int] = True __lowercase : List[str] = True def lowerCAmelCase ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __snake_case = XGLMTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = '''<pad>''' __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1008 ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = XGLMTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __snake_case = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __snake_case = XGLMTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __snake_case = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = '''Hello World!''' __snake_case = [2, 3_1227, 4447, 35] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off __snake_case = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = { '''input_ids''': [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''facebook/xglm-564M''' , padding=__SCREAMING_SNAKE_CASE , )
24
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" _A = False while is_sorted is False: # Until all the indices are traversed keep looping _A = True for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _A, _A = input_list[i + 1], input_list[i] # swapping if elements not in order _A = False for i in range(1 , len(_SCREAMING_SNAKE_CASE ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _A, _A = input_list[i + 1], input_list[i] # swapping if elements not in order _A = False return input_list if __name__ == "__main__": print("Enter list to be sorted") __A : Dict = [int(x) for x in input().split()] # inputing elements of the list in one line __A : List[Any] = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
27
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCamelCase_ = pytest.mark.integration UpperCamelCase_ = {"comet"} UpperCamelCase_ = importlib.util.find_spec("fairseq") is not None UpperCamelCase_ = {"code_eval"} UpperCamelCase_ = os.name == "nt" UpperCamelCase_ = {"bertscore", "frugalscore", "perplexity"} UpperCamelCase_ = importlib.util.find_spec("transformers") is not None def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" @wraps(__UpperCamelCase ) def wrapper(self: Optional[Any] ,__UpperCamelCase: Tuple ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self ,__UpperCamelCase ) return wrapper def lowercase__( __UpperCamelCase: str ): """simple docstring""" @wraps(__UpperCamelCase ) def wrapper(self: Any ,__UpperCamelCase: Optional[int] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self ,__UpperCamelCase ) return wrapper def lowercase__( __UpperCamelCase: Optional[int] ): """simple docstring""" @wraps(__UpperCamelCase ) def wrapper(self: Optional[int] ,__UpperCamelCase: Tuple ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self ,__UpperCamelCase ) return wrapper def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @local class _a ( parameterized.TestCase ): '''simple docstring''' A : Any = {} A : List[Any] = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = '[...]' SCREAMING_SNAKE_CASE : List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics', A ) ).module_path ) SCREAMING_SNAKE_CASE : int = datasets.load.import_main_class(metric_module.__name__, dataset=A ) # check parameters SCREAMING_SNAKE_CASE : int = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(A, metric_module.__name__ ): with self.use_local_metrics(): try: SCREAMING_SNAKE_CASE : Any = doctest.testmod(A, verbose=A, raise_on_error=A ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed, 0 ) self.assertGreater(results.attempted, 1 ) @slow def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = '[...]' SCREAMING_SNAKE_CASE : str = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics', A ) ).module_path ) # run doctest with self.use_local_metrics(): SCREAMING_SNAKE_CASE : Tuple = doctest.testmod(A, verbose=A, raise_on_error=A ) self.assertEqual(results.failed, 0 ) self.assertGreater(results.attempted, 1 ) @contextmanager def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](A ): yield else: yield @contextmanager def UpperCamelCase_ ( self ): '''simple docstring''' def load_local_metric(A, *A, **A ): return load_metric(os.path.join('metrics', A ), *A, **A ) with patch('datasets.load_metric' ) as mock_load_metric: SCREAMING_SNAKE_CASE : Tuple = load_local_metric yield @classmethod def UpperCamelCase_ ( cls, A ): '''simple docstring''' def wrapper(A ): SCREAMING_SNAKE_CASE : str = contextmanager(A ) SCREAMING_SNAKE_CASE : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' ,'' ,'' ) # handle pytest cli flags class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A ): '''simple docstring''' assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: SCREAMING_SNAKE_CASE : Optional[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" import torch def bert_cos_score_idf(__UpperCamelCase: int ,__UpperCamelCase: List[Any] ,*__UpperCamelCase: Optional[Any] ,**__UpperCamelCase: Dict ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__UpperCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: SCREAMING_SNAKE_CASE : str = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def lowercase__( __UpperCamelCase: Dict ): """simple docstring""" def load_from_checkpoint(__UpperCamelCase: Any ): class _a : '''simple docstring''' def UpperCamelCase_ ( self, A, *A, **A ): '''simple docstring''' assert len(A ) == 2 SCREAMING_SNAKE_CASE : Optional[int] = [0.19, 0.92] return scores, sum(A ) / len(A ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: SCREAMING_SNAKE_CASE : Any = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: SCREAMING_SNAKE_CASE : Dict = load_from_checkpoint yield def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = load_metric(os.path.join('metrics' ,'seqeval' ) ) SCREAMING_SNAKE_CASE : List[Any] = 'ERROR' SCREAMING_SNAKE_CASE : Union[str, Any] = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(__UpperCamelCase ,match=re.escape(__UpperCamelCase ) ): metric.compute(predictions=[] ,references=[] ,scheme=__UpperCamelCase )
28
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() # fmt: off lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
from collections.abc import Iterable from typing import Generic, TypeVar __a = TypeVar('_T') class __a( Generic[_T] ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE = None ) -> None: UpperCAmelCase_ : list[_T] = list(iterable or [] ) UpperCAmelCase_ : list[_T] = [] def __len__( self ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self ) -> str: return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> None: self._stacka.append(_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> _T: UpperCAmelCase_ : str = self._stacka.pop UpperCAmelCase_ : List[str] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
30
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCamelCase_ : '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int ): if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) SCREAMING_SNAKE_CASE_ = img SCREAMING_SNAKE_CASE_ = img.shape[1] SCREAMING_SNAKE_CASE_ = img.shape[0] SCREAMING_SNAKE_CASE_ = dst_width SCREAMING_SNAKE_CASE_ = dst_height SCREAMING_SNAKE_CASE_ = self.src_w / self.dst_w SCREAMING_SNAKE_CASE_ = self.src_h / self.dst_h SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCAmelCase_ ( self : Optional[int] ): for i in range(self.dst_h ): for j in range(self.dst_w ): SCREAMING_SNAKE_CASE_ = self.img[self.get_y(_lowerCAmelCase )][self.get_x(_lowerCAmelCase )] def lowerCAmelCase_ ( self : str , _lowerCAmelCase : int ): return int(self.ratio_x * x ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int ): return int(self.ratio_y * y ) if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ : Optional[int] = 800, 600 lowerCamelCase__ : Any = imread('image_data/lena.jpg', 1) lowerCamelCase__ : List[str] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
31
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class __UpperCamelCase ( A__ ): __A : int = """xglm""" __A : Tuple = ["""past_key_values"""] __A : Union[str, Any] = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self , _UpperCamelCase=256008 , _UpperCamelCase=2048 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = ffn_dim _UpperCAmelCase = num_layers _UpperCAmelCase = attention_heads _UpperCAmelCase = activation_function _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = init_std _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = use_cache super().__init__( pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , )
32
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
lowerCamelCase__ : List[Any] = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
33
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
def a ( A__ ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE__ : List[Any] = grid[0] for row_n in range(1 , len(A__ ) ): SCREAMING_SNAKE_CASE__ : List[str] = grid[row_n] SCREAMING_SNAKE_CASE__ : Dict = fill_row(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Tuple = grid[row_n] return grid[-1][-1] def a ( A__ , A__ ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(A__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
35
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
from math import pi def lowercase ( __A : int , __A : int ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
36
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
from __future__ import annotations from collections import deque class A__ : """simple docstring""" def __init__( self : Any , lowerCamelCase__ : list[str] ): a__ : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(lowerCamelCase__ ) self.set_fail_transitions() def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _UpperCamelCase( self : Any , lowerCamelCase__ : str ): a__ : List[str] = 0 for character in keyword: a__ : Tuple = self.find_next_state(lowerCamelCase__ , lowerCamelCase__ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) a__ : Union[str, Any] = len(self.adlist ) - 1 else: a__ : List[str] = next_state self.adlist[current_state]["output"].append(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(lowerCamelCase__ ) a__ : Tuple = 0 while q: a__ : str = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowerCamelCase__ ) a__ : Tuple = self.adlist[r]["fail_state"] while ( self.find_next_state(lowerCamelCase__ , self.adlist[child]["value"] ) is None and state != 0 ): a__ : List[Any] = self.adlist[state]["fail_state"] a__ : Optional[int] = self.find_next_state( lowerCamelCase__ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: a__ : Dict = 0 a__ : Union[str, Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : str ): a__ : dict = {} # returns a dict with keywords and list of its occurrences a__ : Tuple = 0 for i in range(len(lowerCamelCase__ ) ): while ( self.find_next_state(lowerCamelCase__ , string[i] ) is None and current_state != 0 ): a__ : Union[str, Any] = self.adlist[current_state]["fail_state"] a__ : Optional[Any] = self.find_next_state(lowerCamelCase__ , string[i] ) if next_state is None: a__ : str = 0 else: a__ : int = next_state for key in self.adlist[current_state]["output"]: if key not in result: a__ : Optional[Any] = [] result[key].append(i - len(lowerCamelCase__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
37
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType A_ , A_ , A_ : Union[str, Any] = False, False, False @dataclass class __snake_case : '''simple docstring''' lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = "dict" lowerCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCamelCase__ = field(default='''Audio''' , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ): return self.pa_type def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return {"bytes": None, "path": value} elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case__ : Tuple = BytesIO() sf.write(__SCREAMING_SNAKE_CASE , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case__ : List[str] = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: snake_case__ : Tuple = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_2_7_6_7 snake_case__ : str = BytesIO(bytes() ) sf.write(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) snake_case__ , snake_case__ : str = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err snake_case__ : Optional[Any] = xsplitext(__SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: snake_case__ : str = token_per_repo_id or {} snake_case__ : Tuple = path.split("""::""" )[-1] try: snake_case__ : str = string_to_dict(__SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )["""repo_id"""] snake_case__ : int = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case__ : Dict = None with xopen(__SCREAMING_SNAKE_CASE , """rb""" , use_auth_token=__SCREAMING_SNAKE_CASE ) as f: snake_case__ , snake_case__ : Optional[int] = sf.read(__SCREAMING_SNAKE_CASE ) else: snake_case__ , snake_case__ : Tuple = sf.read(__SCREAMING_SNAKE_CASE ) snake_case__ : str = array.T if self.mono: snake_case__ : str = librosa.to_mono(__SCREAMING_SNAKE_CASE ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case__ : List[Any] = librosa.resample(__SCREAMING_SNAKE_CASE , orig_sr=__SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate ) snake_case__ : List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __UpperCamelCase ( self ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if pa.types.is_string(storage.type ): snake_case__ : List[str] = pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=pa.binary() ) snake_case__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case__ : List[str] = pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=pa.string() ) snake_case__ : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): snake_case__ : Dict = pa.array([Audio().encode_example(__SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: snake_case__ : Tuple = storage.field("""bytes""" ) else: snake_case__ : Any = pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: snake_case__ : List[Any] = storage.field("""path""" ) else: snake_case__ : Union[str, Any] = pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=pa.string() ) snake_case__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(__SCREAMING_SNAKE_CASE , self.pa_type ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): @no_op_if_value_is_null def path_to_bytes(__SCREAMING_SNAKE_CASE ): with xopen(__SCREAMING_SNAKE_CASE , """rb""" ) as f: snake_case__ : int = f.read() return bytes_ snake_case__ : Optional[int] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case__ : Optional[Any] = pa.array( [os.path.basename(__SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) snake_case__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__SCREAMING_SNAKE_CASE , self.pa_type )
38
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
lowerCAmelCase_ = range(2, 20 + 1) lowerCAmelCase_ = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase_ = {} def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) ) snake_case_ = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) ) snake_case_, snake_case_ = 0, 0 snake_case_ = n - i snake_case_ = memo.get(SCREAMING_SNAKE_CASE__ ) if sub_memo is not None: snake_case_ = sub_memo.get(SCREAMING_SNAKE_CASE__ ) if jumps is not None and len(SCREAMING_SNAKE_CASE__ ) > 0: # find and make the largest jump without going over snake_case_ = -1 for _k in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case_ = _k break if max_jump >= 0: snake_case_, snake_case_, snake_case_ = jumps[max_jump] # since the difference between jumps is cached, add c snake_case_ = diff + c for j in range(min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) ): snake_case_, snake_case_ = divmod(SCREAMING_SNAKE_CASE__ , 10 ) if new_c > 0: add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = [] else: snake_case_ = {c: []} snake_case_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case_, snake_case_ = next_term(SCREAMING_SNAKE_CASE__ , k - 1 , i + dn , SCREAMING_SNAKE_CASE__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case_, snake_case_ = compute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + dn , SCREAMING_SNAKE_CASE__ ) diff += _diff dn += terms_jumped snake_case_ = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case_ = 0 while j < len(SCREAMING_SNAKE_CASE__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE__ , (diff, dn, k) ) return (diff, dn) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE__ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case_ = i snake_case_, snake_case_, snake_case_ = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case_ = ds_c + ds_b diff += addend snake_case_ = 0 for j in range(SCREAMING_SNAKE_CASE__ ): snake_case_ = a_i[j] + addend snake_case_, snake_case_ = divmod(SCREAMING_SNAKE_CASE__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return diff, i - start_i def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = digits[j] + addend if s >= 10: snake_case_, snake_case_ = divmod(SCREAMING_SNAKE_CASE__ , 10 ) snake_case_ = addend // 10 + quotient else: snake_case_ = s snake_case_ = addend // 10 if addend == 0: break while addend > 0: snake_case_, snake_case_ = divmod(SCREAMING_SNAKE_CASE__ , 10 ) digits.append(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10**15 ): snake_case_ = [1] snake_case_ = 1 snake_case_ = 0 while True: snake_case_, snake_case_ = next_term(SCREAMING_SNAKE_CASE__ , 20 , i + dn , SCREAMING_SNAKE_CASE__ ) dn += terms_jumped if dn == n - i: break snake_case_ = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
39
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = "bert" def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_="absolute", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = vocab_size UpperCamelCase : Tuple = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : str = num_attention_heads UpperCamelCase : str = hidden_act UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = layer_norm_eps UpperCamelCase : str = position_embedding_type UpperCamelCase : List[str] = use_cache UpperCamelCase : Union[str, Any] = classifier_dropout class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
40
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase__ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 'albert' def __init__( self : Any ,lowercase__ : Any=3_0_0_0_0 ,lowercase__ : Dict=1_2_8 ,lowercase__ : List[Any]=4_0_9_6 ,lowercase__ : Tuple=1_2 ,lowercase__ : Dict=1 ,lowercase__ : List[str]=6_4 ,lowercase__ : Dict=1_6_3_8_4 ,lowercase__ : List[Any]=1 ,lowercase__ : List[str]="gelu_new" ,lowercase__ : Optional[Any]=0 ,lowercase__ : Optional[Any]=0 ,lowercase__ : Optional[int]=5_1_2 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : Dict=0.0_2 ,lowercase__ : Dict=1e-1_2 ,lowercase__ : List[str]=0.1 ,lowercase__ : List[Any]="absolute" ,lowercase__ : Union[str, Any]=0 ,lowercase__ : Optional[Any]=2 ,lowercase__ : List[Any]=3 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = inner_group_num __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = classifier_dropout_prob __lowercase = position_embedding_type class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
41
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' super().__init__() lowerCamelCase_ = model lowerCamelCase_ = 2 lowerCamelCase_ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' pass def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: # load longformer model from model identifier lowerCamelCase_ = LongformerModel.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = LightningModel(__UpperCamelCase ) lowerCamelCase_ = torch.load(__UpperCamelCase ,map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model lowerCamelCase_ = LongformerForQuestionAnswering.from_pretrained(__UpperCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__UpperCamelCase ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
42
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : List[str] = '''layoutlmv3''' def __init__( self: Optional[Any] , UpperCamelCase_: Union[str, Any]=50_265 , UpperCamelCase_: Tuple=768 , UpperCamelCase_: int=12 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: List[Any]=3_072 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: str=0.1 , UpperCamelCase_: str=512 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: str=0.02 , UpperCamelCase_: int=1E-5 , UpperCamelCase_: List[Any]=1 , UpperCamelCase_: List[str]=0 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=1_024 , UpperCamelCase_: List[str]=128 , UpperCamelCase_: List[str]=128 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Any=32 , UpperCamelCase_: Any=128 , UpperCamelCase_: Optional[int]=64 , UpperCamelCase_: str=256 , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[int]=224 , UpperCamelCase_: Any=3 , UpperCamelCase_: int=16 , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: List[str] , ) -> Optional[int]: """simple docstring""" super().__init__( vocab_size=UpperCamelCase_ , hidden_size=UpperCamelCase_ , num_hidden_layers=UpperCamelCase_ , num_attention_heads=UpperCamelCase_ , intermediate_size=UpperCamelCase_ , hidden_act=UpperCamelCase_ , hidden_dropout_prob=UpperCamelCase_ , attention_probs_dropout_prob=UpperCamelCase_ , max_position_embeddings=UpperCamelCase_ , type_vocab_size=UpperCamelCase_ , initializer_range=UpperCamelCase_ , layer_norm_eps=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = max_ad_position_embeddings lowercase__ = coordinate_size lowercase__ = shape_size lowercase__ = has_relative_attention_bias lowercase__ = rel_pos_bins lowercase__ = max_rel_pos lowercase__ = has_spatial_attention_bias lowercase__ = rel_ad_pos_bins lowercase__ = max_rel_ad_pos lowercase__ = text_embed lowercase__ = visual_embed lowercase__ = input_size lowercase__ = num_channels lowercase__ = patch_size lowercase__ = classifier_dropout class _a ( UpperCamelCase__ ): _lowercase : List[str] = version.parse('''1.12''' ) @property def lowerCamelCase_ ( self: int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def lowerCamelCase_ ( self: Any ) -> float: """simple docstring""" return 1E-5 @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return 12 def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: "ProcessorMixin" , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional["TensorType"] = None , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 40 , UpperCamelCase_: int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , '''apply_ocr''' , UpperCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = processor.tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) lowercase__ = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowercase__ = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase__ = self._generate_dummy_images(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = dict( processor( UpperCamelCase_ , text=UpperCamelCase_ , boxes=UpperCamelCase_ , return_tensors=UpperCamelCase_ , ) ) return inputs
43
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _lowerCamelCase : Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
44
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :str , lowerCamelCase__ :Distribution , lowerCamelCase__ :Any=None , lowerCamelCase__ :List[Any]=None , lowerCamelCase__ :List[str]=0 ): UpperCamelCase__ :int = 1.0 if scale is None else scale UpperCamelCase__ :Union[str, Any] = 0.0 if loc is None else loc super().__init__(lowerCamelCase__ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase__ )] ) @property def __a ( self :Any ): return self.base_dist.mean * self.scale + self.loc @property def __a ( self :List[Any] ): return self.base_dist.variance * self.scale**2 @property def __a ( self :Optional[int] ): return self.variance.sqrt() class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :int , lowerCamelCase__ :Dict[str, int] , lowerCamelCase__ :Callable[..., Tuple[torch.Tensor]] , **lowerCamelCase__ :Any ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = args_dim UpperCamelCase__ :Dict = nn.ModuleList([nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) for dim in args_dim.values()] ) UpperCamelCase__ :List[str] = domain_map def __a ( self :Tuple , lowerCamelCase__ :torch.Tensor ): UpperCamelCase__ :Optional[Any] = [proj(lowerCamelCase__ ) for proj in self.proj] return self.domain_map(*lowerCamelCase__ ) class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Optional[int] ): super().__init__() UpperCamelCase__ :Union[str, Any] = function def __a ( self :int , lowerCamelCase__ :Union[str, Any] , *lowerCamelCase__ :Tuple ): return self.function(lowerCamelCase__ , *lowerCamelCase__ ) class lowerCAmelCase_ : """simple docstring""" _snake_case : type _snake_case : int _snake_case : Dict[str, int] def __init__( self :Tuple , lowerCamelCase__ :int = 1 ): UpperCamelCase__ :str = dim UpperCamelCase__ :List[str] = {k: dim * self.args_dim[k] for k in self.args_dim} def __a ( self :Union[str, Any] , lowerCamelCase__ :Union[str, Any] ): if self.dim == 1: return self.distribution_class(*lowerCamelCase__ ) else: return Independent(self.distribution_class(*lowerCamelCase__ ) , 1 ) def __a ( self :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[torch.Tensor] = None , lowerCamelCase__ :Optional[torch.Tensor] = None , ): UpperCamelCase__ :Union[str, Any] = self._base_distribution(lowerCamelCase__ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase__ , loc=lowerCamelCase__ , scale=lowerCamelCase__ , event_dim=self.event_dim ) @property def __a ( self :Optional[Any] ): return () if self.dim == 1 else (self.dim,) @property def __a ( self :List[str] ): return len(self.event_shape ) @property def __a ( self :Any ): return 0.0 def __a ( self :Any , lowerCamelCase__ :int ): return ParameterProjection( in_features=lowerCamelCase__ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __a ( self :Union[str, Any] , *lowerCamelCase__ :torch.Tensor ): raise NotImplementedError() @staticmethod def __a ( lowerCamelCase__ :torch.Tensor ): return (x + torch.sqrt(torch.square(lowerCamelCase__ ) + 4.0 )) / 2.0 class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} _snake_case : type = StudentT @classmethod def __a ( cls :List[str] , lowerCamelCase__ :torch.Tensor , lowerCamelCase__ :torch.Tensor , lowerCamelCase__ :torch.Tensor ): UpperCamelCase__ :Dict = cls.squareplus(lowerCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase__ :Dict = 2.0 + cls.squareplus(lowerCamelCase__ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict[str, int] = {"loc": 1, "scale": 1} _snake_case : type = Normal @classmethod def __a ( cls :Union[str, Any] , lowerCamelCase__ :torch.Tensor , lowerCamelCase__ :torch.Tensor ): UpperCamelCase__ :Tuple = cls.squareplus(lowerCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict[str, int] = {"total_count": 1, "logits": 1} _snake_case : type = NegativeBinomial @classmethod def __a ( cls :Tuple , lowerCamelCase__ :torch.Tensor , lowerCamelCase__ :torch.Tensor ): UpperCamelCase__ :Union[str, Any] = cls.squareplus(lowerCamelCase__ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __a ( self :Optional[Any] , lowerCamelCase__ :int ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase__ , logits=lowerCamelCase__ ) else: return Independent(self.distribution_class(total_count=lowerCamelCase__ , logits=lowerCamelCase__ ) , 1 ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[torch.Tensor] = None , lowerCamelCase__ :Optional[torch.Tensor] = None ): UpperCamelCase__ , UpperCamelCase__ :int = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
45
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _lowerCAmelCase : List[str] = parse(importlib.metadata.version('''torch''')) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) _lowerCamelCase : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = parse(importlib.metadata.version(_lowerCamelCase ) ) return operation(_lowerCamelCase , parse(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' return compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
46
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str]=None ): require_version(deps[pkg] , lowerCamelCase_ )
47
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = 'data2vec-vision' def __init__( self : Optional[Any] , __magic_name__ : Optional[int]=768 , __magic_name__ : Any=12 , __magic_name__ : int=12 , __magic_name__ : str=3072 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Any=1E-12 , __magic_name__ : Dict=224 , __magic_name__ : Dict=16 , __magic_name__ : List[Any]=3 , __magic_name__ : Tuple=False , __magic_name__ : Optional[int]=False , __magic_name__ : Any=False , __magic_name__ : Optional[Any]=False , __magic_name__ : List[Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Tuple=True , __magic_name__ : Dict=[3, 5, 7, 11] , __magic_name__ : int=[1, 2, 3, 6] , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=0.4 , __magic_name__ : int=256 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Union[str, Any]=False , __magic_name__ : Optional[int]=255 , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = use_mask_token lowerCAmelCase__ = use_absolute_position_embeddings lowerCAmelCase__ = use_relative_position_bias lowerCAmelCase__ = use_shared_relative_position_bias lowerCAmelCase__ = layer_scale_init_value lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase__ = out_indices lowerCAmelCase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase__ = use_auxiliary_head lowerCAmelCase__ = auxiliary_loss_weight lowerCAmelCase__ = auxiliary_channels lowerCAmelCase__ = auxiliary_num_convs lowerCAmelCase__ = auxiliary_concat_input lowerCAmelCase__ = semantic_loss_ignore_index class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = version.parse('1.11' ) @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return 1E-4
48
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
"""simple docstring""" def lowercase__ ( snake_case_ :int = 4_000_000 ): __UpperCAmelCase = [0, 1] __UpperCAmelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __UpperCAmelCase = 0 for j in range(len(snake_case_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
49
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def A__ ( __lowerCAmelCase : bool = True , *__lowerCAmelCase : int , **__lowerCAmelCase : Union[str, Any] ): if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) lowerCamelCase__ = False if main_process_only: lowerCamelCase__ = PartialState().local_process_index == 0 return _tqdm(*__lowerCAmelCase , **__lowerCAmelCase , disable=__lowerCAmelCase )
50
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: """simple docstring""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]="attention" ) -> Dict: """simple docstring""" UpperCAmelCase = UpperCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) UpperCAmelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) UpperCAmelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) UpperCAmelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) UpperCAmelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> List[str]: """simple docstring""" if split_mlp_wi: UpperCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] UpperCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] UpperCAmelCase = (wi_a, wi_a) else: UpperCAmelCase = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] UpperCAmelCase = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: """simple docstring""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , *, SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[str]: """simple docstring""" UpperCAmelCase = traverse_util.flatten_dict(variables['''target'''] ) UpperCAmelCase = {'''/'''.join(SCREAMING_SNAKE_CASE_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = collections.OrderedDict() # Shared embeddings. UpperCAmelCase = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE_ ): # Block i, layer 0 (Self Attention). UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' , '''attention''' ) UpperCAmelCase = layer_norm UpperCAmelCase = k.T UpperCAmelCase = o.T UpperCAmelCase = q.T UpperCAmelCase = v.T # Block i, layer 1 (MLP). UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCAmelCase, UpperCAmelCase = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = layer_norm if split_mlp_wi: UpperCAmelCase = wi[0].T UpperCAmelCase = wi[1].T else: UpperCAmelCase = wi.T UpperCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' ).T UpperCAmelCase = old['''encoder/encoder_norm/scale'''] if not scalable_attention: UpperCAmelCase = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE_ , 0 , '''encoder''' ).T UpperCAmelCase = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE_ , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE_ ): # Block i, layer 0 (Self Attention). UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''self_attention''' ) UpperCAmelCase = layer_norm UpperCAmelCase = k.T UpperCAmelCase = o.T UpperCAmelCase = q.T UpperCAmelCase = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''encoder_decoder_attention''' ) UpperCAmelCase = layer_norm UpperCAmelCase = k.T UpperCAmelCase = o.T UpperCAmelCase = q.T UpperCAmelCase = v.T # Block i, layer 2 (MLP). UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCAmelCase, UpperCAmelCase = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = layer_norm if split_mlp_wi: UpperCAmelCase = wi[0].T UpperCAmelCase = wi[1].T else: UpperCAmelCase = wi.T UpperCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' ).T UpperCAmelCase = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase = old['''decoder/logits_dense/kernel'''].T return new def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : bool ) -> Any: """simple docstring""" UpperCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCAmelCase = state_dict['''shared.weight'''] return state_dict def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE_ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE_ , scalable_attention=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = make_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Dict: """simple docstring""" UpperCAmelCase = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase = UMTaEncoderModel(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE_ ) print('''Done''' ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) a__ : List[str] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
51
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" from __future__ import annotations def __A ( a_ :str) -> list[int]: return [ord(a_) - 96 for elem in plain] def __A ( a_ :list[int]) -> str: return "".join(chr(elem + 96) for elem in encoded) def __A ( ) -> None: __a : Dict = encode(input('''-> ''').strip().lower()) print('''Encoded: ''' , a_) print('''Decoded:''' , decode(a_)) if __name__ == "__main__": main()
52
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : int ): if digit_amount > 0: return round(number - int(lowerCAmelCase_ ), lowerCAmelCase_ ) return number - int(lowerCAmelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
53
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
def a__ ( lowercase__ = 1 , lowercase__ = 1_0_0_0 ): '''simple docstring''' UpperCAmelCase_ =1 UpperCAmelCase_ =0 for divide_by_number in range(lowercase__ , digit + 1 ): UpperCAmelCase_ =[] UpperCAmelCase_ =numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase__ ): UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =divide_by_number else: has_been_divided.append(lowercase__ ) UpperCAmelCase_ =now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
54
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self : Any ,A : str ,A : Any ): __A = question_encoder __A = generator __A = self.question_encoder def UpperCamelCase_ ( self : Dict ,A : List[Any] ): if os.path.isfile(A ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(A ,exist_ok=A ) __A = os.path.join(A ,"question_encoder_tokenizer" ) __A = os.path.join(A ,"generator_tokenizer" ) self.question_encoder.save_pretrained(A ) self.generator.save_pretrained(A ) @classmethod def UpperCamelCase_ ( cls : Any ,A : str ,**A : Optional[Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __A = kwargs.pop("config" ,A ) if config is None: __A = RagConfig.from_pretrained(A ) __A = AutoTokenizer.from_pretrained( A ,config=config.question_encoder ,subfolder="question_encoder_tokenizer" ) __A = AutoTokenizer.from_pretrained( A ,config=config.generator ,subfolder="generator_tokenizer" ) return cls(question_encoder=A ,generator=A ) def __call__( self : Tuple ,*A : List[str] ,**A : str ): return self.current_tokenizer(*A ,**A ) def UpperCamelCase_ ( self : List[str] ,*A : List[str] ,**A : List[str] ): return self.generator.batch_decode(*A ,**A ) def UpperCamelCase_ ( self : int ,*A : int ,**A : Union[str, Any] ): return self.generator.decode(*A ,**A ) def UpperCamelCase_ ( self : Dict ): __A = self.question_encoder def UpperCamelCase_ ( self : Any ): __A = self.generator def UpperCamelCase_ ( self : Optional[Any] ,A : List[str] ,A : Optional[List[str]] = None ,A : Optional[int] = None ,A : Optional[int] = None ,A : str = "longest" ,A : str = None ,A : bool = True ,**A : Tuple ,): warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" ,A ,) if max_length is None: __A = self.current_tokenizer.model_max_length __A = self( A ,add_special_tokens=A ,return_tensors=A ,max_length=A ,padding=A ,truncation=A ,**A ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __A = self.current_tokenizer.model_max_length __A = self( text_target=A ,add_special_tokens=A ,return_tensors=A ,padding=A ,max_length=A ,truncation=A ,**A ,) __A = labels["input_ids"] return model_inputs
55
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _a : Any = logging.get_logger(__name__) class _lowercase ( __lowercase ): def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
56
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
from math import factorial class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = real if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = [1] * rank else: UpperCamelCase_: List[str] = rank def __repr__( self ): return ( f'''{self.real}+''' f'''{'+'.join(str(_lowerCamelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def _a ( self ): UpperCamelCase_: Union[str, Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _lowerCamelCase ) def __add__( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): return Dual(self.real + other , self.duals ) UpperCamelCase_: List[Any] = self.duals.copy() UpperCamelCase_: Optional[int] = other.duals.copy() if len(_lowerCamelCase ) > len(_lowerCamelCase ): o_dual.extend([1] * (len(_lowerCamelCase ) - len(_lowerCamelCase )) ) elif len(_lowerCamelCase ) < len(_lowerCamelCase ): s_dual.extend([1] * (len(_lowerCamelCase ) - len(_lowerCamelCase )) ) UpperCamelCase_: List[str] = [] for i in range(len(_lowerCamelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _lowerCamelCase ) a : Union[str, Any] =__add__ def __sub__( self , _lowerCamelCase ): return self + other * -1 def __mul__( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _lowerCamelCase ) UpperCamelCase_: List[Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _lowerCamelCase ) a : Optional[int] =__mul__ def __truediv__( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _lowerCamelCase ) raise ValueError def __floordiv__( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _lowerCamelCase ) raise ValueError def __pow__( self , _lowerCamelCase ): if n < 0 or isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self UpperCamelCase_: List[str] = self for _ in range(n - 1 ): x *= self return x def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: if not callable(UpperCAmelCase__ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(UpperCAmelCase__ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError('differentiate() requires an int as input for order' ) UpperCamelCase_: Optional[int] = Dual(UpperCAmelCase__ , 1 ) UpperCamelCase_: Optional[Any] = func(UpperCAmelCase__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() def snake_case (UpperCAmelCase__ ) -> Optional[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
57
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : Tuple = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } __lowerCAmelCase : Optional[Any] = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } @lru_cache() def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) snake_case_ : Tuple = bs[:] snake_case_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case_ : Dict = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = set() snake_case_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : str = char return pairs class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase , _lowercase , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , **_lowercase , ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token snake_case_ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token snake_case_ : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token snake_case_ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding="""utf-8""" ) as vocab_handle: snake_case_ : Optional[Any] = json.load(_lowercase ) snake_case_ : Any = {v: k for k, v in self.encoder.items()} snake_case_ : Optional[Any] = errors # how to handle errors in decoding snake_case_ : List[Any] = bytes_to_unicode() snake_case_ : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding="""utf-8""" ) as merges_handle: snake_case_ : str = merges_handle.read().split("""\n""" )[1:-1] snake_case_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ : List[Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Dict = {} snake_case_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case_ : Optional[int] = tuple(_lowercase ) snake_case_ : List[Any] = get_pairs(_lowercase ) if not pairs: return token while True: snake_case_ : Optional[int] = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : List[str] = bigram snake_case_ : List[str] = [] snake_case_ : Optional[int] = 0 while i < len(_lowercase ): try: snake_case_ : Any = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : List[str] = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Union[str, Any] = tuple(_lowercase ) snake_case_ : int = new_word if len(_lowercase ) == 1: break else: snake_case_ : Tuple = get_pairs(_lowercase ) snake_case_ : Dict = """ """.join(_lowercase ) snake_case_ : Any = word return word def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : str = [] for token in re.findall(self.pat , _lowercase ): snake_case_ : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' return self.decoder.get(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : str = """""".join(_lowercase ) snake_case_ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : int = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Optional[int] = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + """\n""" ) snake_case_ : Optional[Any] = 0 with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) snake_case_ : Union[str, Any] = token_index writer.write(""" """.join(_lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] snake_case_ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): snake_case_ : Any = """ """ + text return (text, kwargs)
58
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( __a , __a=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Dict =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase__: int =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( __a , __a , __a=False ) -> Any: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase__: List[Any] ="" else: lowerCamelCase__: Dict ="vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Tuple =state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: int =state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: int =in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__: Optional[int] =in_proj_bias[: config.hidden_size] lowerCamelCase__: Union[str, Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Dict =in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__: str =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Tuple =["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__a , __a ) def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: Any =[ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: int =dct.pop(__a ) lowerCamelCase__: Tuple =val def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: List[str] =ViTMSNConfig() lowerCamelCase__: Optional[Any] =1000 lowerCamelCase__: Dict ="datasets/huggingface/label-files" lowerCamelCase__: List[str] ="imagenet-1k-id2label.json" lowerCamelCase__: List[str] =json.load(open(hf_hub_download(__a , __a ) , "r" ) ) lowerCamelCase__: int ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: Union[str, Any] ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCamelCase__: Dict =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: Dict =6 elif "l16" in checkpoint_url: lowerCamelCase__: str =1024 lowerCamelCase__: List[Any] =4096 lowerCamelCase__: List[str] =24 lowerCamelCase__: List[Any] =16 lowerCamelCase__: Any =0.1 elif "b4" in checkpoint_url: lowerCamelCase__: List[str] =4 elif "l7" in checkpoint_url: lowerCamelCase__: Optional[Any] =7 lowerCamelCase__: int =1024 lowerCamelCase__: int =4096 lowerCamelCase__: Tuple =24 lowerCamelCase__: List[Any] =16 lowerCamelCase__: Tuple =0.1 lowerCamelCase__: Union[str, Any] =ViTMSNModel(__a ) lowerCamelCase__: Tuple =torch.hub.load_state_dict_from_url(__a , map_location="cpu" )["target_encoder"] lowerCamelCase__: Union[str, Any] =ViTImageProcessor(size=config.image_size ) remove_projection_head(__a ) lowerCamelCase__: Optional[Any] =create_rename_keys(__a , base_model=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , base_model=__a ) model.load_state_dict(__a ) model.eval() lowerCamelCase__: Dict ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Any =Image.open(requests.get(__a , stream=__a ).raw ) lowerCamelCase__: Union[str, Any] =ViTImageProcessor( size=config.image_size , image_mean=__a , image_std=__a ) lowerCamelCase__: List[str] =image_processor(images=__a , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCamelCase__: Union[str, Any] =model(**__a ) lowerCamelCase__: List[str] =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCamelCase__: str =torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCamelCase__: Tuple =torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCamelCase__: List[Any] =torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCamelCase__: Union[str, Any] =torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCamelCase__: Dict =torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __a , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
59
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : Any = {} snake_case_ : Dict = tokenizer(example['''content'''] , truncation=_UpperCamelCase )['''input_ids'''] snake_case_ : str = len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowerCAmelCase_ = HfArgumentParser(PretokenizationArguments) lowerCAmelCase_ = parser.parse_args() if args.num_workers is None: lowerCAmelCase_ = multiprocessing.cpu_count() lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase_ = time.time() lowerCAmelCase_ = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') lowerCAmelCase_ = time.time() lowerCAmelCase_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowerCAmelCase_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
60
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = (DPMSolverSDEScheduler,) snake_case__ = 1_0 def a ( self : Dict , **SCREAMING_SNAKE_CASE__ : str ) -> str: lowerCAmelCase__ = { "num_train_timesteps": 1_100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def a ( self : Any ) -> int: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] ) -> Union[str, Any]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Optional[Any]: lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def a ( self : Optional[Any] ) -> Optional[int]: lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3 def a ( self : Tuple ) -> Optional[int]: lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def a ( self : List[str] ) -> List[str]: lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ , use_karras_sigmas=SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE__ ) * scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(SCREAMING_SNAKE_CASE__ ) for t in scheduler.timesteps: lowerCAmelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
61
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=13 , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : str=36 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : List[Any]=6 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Tuple=None , ): SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : int = seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : List[str] = embedding_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_groups SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Dict = num_choices SCREAMING_SNAKE_CASE : List[str] = scope def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Any ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = AlbertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Union[str, Any] = AlbertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , sentence_order_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _A ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : List[Any] = AlbertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[str] = AlbertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : Any = AlbertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = AlbertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Dict = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = AlbertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : int = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : str = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase_ : List[Any] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Dict = True def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=False ): SCREAMING_SNAKE_CASE : Dict = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def _A ( self : str ): SCREAMING_SNAKE_CASE : Optional[Any] = AlbertModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def _A ( self : Any ): self.config_tester.run_common_tests() def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def _A ( self : int ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : int = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @slow def _A ( self : Optional[int] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = AlbertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = AlbertModel.from_pretrained("albert-base-v2" ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
62
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class a ( lowercase__ ): """simple docstring""" def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER __UpperCAmelCase : List[Any] = """pt""" __UpperCAmelCase : List[Any] = """tf""" def UpperCAmelCase ( self : Tuple , __lowercase : List[str] ) -> Union[str, Any]: __UpperCAmelCase : Dict = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__lowercase ) def UpperCAmelCase ( self : Any , __lowercase : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=__lowercase ) model_tf.save_pretrained(__lowercase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __UpperCAmelCase : Optional[int] = """mock_framework""" # Framework provided - return whatever the user provides __UpperCAmelCase : int = FeaturesManager.determine_framework(self.test_model , __lowercase ) self.assertEqual(__lowercase , __lowercase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__lowercase ) __UpperCAmelCase : List[str] = FeaturesManager.determine_framework(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__lowercase ) __UpperCAmelCase : List[str] = FeaturesManager.determine_framework(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) def UpperCAmelCase ( self : List[str] ) -> int: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__lowercase ) __UpperCAmelCase : Optional[Any] = FeaturesManager.determine_framework(__lowercase ) self.assertEqual(__lowercase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__lowercase ) __UpperCAmelCase : str = FeaturesManager.determine_framework(__lowercase ) self.assertEqual(__lowercase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__lowercase ): __UpperCAmelCase : Any = FeaturesManager.determine_framework(__lowercase ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = MagicMock(return_value=__lowercase ) with patch("""transformers.onnx.features.is_tf_available""" , __lowercase ): __UpperCAmelCase : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCAmelCase : Dict = MagicMock(return_value=__lowercase ) with patch("""transformers.onnx.features.is_torch_available""" , __lowercase ): __UpperCAmelCase : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_tf ) # Both in environment -> use PyTorch __UpperCAmelCase : List[str] = MagicMock(return_value=__lowercase ) __UpperCAmelCase : int = MagicMock(return_value=__lowercase ) with patch("""transformers.onnx.features.is_tf_available""" , __lowercase ), patch( """transformers.onnx.features.is_torch_available""" , __lowercase ): __UpperCAmelCase : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_pt ) # Both not in environment -> raise error __UpperCAmelCase : Optional[int] = MagicMock(return_value=__lowercase ) __UpperCAmelCase : Tuple = MagicMock(return_value=__lowercase ) with patch("""transformers.onnx.features.is_tf_available""" , __lowercase ), patch( """transformers.onnx.features.is_torch_available""" , __lowercase ): with self.assertRaises(__lowercase ): __UpperCAmelCase : Tuple = FeaturesManager.determine_framework(self.test_model )
63
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ : str = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[str] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowercase ( __lowerCamelCase ): snake_case_ = """SpeechT5FeatureExtractor""" snake_case_ = """SpeechT5Tokenizer""" def __init__( self : Optional[int] ,A : str ,A : Any ): '''simple docstring''' super().__init__(A ,A ) def __call__( self : str ,*A : Tuple ,**A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = kwargs.pop("""audio""" ,A ) UpperCAmelCase__ : Union[str, Any] = kwargs.pop("""text""" ,A ) UpperCAmelCase__ : Optional[int] = kwargs.pop("""text_target""" ,A ) UpperCAmelCase__ : Any = kwargs.pop("""audio_target""" ,A ) UpperCAmelCase__ : List[str] = kwargs.pop("""sampling_rate""" ,A ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: UpperCAmelCase__ : Union[str, Any] = self.feature_extractor(A ,*A ,sampling_rate=A ,**A ) elif text is not None: UpperCAmelCase__ : Optional[int] = self.tokenizer(A ,**A ) else: UpperCAmelCase__ : Optional[int] = None if audio_target is not None: UpperCAmelCase__ : List[Any] = self.feature_extractor(audio_target=A ,*A ,sampling_rate=A ,**A ) UpperCAmelCase__ : int = targets["""input_values"""] elif text_target is not None: UpperCAmelCase__ : List[str] = self.tokenizer(A ,**A ) UpperCAmelCase__ : Optional[Any] = targets["""input_ids"""] else: UpperCAmelCase__ : List[Any] = None if inputs is None: return targets if targets is not None: UpperCAmelCase__ : Optional[Any] = labels UpperCAmelCase__ : Any = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: UpperCAmelCase__ : List[Any] = decoder_attention_mask return inputs def __lowercase ( self : Optional[int] ,*A : int ,**A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = kwargs.pop("""input_values""" ,A ) UpperCAmelCase__ : Tuple = kwargs.pop("""input_ids""" ,A ) UpperCAmelCase__ : Union[str, Any] = kwargs.pop("""labels""" ,A ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: UpperCAmelCase__ : List[str] = self.feature_extractor.pad(A ,*A ,**A ) elif input_ids is not None: UpperCAmelCase__ : Dict = self.tokenizer.pad(A ,**A ) else: UpperCAmelCase__ : Dict = None if labels is not None: if "input_ids" in labels or (isinstance(A ,A ) and "input_ids" in labels[0]): UpperCAmelCase__ : int = self.tokenizer.pad(A ,**A ) UpperCAmelCase__ : Optional[Any] = targets["""input_ids"""] else: UpperCAmelCase__ : Union[str, Any] = self.feature_extractor.feature_size UpperCAmelCase__ : Optional[Any] = self.feature_extractor.num_mel_bins UpperCAmelCase__ : int = self.feature_extractor.pad(A ,*A ,**A ) UpperCAmelCase__ : List[str] = feature_size_hack UpperCAmelCase__ : Optional[int] = targets["""input_values"""] else: UpperCAmelCase__ : Optional[Any] = None if inputs is None: return targets if targets is not None: UpperCAmelCase__ : Any = labels UpperCAmelCase__ : Dict = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: UpperCAmelCase__ : List[str] = decoder_attention_mask return inputs def __lowercase ( self : str ,*A : int ,**A : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*A ,**A ) def __lowercase ( self : int ,*A : Any ,**A : Dict ): '''simple docstring''' return self.tokenizer.decode(*A ,**A )
65
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ): _lowercase : Optional[Any] = parent _lowercase : Any = batch_size _lowercase : str = seq_length _lowercase : Union[str, Any] = is_training _lowercase : Tuple = use_attention_mask _lowercase : List[str] = use_token_type_ids _lowercase : Tuple = use_labels _lowercase : Tuple = vocab_size _lowercase : List[Any] = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Any = intermediate_size _lowercase : List[str] = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : str = max_position_embeddings _lowercase : Tuple = type_vocab_size _lowercase : Optional[int] = type_sequence_label_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = num_choices def __a ( self ): _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : str = None if self.use_attention_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Optional[Any] = None if self.use_token_type_ids: _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Any = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __a ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Dict = config_and_inputs _lowercase : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __a ( self ): _lowercase : Tuple = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = config_and_inputs _lowercase : Any = True _lowercase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[Any] = True _UpperCamelCase : int = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __a ( self ): _lowercase : Optional[Any] = FlaxBertModelTester(self ) @slow def __a ( self ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. _lowercase : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased' ) _lowercase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
66
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''blenderbot-small''' SCREAMING_SNAKE_CASE_ : int = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] ,__A : List[Any]=5_0265 ,__A : str=512 ,__A : Optional[int]=8 ,__A : Any=2048 ,__A : Tuple=16 ,__A : str=8 ,__A : int=2048 ,__A : List[str]=16 ,__A : Optional[int]=0.0 ,__A : Any=0.0 ,__A : int=True ,__A : List[Any]=True ,__A : Tuple="gelu" ,__A : Any=512 ,__A : Dict=0.1 ,__A : Tuple=0.0 ,__A : int=0.0 ,__A : int=0.02 ,__A : Dict=1 ,__A : str=False ,__A : Dict=0 ,__A : Union[str, Any]=1 ,__A : Optional[int]=2 ,__A : List[str]=2 ,**__A : Tuple ,) -> Tuple: _lowercase = vocab_size _lowercase = max_position_embeddings _lowercase = d_model _lowercase = encoder_ffn_dim _lowercase = encoder_layers _lowercase = encoder_attention_heads _lowercase = decoder_ffn_dim _lowercase = decoder_layers _lowercase = decoder_attention_heads _lowercase = dropout _lowercase = attention_dropout _lowercase = activation_dropout _lowercase = activation_function _lowercase = init_std _lowercase = encoder_layerdrop _lowercase = decoder_layerdrop _lowercase = use_cache _lowercase = encoder_layers _lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,is_encoder_decoder=__A ,decoder_start_token_id=__A ,forced_eos_token_id=__A ,**__A ,) class A_ ( UpperCAmelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowercase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowercase = {0: 'batch'} _lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowercase = {0: 'batch', 1: 'decoder_sequence'} _lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__A ,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowercase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowercase , _lowercase = self.num_layers for i in range(__A ): _lowercase = {0: 'batch', 2: 'past_sequence + sequence'} _lowercase = {0: 'batch', 2: 'past_sequence + sequence'} else: _lowercase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def __UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowercase = super().outputs else: _lowercase = super(__A ,self ).outputs if self.use_past: _lowercase , _lowercase = self.num_layers for i in range(__A ): _lowercase = {0: 'batch', 2: 'past_sequence + sequence'} _lowercase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCAmelCase ( self : Optional[int] ,__A : PreTrainedTokenizer ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional[TensorType] = None ,) -> Mapping[str, Any]: _lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A ,__A ,__A ,__A ,__A ) # Generate decoder inputs _lowercase = seq_length if not self.use_past else 1 _lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A ,__A ,__A ,__A ,__A ) _lowercase = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _lowercase = dict(**__A ,**__A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase , _lowercase = common_inputs['input_ids'].shape _lowercase = common_inputs['decoder_input_ids'].shape[1] _lowercase , _lowercase = self.num_attention_heads _lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowercase = decoder_seq_length + 3 _lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowercase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(__A ,__A )] ,dim=1 ) _lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowercase , _lowercase = self.num_layers _lowercase = min(__A ,__A ) _lowercase = max(__A ,__A ) - min_num_layers _lowercase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(__A ): common_inputs["past_key_values"].append( ( torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), ) ) # TODO: test this. _lowercase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(__A ,__A ): common_inputs["past_key_values"].append((torch.zeros(__A ), torch.zeros(__A )) ) return common_inputs def __UpperCAmelCase ( self : List[Any] ,__A : PreTrainedTokenizer ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional[TensorType] = None ,) -> Mapping[str, Any]: _lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A ,__A ,__A ,__A ,__A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase , _lowercase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowercase = seqlen + 2 _lowercase , _lowercase = self.num_layers _lowercase , _lowercase = self.num_attention_heads _lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowercase = common_inputs['attention_mask'].dtype _lowercase = torch.cat( [common_inputs['attention_mask'], torch.ones(__A ,__A ,dtype=__A )] ,dim=1 ) _lowercase = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(__A ) ] return common_inputs def __UpperCAmelCase ( self : Any ,__A : PreTrainedTokenizer ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional[TensorType] = None ,) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowercase = compute_effective_axis_dimension( __A ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowercase = tokenizer.num_special_tokens_to_add(__A ) _lowercase = compute_effective_axis_dimension( __A ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence _lowercase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowercase = dict(tokenizer(__A ,return_tensors=__A ) ) return common_inputs def __UpperCAmelCase ( self : Dict ,__A : PreTrainedTokenizer ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional[TensorType] = None ,) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __A ,batch_size=__A ,seq_length=__A ,is_pair=__A ,framework=__A ) elif self.task == "causal-lm": _lowercase = self._generate_dummy_inputs_for_causal_lm( __A ,batch_size=__A ,seq_length=__A ,is_pair=__A ,framework=__A ) else: _lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A ,batch_size=__A ,seq_length=__A ,is_pair=__A ,framework=__A ) return common_inputs def __UpperCAmelCase ( self : List[str] ,__A : Dict ,__A : Any ,__A : List[Any] ,__A : Tuple ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowercase = super()._flatten_past_key_values_(__A ,__A ,__A ,__A ) else: _lowercase = super(__A ,self )._flatten_past_key_values_( __A ,__A ,__A ,__A )
67
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
import torch from transformers import AutoModel class _A ( torch.nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str="sayef/fsner-bert-base-uncased" ) -> Optional[int]: super(__SCREAMING_SNAKE_CASE , self ).__init__() __UpperCAmelCase =AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =torch.nn.CosineSimilarity(3 , 1e-08 ) __UpperCAmelCase =torch.nn.Softmax(dim=1 ) def _a ( self : str , **__SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict ) -> str: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str=1 ) -> Optional[int]: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ) -> Any: __UpperCAmelCase =W_supports["""sizes"""].tolist() __UpperCAmelCase =W_supports["""start_token_id"""].item() __UpperCAmelCase =W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCAmelCase =self.BERT(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.BERT(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =W_supports["""input_ids"""] == start_token_id __UpperCAmelCase =W_supports["""input_ids"""] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: __UpperCAmelCase =0 else: __UpperCAmelCase =support_sizes[i - 1] __UpperCAmelCase =S[s : s + size][start_token_masks[s : s + size]] __UpperCAmelCase =S[s : s + size][end_token_masks[s : s + size]] __UpperCAmelCase =torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __UpperCAmelCase =torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCAmelCase =torch.vstack((p_starts, p_start) ) __UpperCAmelCase =torch.vstack((p_ends, p_end) ) else: __UpperCAmelCase =p_start __UpperCAmelCase =p_end return p_starts, p_ends
68
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any="attention" ) -> Optional[int]: __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str]=False ) -> Optional[int]: if split_mlp_wi: __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] __snake_case = (wi_a, wi_a) else: __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> int: return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def __UpperCAmelCase ( _UpperCAmelCase : dict , *, _UpperCAmelCase : int , _UpperCAmelCase : bool ) -> Optional[int]: __snake_case = traverse_util.flatten_dict(variables["target"] ) __snake_case = {"/".join(_UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __snake_case = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCAmelCase ) __snake_case = collections.OrderedDict() # Shared embeddings. __snake_case = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "pre_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 1 (MLP). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "pre_mlp_layer_norm" ) __snake_case , __snake_case = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , _UpperCAmelCase ) __snake_case = layer_norm if split_mlp_wi: __snake_case = wi[0].T __snake_case = wi[1].T else: __snake_case = wi.T __snake_case = wo.T __snake_case = old[ "encoder/relpos_bias/rel_embedding" ].T __snake_case = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "self_attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 1 (Cross Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "encoder_decoder_attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 2 (MLP). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_mlp_layer_norm" ) __snake_case , __snake_case = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , _UpperCAmelCase ) __snake_case = layer_norm if split_mlp_wi: __snake_case = wi[0].T __snake_case = wi[1].T else: __snake_case = wi.T __snake_case = wo.T __snake_case = old["decoder/decoder_norm/scale"] __snake_case = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __snake_case = old["decoder/logits_dense/kernel"].T return new def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : bool ) -> Optional[int]: __snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __snake_case = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __snake_case = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __snake_case = state_dict["shared.weight"] return state_dict def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Dict: __snake_case = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) __snake_case = convert_tax_to_pytorch(_UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=_UpperCAmelCase ) __snake_case = make_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : bool = False ) -> Optional[Any]: __snake_case = TaConfig.from_json_file(_UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __snake_case = TaEncoderModel(_UpperCAmelCase ) else: __snake_case = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCAmelCase ) print("Done" ) if __name__ == "__main__": a : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) a : Dict = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
69
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
70
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ : Any = str(bin(_SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Optional[int] = str(bin(_SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Union[str, Any] = max(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_SCREAMING_SNAKE_CASE ) , b_binary.zfill(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
71
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _UpperCAmelCase : Dict = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _UpperCAmelCase : Union[str, Any] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _UpperCAmelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _A( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def _A( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=True , snake_case_=False ): if rouge_types is None: lowercase =['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] lowercase =rouge_scorer.RougeScorer(rouge_types=snake_case_ , use_stemmer=snake_case_ ) if use_aggregator: lowercase =scoring.BootstrapAggregator() else: lowercase =[] for ref, pred in zip(snake_case_ , snake_case_ ): lowercase =scorer.score(snake_case_ , snake_case_ ) if use_aggregator: aggregator.add_scores(snake_case_ ) else: scores.append(snake_case_ ) if use_aggregator: lowercase =aggregator.aggregate() else: lowercase ={} for key in scores[0]: lowercase =[score[key] for score in scores] return result
72
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Tuple = '▁' a_ : str = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } a_ : Optional[Any] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } a_ : List[Any] = { 'facebook/s2t-small-librispeech-asr': 10_24, } a_ : Any = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] a_ : Dict = {'mustc': MUSTC_LANGS} class _snake_case ( A__ ): _lowercase : str = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = MAX_MODEL_INPUT_SIZES _lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] _lowercase : List[int] = [] def __init__( self , a , a , a="<s>" , a="</s>" , a="<pad>" , a="<unk>" , a=False , a=False , a=None , a=None , a = None , **a , ) -> None: SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , do_upper_case=a , do_lower_case=a , tgt_lang=a , lang_codes=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) SCREAMING_SNAKE_CASE = do_upper_case SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = load_json(a) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = spm_file SCREAMING_SNAKE_CASE = load_spm(a , self.sp_model_kwargs) if lang_codes is not None: SCREAMING_SNAKE_CASE = lang_codes SCREAMING_SNAKE_CASE = LANGUAGES[lang_codes] SCREAMING_SNAKE_CASE = [f'''<lang:{lang}>''' for lang in self.langs] SCREAMING_SNAKE_CASE = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''') for lang in self.langs} SCREAMING_SNAKE_CASE = self.lang_tokens SCREAMING_SNAKE_CASE = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang) else: SCREAMING_SNAKE_CASE = {} @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return len(self.encoder) @property def SCREAMING_SNAKE_CASE__ ( self) -> str: return self._tgt_lang @tgt_lang.setter def SCREAMING_SNAKE_CASE__ ( self , a) -> None: SCREAMING_SNAKE_CASE = new_tgt_lang self.set_tgt_lang_special_tokens(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> None: SCREAMING_SNAKE_CASE = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE = [lang_code_id] def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: return self.sp_model.encode(a , out_type=a) def SCREAMING_SNAKE_CASE__ ( self , a) -> Tuple: return self.encoder.get(a , self.encoder[self.unk_token]) def SCREAMING_SNAKE_CASE__ ( self , a) -> str: return self.decoder.get(a , self.unk_token) def SCREAMING_SNAKE_CASE__ ( self , a) -> str: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: SCREAMING_SNAKE_CASE = self.sp_model.decode(a) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(a) SCREAMING_SNAKE_CASE = self.sp_model.decode(a) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , a , a=None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens) SCREAMING_SNAKE_CASE = [1] if token_ids_a is None: return prefix_ones + ([0] * len(a)) + suffix_ones return prefix_ones + ([0] * len(a)) + ([0] * len(a)) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Dict: SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self , a) -> None: SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = load_spm(self.spm_file , self.sp_model_kwargs) def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: SCREAMING_SNAKE_CASE = Path(a) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' SCREAMING_SNAKE_CASE = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) SCREAMING_SNAKE_CASE = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , a) if os.path.abspath(self.spm_file) != os.path.abspath(a) and os.path.isfile(self.spm_file): copyfile(self.spm_file , a) elif not os.path.isfile(self.spm_file): with open(a , 'wb') as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(a) return (str(a), str(a)) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = sentencepiece.SentencePieceProcessor(**_UpperCAmelCase) spm.Load(str(_UpperCAmelCase)) return spm def lowerCamelCase__ (_UpperCAmelCase): with open(_UpperCAmelCase , 'r') as f: return json.load(_UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): with open(_UpperCAmelCase , 'w') as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=2)
73
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowercase_ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowercase_ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowercase_ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowercase_ = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) lowercase_ = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions lowercase_ = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) lowercase_ = tf.keras.preprocessing.image.img_to_array(test_image) lowercase_ = np.expand_dims(test_image, axis=0) lowercase_ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowercase_ = """Normal""" if result[0][0] == 1: lowercase_ = """Abnormality detected"""
74
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ['input_features', 'attention_mask'] def __init__( self : Any , _A : Tuple=80 , _A : Optional[int]=16_000 , _A : Optional[Any]=80 , _A : List[Any]=0.0 , _A : List[Any]=True , _A : List[str]=True , _A : Any=True , **_A : Tuple , ): '''simple docstring''' super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) UpperCAmelCase__ : int = num_mel_bins UpperCAmelCase__ : Optional[Any] = do_ceptral_normalize UpperCAmelCase__ : List[str] = normalize_means UpperCAmelCase__ : Optional[Any] = normalize_vars UpperCAmelCase__ : int = True def lowercase_ ( self : int , _A : np.ndarray , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers UpperCAmelCase__ : Optional[int] = torch.from_numpy(_A ).unsqueeze(0 ) UpperCAmelCase__ : Union[str, Any] = ta_kaldi.fbank(_A , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowercase_ ( _A : np.ndarray , _A : int , _A : Optional[bool] = True , _A : Optional[bool] = True , _A : float = 0.0 , ): '''simple docstring''' if normalize_means: UpperCAmelCase__ : Optional[Any] = x[:input_length].mean(axis=0 ) UpperCAmelCase__ : Dict = np.subtract(_A , _A ) if normalize_vars: UpperCAmelCase__ : Union[str, Any] = x[:input_length].std(axis=0 ) UpperCAmelCase__ : str = np.divide(_A , _A ) if input_length < x.shape[0]: UpperCAmelCase__ : str = padding_value # make sure array is in float32 UpperCAmelCase__ : int = x.astype(np.floataa ) return x def lowercase_ ( self : str , _A : List[np.ndarray] , _A : Optional[np.ndarray] = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_A , _A , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_A , _A ) ] def __call__( self : Optional[int] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : Any , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase__ : Any = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase__ : Tuple = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ : Any = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): UpperCAmelCase__ : Any = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ : Optional[Any] = [raw_speech] # extract fbank features UpperCAmelCase__ : Optional[Any] = [self._extract_fbank_features(_A ) for waveform in raw_speech] # convert into correct format for padding UpperCAmelCase__ : List[Any] = BatchFeature({'''input_features''': features} ) UpperCAmelCase__ : int = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) # make sure list is in array format UpperCAmelCase__ : List[Any] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , _A ): UpperCAmelCase__ : Optional[int] = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] UpperCAmelCase__ : List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase__ : Dict = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: UpperCAmelCase__ : List[str] = ( np.array(_A , dtype=np.intaa ) if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase__ : str = self.normalize( padded_inputs['''input_features'''] , attention_mask=_A ) if return_tensors is not None: UpperCAmelCase__ : Optional[Any] = padded_inputs.convert_to_tensors(_A ) return padded_inputs
75
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
"""simple docstring""" a_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): assert len(str(__UpperCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __lowercase : Union[str, Any] = year // 1_00 __lowercase : Union[str, Any] = (5 * (century % 4) + 2) % 7 __lowercase : int = year % 1_00 __lowercase : Optional[int] = centurian % 12 __lowercase : str = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __lowercase : List[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) __lowercase : int = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
76
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a__ ( __magic_name__ ): def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : str = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCamelCase_ , "width_multiplier")) class a__ : def __init__( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : str=13 , UpperCamelCase_ : Optional[Any]=64 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : Dict="swish" , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[Any]=32 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Union[str, Any]=10 , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[int]=0.25 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , ): """simple docstring""" __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Any = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8) __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Union[str, Any] = conv_kernel_size __UpperCAmelCase : List[Any] = output_stride __UpperCAmelCase : int = classifier_dropout_prob __UpperCAmelCase : Any = use_labels __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : Any = num_labels __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Union[str, Any] = scope __UpperCAmelCase : int = width_multiplier __UpperCAmelCase : Optional[int] = ffn_dropout __UpperCAmelCase : Optional[int] = attn_dropout def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : str = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels) __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __UpperCAmelCase : Any = self.get_config() return config, pixel_values, labels, pixel_labels def a_ ( self : Union[str, Any]): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def a_ ( self : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : str = MobileViTVaModel(config=UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a_ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : int = MobileViTVaForImageClassification(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Any = model(UpperCamelCase_ , labels=UpperCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def a_ ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple): """simple docstring""" __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : List[str] = MobileViTVaForSemanticSegmentation(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Tuple = model(UpperCamelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , labels=UpperCamelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : str = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Dict = MobileViTVaModelTester(self) __UpperCAmelCase : List[Any] = MobileViTVaConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds") def a_ ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings") def a_ ( self : List[Any]): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not output attentions") def a_ ( self : List[Any]): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run.") def a_ ( self : str): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def a_ ( self : List[str]): """simple docstring""" pass def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(UpperCamelCase_) __UpperCAmelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int]): __UpperCAmelCase : str = model_class(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : Tuple = outputs.hidden_states __UpperCAmelCase : Tuple = 5 self.assertEqual(len(UpperCamelCase_) , UpperCamelCase_) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __UpperCAmelCase : Dict = 2 for i in range(len(UpperCamelCase_)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_) @slow def a_ ( self : Dict): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = MobileViTVaModel.from_pretrained(UpperCamelCase_) self.assertIsNotNone(UpperCamelCase_) def _UpperCamelCase ( ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def a_ ( self : Optional[int]): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") if is_vision_available() else None ) @slow def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Optional[Any] = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256").to( UpperCamelCase_) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors="pt").to(UpperCamelCase_) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**UpperCamelCase_) # verify the logits __UpperCAmelCase : str = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , UpperCamelCase_) __UpperCAmelCase : List[str] = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01]).to(UpperCamelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4)) @slow def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") __UpperCAmelCase : int = model.to(UpperCamelCase_) __UpperCAmelCase : Dict = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : Optional[Any] = image_processor(images=UpperCamelCase_ , return_tensors="pt").to(UpperCamelCase_) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**UpperCamelCase_) __UpperCAmelCase : Tuple = outputs.logits # verify the logits __UpperCAmelCase : int = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , UpperCamelCase_) __UpperCAmelCase : List[str] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=UpperCamelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4)) @slow def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") __UpperCAmelCase : Union[str, Any] = model.to(UpperCamelCase_) __UpperCAmelCase : int = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=UpperCamelCase_ , return_tensors="pt").to(UpperCamelCase_) # forward pass with torch.no_grad(): __UpperCAmelCase : List[str] = model(**UpperCamelCase_) __UpperCAmelCase : int = outputs.logits.detach().cpu() __UpperCAmelCase : int = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ , target_sizes=[(50, 60)]) __UpperCAmelCase : Tuple = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , UpperCamelCase_) __UpperCAmelCase : Any = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_) __UpperCAmelCase : Tuple = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , UpperCamelCase_)
77
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder SCREAMING_SNAKE_CASE_: Union[str, Any] ='__DUMMY_TRANSFORMERS_USER__' SCREAMING_SNAKE_CASE_: Optional[Any] ='Dummy User' SCREAMING_SNAKE_CASE_: Tuple ='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' SCREAMING_SNAKE_CASE_: str ='https://hub-ci.huggingface.co' SCREAMING_SNAKE_CASE_: Dict =CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' SCREAMING_SNAKE_CASE_: List[Any] =CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' SCREAMING_SNAKE_CASE_: List[str] =Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , snake_case_ ) @pytest.fixture def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , snake_case_ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , snake_case_ ) @pytest.fixture def lowerCAmelCase_ ( snake_case_ : Dict ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , snake_case_ ) @pytest.fixture def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Optional[int] ) -> int: '''simple docstring''' HfFolder.save_token(snake_case_ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' return HfApi(endpoint=snake_case_ ) @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( snake_case_ : HfApi ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = HfFolder.get_token() HfFolder.save_token(snake_case_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(snake_case_ ) @pytest.fixture def lowerCAmelCase_ ( snake_case_ : int ) -> Dict: '''simple docstring''' def _cleanup_repo(snake_case_ : str ): hf_api.delete_repo(snake_case_ , token=snake_case_ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCAmelCase_ ( snake_case_ : Dict ) -> Optional[Any]: '''simple docstring''' @contextmanager def _temporary_repo(snake_case_ : Optional[Any] ): try: yield repo_id finally: cleanup_repo(snake_case_ ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( snake_case_ : HfApi , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = f"""repo_txt_data-{int(time.time() * 1_0E3 )}""" UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(snake_case_ , token=snake_case_ , repo_type="dataset" , private=snake_case_ ) hf_api.upload_file( token=snake_case_ , path_or_fileobj=str(snake_case_ ) , path_in_repo="data/text_data.txt" , repo_id=snake_case_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(snake_case_ , token=snake_case_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] ) -> Any: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( snake_case_ : HfApi , snake_case_ : Tuple , snake_case_ : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = f"""repo_zipped_txt_data-{int(time.time() * 1_0E3 )}""" UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(snake_case_ , token=snake_case_ , repo_type="dataset" , private=snake_case_ ) hf_api.upload_file( token=snake_case_ , path_or_fileobj=str(snake_case_ ) , path_in_repo="data.zip" , repo_id=snake_case_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(snake_case_ , token=snake_case_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : List[str] ) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( snake_case_ : HfApi , snake_case_ : str , snake_case_ : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = f"""repo_zipped_img_data-{int(time.time() * 1_0E3 )}""" UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(snake_case_ , token=snake_case_ , repo_type="dataset" , private=snake_case_ ) hf_api.upload_file( token=snake_case_ , path_or_fileobj=str(snake_case_ ) , path_in_repo="data.zip" , repo_id=snake_case_ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(snake_case_ , token=snake_case_ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
78
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
SCREAMING_SNAKE_CASE__ : Dict = 6_55_21 def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' UpperCAmelCase__ : str = 1 UpperCAmelCase__ : Tuple = 0 for plain_chr in plain_text: UpperCAmelCase__ : int = (a + ord(__lowerCamelCase )) % MOD_ADLER UpperCAmelCase__ : List[str] = (b + a) % MOD_ADLER return (b << 16) | a
79
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
from __future__ import annotations def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __lowercase , __lowercase = array[indexa], array[indexa] def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if length > 1: __lowercase = int(length / 2 ) for i in range(lowerCamelCase , low + middle ): comp_and_swap(lowerCamelCase , lowerCamelCase , i + middle , lowerCamelCase ) bitonic_merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) bitonic_merge(lowerCamelCase , low + middle , lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if length > 1: __lowercase = int(length / 2 ) bitonic_sort(lowerCamelCase , lowerCamelCase , lowerCamelCase , 1 ) bitonic_sort(lowerCamelCase , low + middle , lowerCamelCase , 0 ) bitonic_merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Tuple = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : int = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
80
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
def lowerCAmelCase_ ( __lowerCamelCase = 1_0 ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or n < 0: raise ValueError("Invalid input" ) __snake_case : List[str] = 1_0**n __snake_case : Optional[int] = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , __lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
81
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.dummy_uncond_unet UpperCAmelCase_ = KarrasVeScheduler() UpperCAmelCase_ = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type="numpy" ).images UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type="numpy" , return_dict=_UpperCAmelCase )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "google/ncsnpp-celebahq-256" UpperCAmelCase_ = UNetaDModel.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = KarrasVeScheduler() UpperCAmelCase_ = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe(num_inference_steps=20 , generator=_UpperCAmelCase , output_type="numpy" ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
82
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : List[str] = prime_factors(A_ ) if is_square_free(A_ ): return -1 if len(A_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
83
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( UpperCamelCase_ , UpperCamelCase_ ): lowercase_ = 'swin' lowercase_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : str , a_ : Dict=224 , a_ : Optional[int]=4 , a_ : Optional[Any]=3 , a_ : Optional[int]=96 , a_ : List[str]=[2, 2, 6, 2] , a_ : Union[str, Any]=[3, 6, 12, 24] , a_ : int=7 , a_ : List[Any]=4.0 , a_ : Any=True , a_ : str=0.0 , a_ : str=0.0 , a_ : List[str]=0.1 , a_ : Union[str, Any]="gelu" , a_ : List[str]=False , a_ : List[str]=0.02 , a_ : Union[str, Any]=1e-5 , a_ : int=32 , a_ : Optional[Any]=None , a_ : List[Any]=None , **a_ : Dict , )-> Any: """simple docstring""" super().__init__(**a_ ) SCREAMING_SNAKE_CASE__ : Dict = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_channels SCREAMING_SNAKE_CASE__ : Dict = embed_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = depths SCREAMING_SNAKE_CASE__ : List[Any] = len(a_ ) SCREAMING_SNAKE_CASE__ : str = num_heads SCREAMING_SNAKE_CASE__ : Any = window_size SCREAMING_SNAKE_CASE__ : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE__ : Any = qkv_bias SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = drop_path_rate SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ : Optional[int] = int(embed_dim * 2 ** (len(a_ ) - 1) ) SCREAMING_SNAKE_CASE__ : Tuple = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(a_ ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = get_aligned_output_features_output_indices( out_features=a_ , out_indices=a_ , stage_names=self.stage_names ) class snake_case ( UpperCamelCase_ ): lowercase_ = version.parse('1.11' ) @property def __lowercase( self : Optional[Any] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowercase( self : List[str] )-> float: """simple docstring""" return 1e-4
85
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = len(__UpperCamelCase ) while cur > 1: # Find the maximum number in arr A_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A_ = arr[mi::-1] + arr[mi + 1 : len(__UpperCamelCase )] # Reverse whole list A_ = arr[cur - 1 :: -1] + arr[cur : len(__UpperCamelCase )] cur -= 1 return arr if __name__ == "__main__": __a :Optional[Any] = input('Enter numbers separated by a comma:\n').strip() __a :List[Any] = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
86
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
import re def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''' , lowercase_ ) ) != len(lowercase_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
87
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = LxmertConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCamelCase : Any = LxmertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
88
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
from __future__ import annotations from math import pi def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
89
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
'''simple docstring''' def _snake_case ( A , A ) -> int: lowerCAmelCase__ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCAmelCase__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCAmelCase__ = min(A , A ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
90
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowercase = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _lowercase = { '''xlm-roberta-base''': 5_12, '''xlm-roberta-large''': 5_12, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_12, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_12, '''xlm-roberta-large-finetuned-conll03-english''': 5_12, '''xlm-roberta-large-finetuned-conll03-german''': 5_12, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] ,A_ : str ,A_ : str="<s>" ,A_ : Any="</s>" ,A_ : Tuple="</s>" ,A_ : Any="<s>" ,A_ : Optional[Any]="<unk>" ,A_ : int="<pad>" ,A_ : str="<mask>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : Optional[int] ,) -> None: # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else mask_token A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,sep_token=A_ ,cls_token=A_ ,pad_token=A_ ,mask_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A = 1 A = len(self.sp_model ) + self.fairseq_offset A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) -> Any: A = self.__dict__.copy() A = None A = self.sp_model.serialized_model_proto() return state def __setstate__( self : str ,A_ : str ) -> Optional[Any]: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = ''.join(A_ ).replace(A_ ,' ' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
91
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def _lowerCAmelCase ( __magic_name__ : Dict ) -> List[Any]: lowercase : Union[str, Any] ='''huggingface/label-files''' lowercase : Optional[int] ='''imagenet-1k-id2label.json''' lowercase : Optional[Any] =json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase : List[Any] ={int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any ={v: k for k, v in idalabel.items()} lowercase : Union[str, Any] ='''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase : Any =BitConfig( conv_layer=__magic_name__ , num_labels=1000 , idalabel=__magic_name__ , labelaid=__magic_name__ , ) return config def _lowerCAmelCase ( __magic_name__ : Optional[Any] ) -> List[str]: if "stem.conv" in name: lowercase : Tuple =name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase : Union[str, Any] =name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowercase : Tuple =name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowercase : Tuple ='''bit.''' + name if "bit" not in name and "classifier" not in name: lowercase : Optional[int] ='''bit.encoder.''' + name return name def _lowerCAmelCase ( ) -> Tuple: lowercase : int ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Any =Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[Any]=False ) -> Tuple: lowercase : Optional[Any] =get_config(__magic_name__ ) # load original model from timm lowercase : Dict =create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model lowercase : List[str] =timm_model.state_dict() for key in state_dict.copy().keys(): lowercase : Union[str, Any] =state_dict.pop(__magic_name__ ) lowercase : List[Any] =val.squeeze() if '''head''' in key else val # load HuggingFace model lowercase : str =BitForImageClassification(__magic_name__ ) model.eval() model.load_state_dict(__magic_name__ ) # create image processor lowercase : str =create_transform(**resolve_data_config({} , model=__magic_name__ ) ) lowercase : int =transform.transforms lowercase : Union[str, Any] ={ '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase : Optional[Any] =BitImageProcessor( do_resize=__magic_name__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase : Optional[Any] =prepare_img() lowercase : Optional[Any] =transform(__magic_name__ ).unsqueeze(0 ) lowercase : Optional[Any] =processor(__magic_name__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): lowercase : List[str] =model(__magic_name__ ) lowercase : Any =outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase : List[str] =timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) UpperCamelCase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
92
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A = logging.get_logger(__name__) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = ["""input_features"""] def __init__( self , __UpperCAmelCase=8_0 , __UpperCAmelCase=1_6_0_0_0 , __UpperCAmelCase=1_6_0 , __UpperCAmelCase=3_0 , __UpperCAmelCase=4_0_0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :Any = n_fft lowerCAmelCase__ :List[Any] = hop_length lowerCAmelCase__ :Tuple = chunk_length lowerCAmelCase__ :Tuple = chunk_length * sampling_rate lowerCAmelCase__ :Tuple = self.n_samples // hop_length lowerCAmelCase__ :List[Any] = sampling_rate lowerCAmelCase__ :Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__UpperCAmelCase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__UpperCAmelCase , norm='slaney' , mel_scale='slaney' , ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = spectrogram( __UpperCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) lowerCAmelCase__ :Dict = log_spec[:, :-1] lowerCAmelCase__ :List[Any] = np.maximum(__UpperCAmelCase , log_spec.max() - 8.0 ) lowerCAmelCase__ :Optional[Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 ): '''simple docstring''' if attention_mask is not None: lowerCAmelCase__ :Tuple = np.array(__UpperCAmelCase , np.intaa ) lowerCAmelCase__ :Any = [] for vector, length in zip(__UpperCAmelCase , attention_mask.sum(-1 ) ): lowerCAmelCase__ :Any = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCAmelCase__ :List[Any] = padding_value normed_input_values.append(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "max_length" , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase__ :Optional[int] = isinstance(__UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) lowerCAmelCase__ :Optional[int] = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase__ :Dict = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): lowerCAmelCase__ :Union[str, Any] = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase__ :List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase__ :Any = [np.asarray([raw_speech] ).T] lowerCAmelCase__ :List[str] = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding lowerCAmelCase__ :str = self.pad( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase__ :Union[str, Any] = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) lowerCAmelCase__ :Tuple = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format lowerCAmelCase__ :Tuple = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) lowerCAmelCase__ :Optional[Any] = [self._np_extract_fbank_features(__UpperCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __UpperCAmelCase ): lowerCAmelCase__ :Any = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase__ :Union[str, Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase__ :Union[str, Any] = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase__ :List[Any] = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ :List[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
93
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = BertJapaneseTokenizer UpperCamelCase_ = False UpperCamelCase_ = True def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' super().setUp() lowercase : Optional[int] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] lowercase : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A__ ( self : List[str] , UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' lowercase : Optional[int] ='''こんにちは、世界。 \nこんばんは、世界。''' lowercase : Dict ='''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def A__ ( self : Tuple , UpperCAmelCase : List[str] ) -> int: '''simple docstring''' lowercase , lowercase : List[str] =self.get_input_output_texts(UpperCAmelCase ) lowercase : Optional[Any] =tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowercase : Optional[Any] =tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.tokenizer_class(self.vocab_file ) lowercase : Dict =tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowercase : Optional[int] =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(UpperCAmelCase ) lowercase : Dict ='''こんにちは、世界。\nこんばんは、世界。''' lowercase : Optional[Any] =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Union[str, Any] =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase , '''wb''' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''rb''' ) as handle: lowercase : Tuple =pickle.load(UpperCAmelCase ) lowercase : Dict =tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : int =MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A__ ( self : List[str] ) -> Any: '''simple docstring''' try: lowercase : Tuple =MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A__ ( self : Optional[Any] ) -> str: '''simple docstring''' try: lowercase : Optional[int] =MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A__ ( self : Dict ) -> Tuple: '''simple docstring''' lowercase : Tuple =MecabTokenizer(do_lower_case=UpperCAmelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A__ ( self : str ) -> str: '''simple docstring''' try: lowercase : Any =MecabTokenizer( do_lower_case=UpperCAmelCase , normalize_text=UpperCAmelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : List[str] =MecabTokenizer(normalize_text=UpperCAmelCase , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : int =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(UpperCAmelCase ) lowercase : Optional[int] ='''こんにちは、世界。\nこんばんは、世界。''' lowercase : Any =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Union[str, Any] =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase , '''wb''' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''rb''' ) as handle: lowercase : Tuple =pickle.load(UpperCAmelCase ) lowercase : Tuple =tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @require_sudachi def A__ ( self : Optional[int] ) -> int: '''simple docstring''' lowercase : str =SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Any =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : int =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase : Optional[Any] =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : Optional[int] =SudachiTokenizer(do_lower_case=UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : int =SudachiTokenizer(normalize_text=UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : int =SudachiTokenizer(trim_whitespace=UpperCAmelCase , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase : int =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(UpperCAmelCase ) lowercase : Dict ='''こんにちは、世界。\nこんばんは、世界。''' lowercase : List[Any] =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Any =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase , '''wb''' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''rb''' ) as handle: lowercase : Union[str, Any] =pickle.load(UpperCAmelCase ) lowercase : str =tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @require_jumanpp def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : Any =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A__ ( self : int ) -> int: '''simple docstring''' lowercase : Any =JumanppTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =JumanppTokenizer(normalize_text=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Any =JumanppTokenizer(trim_whitespace=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def A__ ( self : List[str] ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : int =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] lowercase : Optional[Any] ={} for i, token in enumerate(UpperCAmelCase ): lowercase : str =i lowercase : int =WordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : List[Any] =BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) lowercase : Tuple =tokenizer.subword_tokenizer lowercase : Union[str, Any] =subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(UpperCAmelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) lowercase : Optional[Any] =subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(UpperCAmelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) lowercase : Tuple =tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCAmelCase ) lowercase : Tuple =tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCAmelCase ) lowercase : Any =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowercase : Tuple =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = BertJapaneseTokenizer UpperCamelCase_ = False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' super().setUp() lowercase : Any =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A__ ( self : Dict , **UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : int ='''こんにちは、世界。 \nこんばんは、世界。''' lowercase : Optional[int] ='''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def A__ ( self : Dict ) -> int: '''simple docstring''' pass # TODO add if relevant def A__ ( self : str ) -> str: '''simple docstring''' pass # TODO add if relevant def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' pass # TODO add if relevant def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase : Dict =self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) lowercase : List[str] =tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( UpperCAmelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : List[Any] =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase : List[Any] ={} for i, token in enumerate(UpperCAmelCase ): lowercase : Tuple =i lowercase : Dict =CharacterTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : str =self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) lowercase : Tuple =tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCAmelCase ) lowercase : List[str] =tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCAmelCase ) lowercase : Any =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowercase : List[str] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] ='''cl-tohoku/bert-base-japanese''' lowercase : Optional[Any] =AutoTokenizer.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase : str ='''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) lowercase : str ='''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
94
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def snake_case ( A__ ,A__ ,A__ ,A__ ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: UpperCAmelCase_ : List[Any] = TOKENIZER_CLASSES else: UpperCAmelCase_ : int = {tokenizer_name: getattr(A__ ,tokenizer_name + "Fast" )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: UpperCAmelCase_ : Optional[int] = TOKENIZER_CLASSES[tokenizer_name] UpperCAmelCase_ : Union[str, Any] = True if checkpoint_name is None: UpperCAmelCase_ : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCAmelCase_ : Any = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer UpperCAmelCase_ : Optional[int] = tokenizer_class.from_pretrained(A__ ,force_download=A__ ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = checkpoint.split("/" ) UpperCAmelCase_ : List[str] = os.path.join(A__ ,A__ ) elif add_prefix: UpperCAmelCase_ : List[Any] = checkpoint UpperCAmelCase_ : Optional[Any] = dump_path else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCAmelCase_ : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCAmelCase_ : List[Any] = file_path.split(A__ )[-1][0] if next_char == "/": UpperCAmelCase_ : Dict = os.path.join(A__ ,A__ ) UpperCAmelCase_ : Dict = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) UpperCAmelCase_ : Dict = tokenizer.save_pretrained( A__ ,legacy_format=A__ ,filename_prefix=A__ ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(A__ ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowerCamelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
95
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" def a ( __UpperCAmelCase : List[Any] ) -> str: __magic_name__: Optional[int] = [0] * len(__UpperCAmelCase ) __magic_name__: str = [] __magic_name__: Any = [] __magic_name__: Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCAmelCase ) ): if indegree[i] == 0: queue.append(__UpperCAmelCase ) while queue: __magic_name__: Optional[Any] = queue.pop(0 ) cnt += 1 topo.append(__UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__UpperCAmelCase ) if cnt != len(__UpperCAmelCase ): print("""Cycle exists""" ) else: print(__UpperCAmelCase ) # Adjacency List of Graph __lowerCamelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
96
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __a = logging.get_logger(__name__) def a ( snake_case__: bool , snake_case__: bool ): '''simple docstring''' def run_func(snake_case__: List[Any] ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__: List[Any] , **snake_case__: str ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__: str , **snake_case__: Dict ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a ( snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' lowercase_ = random.Random() lowercase_ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase__( UpperCAmelCase ): """simple docstring""" a :TensorFlowBenchmarkArguments a :PretrainedConfig a :str = "TensorFlow" @property def _lowercase ( self : Tuple ) -> Dict: return tf.__version__ def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> float: # initialize GPU on separate process lowercase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowercase_ = self._prepare_inference_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_speed(_inference ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> float: lowercase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowercase_ = self._prepare_train_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_speed(_train ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE_ ) lowercase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowercase_ = self._prepare_inference_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_memory(_inference ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE_ ) lowercase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowercase_ = self._prepare_train_func(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self._measure_memory(_train ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Callable[[], None]: lowercase_ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowercase_ = ( hasattr(SCREAMING_SNAKE_CASE_ , '''architectures''' ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase_ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowercase_ = __import__('''transformers''' , fromlist=[model_class] ) lowercase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = model_cls(SCREAMING_SNAKE_CASE_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowercase_ = TF_MODEL_MAPPING[config.__class__](SCREAMING_SNAKE_CASE_ ) # encoder-decoder has vocab size saved differently lowercase_ = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE_ , '''vocab_size''' ) else config.encoder.vocab_size lowercase_ = random_input_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Callable[[], None]: lowercase_ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowercase_ = ( hasattr(SCREAMING_SNAKE_CASE_ , '''architectures''' ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase_ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowercase_ = __import__('''transformers''' , fromlist=[model_class] ) lowercase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = model_cls(SCREAMING_SNAKE_CASE_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowercase_ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](SCREAMING_SNAKE_CASE_ ) # encoder-decoder has vocab size saved differently lowercase_ = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE_ , '''vocab_size''' ) else config.encoder.vocab_size lowercase_ = random_input_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowercase_ = model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = tf.gradients(SCREAMING_SNAKE_CASE_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowercase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = tf.gradients(SCREAMING_SNAKE_CASE_ , model.trainable_variables ) return gradients lowercase_ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Tuple ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(SCREAMING_SNAKE_CASE_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowercase_ = timeit.repeat( SCREAMING_SNAKE_CASE_ , repeat=self.args.repeat , number=1_0 , ) return min(SCREAMING_SNAKE_CASE_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Callable[[], None] ) -> [Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) lowercase_ = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) lowercase_ = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() lowercase_ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowercase_ = nvml.nvmlDeviceGetMemoryInfo(SCREAMING_SNAKE_CASE_ ) lowercase_ = meminfo.used lowercase_ = Memory(SCREAMING_SNAKE_CASE_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) lowercase_ = None else: lowercase_ = measure_peak_memory_cpu(SCREAMING_SNAKE_CASE_ ) lowercase_ = Memory(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else memory_bytes if self.args.trace_memory_line_by_line: lowercase_ = stop_memory_tracing(SCREAMING_SNAKE_CASE_ ) if memory is None: lowercase_ = summary.total else: lowercase_ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
97
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
'''simple docstring''' from collections.abc import Sequence def a__ ( lowercase : Sequence[float], lowercase : float ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(lowercase ) ) def a__ ( lowercase : Sequence[float], lowercase : float ) -> float: """simple docstring""" _UpperCamelCase = 0.0 for coeff in reversed(lowercase ): _UpperCamelCase = result * x + coeff return result if __name__ == "__main__": lowercase__ : Dict = (0.0, 0.0, 5.0, 9.3, 7.0) lowercase__ : Optional[int] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
98
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ["""pixel_values"""] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BILINEAR , __A = True , __A = None , __A = True , __A = 1 / 255 , __A = True , __A = None , __A = None , **__A , ): super().__init__(**__A ) __a = size if size is not None else {"""shortest_edge""": 256} __a = get_size_dict(__A , default_to_square=__A ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__A ) __a = do_resize __a = size __a = resample __a = do_center_crop __a = crop_size __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self , __A , __A , __A = PILImageResampling.BICUBIC , __A = None , **__A , ): __a = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __a = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def snake_case_ ( self , __A , __A , __A = None , **__A , ): __a = get_size_dict(__A ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def snake_case_ ( self , __A , __A , __A = None , **__A ): return rescale(__A , scale=__A , data_format=__A , **__A ) def snake_case_ ( self , __A , __A , __A , __A = None , **__A , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def snake_case_ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ): __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(__A , default_to_square=__A ) __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__A ) __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__A ) for image in images] if do_resize: __a = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __a = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __a = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __a = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __a = [to_channel_dimension_format(__A , __A ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A )
99
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _A : int = get_tests_dir("""fixtures""") class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 5_00 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=A_ ) as mock_head: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class __snake_case ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(A_ ) @classmethod def lowercase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_ , repo_id='''test-feature-extractor''' , push_to_hub=A_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=A_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def lowercase_ ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
100
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ : List[str] =3_00 # TEMPERATURE (unit = K) def a__ ( A__, A__, A__, ): if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
101
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
"""simple docstring""" import math def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return math.pow(SCREAMING_SNAKE_CASE , 2 ) - a def UpperCamelCase (SCREAMING_SNAKE_CASE ): return 2 * x def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = 2.0 while start <= a: UpperCamelCase : Optional[Any] = math.pow(SCREAMING_SNAKE_CASE , 2 ) return start def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 9999 , SCREAMING_SNAKE_CASE = 0.00_00_00_00_00_00_01 ): if a < 0: raise ValueError("""math domain error""" ) UpperCamelCase : Optional[Any] = get_initial_point(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = value UpperCamelCase : Tuple = value - fx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / fx_derivative(SCREAMING_SNAKE_CASE ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
102
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''spiece.model'''} snake_case = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } snake_case = { '''AI-Sweden/gpt-sw3-126m''': 2_0_4_8, '''AI-Sweden/gpt-sw3-350m''': 2_0_4_8, '''AI-Sweden/gpt-sw3-1.6b''': 2_0_4_8, '''AI-Sweden/gpt-sw3-6.7b''': 2_0_4_8, '''AI-Sweden/gpt-sw3-20b''': 2_0_4_8, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Dict = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __lowerCamelCase : Any , __lowerCamelCase : Dict=False , __lowerCamelCase : int=False , __lowerCamelCase : Dict=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[str] , ): """simple docstring""" _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) _snake_case = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _snake_case = '''<|endoftext|>''' if eos_token is None else eos_token _snake_case = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _snake_case = unk_token if pad_token is None else pad_token _snake_case = eos_token if bos_token is None else bos_token else: _snake_case = '''<pad>''' if pad_token is None else pad_token _snake_case = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) # Used for whitespace normalization in input texts # fmt : off _snake_case = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _snake_case = re.compile( f"""[{''.join(map(__lowerCamelCase , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]""" ) def __getstate__( self : Optional[Any] ): """simple docstring""" _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : List[Any] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __UpperCAmelCase ( self : Tuple ): """simple docstring""" return len(self.sp_model ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str ): """simple docstring""" _snake_case = self.non_printing_characters_re.sub('''''' , __lowerCamelCase ) # Normalize whitespaces _snake_case = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization _snake_case = unicodedata.normalize('''NFC''' , __lowerCamelCase ) return text def __UpperCAmelCase ( self : Any , __lowerCamelCase : str , **__lowerCamelCase : List[Any] ): """simple docstring""" _snake_case = self.preprocess_text(__lowerCamelCase ) return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : str , __lowerCamelCase : str ): """simple docstring""" return self.sp_model.PieceToId(__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : int ): """simple docstring""" return self.sp_model.IdToPiece(__lowerCamelCase ) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : str ): """simple docstring""" return out_string def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = [] _snake_case = '''''' _snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _snake_case = True _snake_case = [] else: current_sub_tokens.append(__lowerCamelCase ) _snake_case = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : Union[str, bool] = False ): """simple docstring""" if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = self.preprocess_text(__lowerCamelCase ) _snake_case = self.sp_model.encode(__lowerCamelCase ) else: _snake_case = [self.preprocess_text(__lowerCamelCase ) for t in text] _snake_case = self.sp_model.encode(__lowerCamelCase ) if return_tensors is True or return_tensors == "pt": _snake_case = torch.tensor(__lowerCamelCase ) return token_ids def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[int, List[int]] ): """simple docstring""" return self.sp_model.decode(__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : "Conversation" ): """simple docstring""" _snake_case = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] _snake_case = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__lowerCamelCase ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__lowerCamelCase )
103
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Any = "owlvit_text_model" def __init__( self , SCREAMING_SNAKE_CASE__=49408 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__="quick_gelu" , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=49406 , SCREAMING_SNAKE_CASE__=49407 , **SCREAMING_SNAKE_CASE__ , ) -> Dict: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A__ = vocab_size A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = max_position_embeddings A__ = hidden_act A__ = layer_norm_eps A__ = attention_dropout A__ = initializer_range A__ = initializer_factor @classmethod def snake_case__ ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) A__ , A__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": A__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : str = "owlvit_vision_model" def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__="quick_gelu" , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1.0 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = image_size A__ = patch_size A__ = hidden_act A__ = layer_norm_eps A__ = attention_dropout A__ = initializer_range A__ = initializer_factor @classmethod def snake_case__ ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) A__ , A__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": A__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Optional[Any] = "owlvit" A__ : Dict = True def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=2.6_5_9_2 , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE__ ) if text_config is None: A__ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: A__ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) A__ = OwlViTTextConfig(**SCREAMING_SNAKE_CASE__ ) A__ = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE__ ) A__ = projection_dim A__ = logit_scale_init_value A__ = return_dict A__ = 1.0 @classmethod def snake_case__ ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) A__ , A__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def snake_case__ ( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Any: A__ = {} A__ = text_config A__ = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> int: A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" @property def snake_case__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def snake_case__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def snake_case__ ( self ) -> float: return 1e-4 def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = None , ) -> Mapping[str, Any]: A__ = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) A__ = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return {**text_input_dict, **image_input_dict} @property def snake_case__ ( self ) -> int: return 14
104
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__ : Union[str, Any] = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __snake_case :int ={ 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __snake_case :Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowercase_ : """simple docstring""" def __init__( self : Optional[int], UpperCamelCase__ : Dict, UpperCamelCase__ : Dict=13, UpperCamelCase__ : Optional[Any]=7, UpperCamelCase__ : List[str]=True, UpperCamelCase__ : Union[str, Any]=True, UpperCamelCase__ : Optional[int]=True, UpperCamelCase__ : Optional[Any]=True, UpperCamelCase__ : Dict=99, UpperCamelCase__ : Dict=32, UpperCamelCase__ : Any=2, UpperCamelCase__ : Optional[int]=4, UpperCamelCase__ : Tuple=37, UpperCamelCase__ : Union[str, Any]="gelu", UpperCamelCase__ : Optional[Any]=0.1, UpperCamelCase__ : Any=0.1, UpperCamelCase__ : Union[str, Any]=5_12, UpperCamelCase__ : Optional[Any]=16, UpperCamelCase__ : List[str]=2, UpperCamelCase__ : List[Any]=0.02, UpperCamelCase__ : List[str]=3, UpperCamelCase__ : Optional[Any]=4, UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Union[str, Any]=0, ) -> str: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope _A = projection_dim def __UpperCAmelCase ( self : Any ) -> Optional[Any]: _A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _A = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size], self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _A = ids_tensor([self.batch_size], self.num_choices ) _A = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, ) _A = DPRConfig(projection_dim=self.projection_dim, **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : Any, UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], UpperCamelCase__ : Union[str, Any] ) -> int: _A = TFDPRContextEncoder(config=UpperCamelCase__ ) _A = model(UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__ ) _A = model(UpperCamelCase__, token_type_ids=UpperCamelCase__ ) _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : int, UpperCamelCase__ : List[Any], UpperCamelCase__ : List[str], UpperCamelCase__ : List[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : str, UpperCamelCase__ : str ) -> int: _A = TFDPRQuestionEncoder(config=UpperCamelCase__ ) _A = model(UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__ ) _A = model(UpperCamelCase__, token_type_ids=UpperCamelCase__ ) _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCAmelCase ( self : int, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[str], UpperCamelCase__ : Tuple, UpperCamelCase__ : List[str], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int] ) -> Any: _A = TFDPRReader(config=UpperCamelCase__ ) _A = model(UpperCamelCase__, attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,) ) def __UpperCAmelCase ( self : Dict ) -> Dict: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids} return config, inputs_dict @require_tf class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __lowerCAmelCase = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: _A = TFDPRModelTester(self ) _A = ConfigTester(self, config_class=UpperCamelCase__, hidden_size=37 ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : List[str] ) -> List[str]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCamelCase__ ) def __UpperCAmelCase ( self : int ) -> List[str]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCamelCase__ ) def __UpperCAmelCase ( self : int ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCamelCase__ ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFDPRQuestionEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFDPRReader.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class lowercase_ ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: _A = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _A = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] _A = model(UpperCamelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _A = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy(), expected_slice.numpy(), atol=1e-4 ) )
107
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
import re from filelock import FileLock try: import nltk __a: Any = True except (ImportError, ModuleNotFoundError): __a: Optional[int] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> str: re.sub("""<n>""" , """""" , __snake_case ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__snake_case ) )
108
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( _snake_case, _snake_case, _snake_case, unittest.TestCase ): __UpperCamelCase : str = StableDiffusionInstructPixaPixPipeline __UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} __UpperCamelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=8 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=lowerCamelCase ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) __SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Optional[Any]=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) ,rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 ,2 ,3 ,1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("""RGB""" ) if str(lowerCamelCase ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase ) __SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase ) __SCREAMING_SNAKE_CASE = """french fries""" __SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase ,negative_prompt=lowerCamelCase ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase ) __SCREAMING_SNAKE_CASE = [inputs["""prompt"""]] * 2 __SCREAMING_SNAKE_CASE = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = image / 2 + 0.5 __SCREAMING_SNAKE_CASE = image.permute(0 ,3 ,1 ,2 ) __SCREAMING_SNAKE_CASE = image.repeat(2 ,1 ,1 ,1 ) __SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ) __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase ) __SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = [round(lowerCamelCase ,4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = VaeImageProcessor(do_resize=lowerCamelCase ,do_normalize=lowerCamelCase ) __SCREAMING_SNAKE_CASE = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase ,input_image_type="""pt""" ) )[0] __SCREAMING_SNAKE_CASE = components["""vae"""] __SCREAMING_SNAKE_CASE = self.get_dummy_inputs_by_type(lowerCamelCase ,input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase )[0] __SCREAMING_SNAKE_CASE = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase ,1E-4 ,"""passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : int ,lowerCamelCase : int=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase ) __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) __SCREAMING_SNAKE_CASE = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" ,safety_checker=lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" ,safety_checker=lowerCamelCase ) __SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" ,safety_checker=lowerCamelCase ) __SCREAMING_SNAKE_CASE = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 def callback_fn(lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" ,safety_checker=lowerCamelCase ,torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = self.get_inputs() pipe(**lowerCamelCase ,callback=lowerCamelCase ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase__ ( self : str ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" ,safety_checker=lowerCamelCase ,torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE = inputs["""image"""].resize((504, 504) ) __SCREAMING_SNAKE_CASE = """timbrooks/instruct-pix2pix""" __SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase ,safety_checker=lowerCamelCase ,) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = output.images[0] __SCREAMING_SNAKE_CASE = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
109
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
"""simple docstring""" from collections import defaultdict def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(_snake_case ) if ret % 2 == 0: cuts.append(_snake_case ) return ret def lowerCamelCase ( ): dfs(1 ) if __name__ == "__main__": UpperCamelCase__ , UpperCamelCase__ = 10, 9 UpperCamelCase__ = defaultdict(list) UpperCamelCase__ = {} UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
110
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" __A = tmp_path / '''cache''' __A = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __A = TextDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_text_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = tmp_path / '''cache''' __A = {'''text''': '''string'''} __A = features.copy() if features else default_expected_features __A = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) __A = TextDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_text_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" __A = tmp_path / '''cache''' __A = {'''text''': '''string'''} __A = TextDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_text_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" if issubclass(__a , __a ): __A = text_path elif issubclass(__a , __a ): __A = [text_path] __A = tmp_path / '''cache''' __A = {'''text''': '''string'''} __A = TextDatasetReader(__a , cache_dir=__a ).read() _check_text_dataset(__a , __a ) def UpperCAmelCase ( a_ , a_ , a_=("train",) ) -> List[Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: __A = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Any: """simple docstring""" __A = tmp_path / '''cache''' __A = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __A = TextDatasetReader({"train": text_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_text_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" __A = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __A = {'''text''': '''string'''} __A = features.copy() if features else default_expected_features __A = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) __A = TextDatasetReader({"train": text_path} , features=__a , cache_dir=__a ).read() _check_text_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Dict: """simple docstring""" if split: __A = {split: text_path} else: __A = '''train''' __A = {'''train''': text_path, '''test''': text_path} __A = tmp_path / '''cache''' __A = {'''text''': '''string'''} __A = TextDatasetReader(__a , cache_dir=__a ).read() _check_text_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
55
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self ): _A = 1 _A = 3 _A = (32, 32) _A = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_a ) @property def lowerCAmelCase__ ( self ): def extract(*snake_case_ , **snake_case_ ): class lowerCamelCase: '''simple docstring''' def __init__( self ): _A = torch.ones([0] ) def lowerCAmelCase__ ( self , snake_case_ ): self.pixel_values.to(_a ) return self return Out() return extract def lowerCAmelCase__ ( self ): _A = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A = self.dummy_cond_unet _A = PNDMScheduler(skip_prk_steps=_a ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _A = 77 _A = self.dummy_image.to(_a ) _A = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _A = AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) _A = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) _A = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) _A = '''A painting of a squirrel eating a burger''' _A = torch.Generator(device=_a ).manual_seed(0 ) _A = alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_a , ) _A = output.images _A = torch.Generator(device=_a ).manual_seed(0 ) _A = alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_a , return_dict=_a , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase__ ( self ): _A = self.dummy_cond_unet _A = PNDMScheduler(skip_prk_steps=_a ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _A = 77 _A = self.dummy_image.to(_a ) # put models in fp16 _A = unet.half() _A = vae.half() _A = bert.half() # make sure here that pndm scheduler skips prk _A = AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) _A = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) _A = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) _A = '''A painting of a squirrel eating a burger''' _A = torch.manual_seed(0 ) _A = alt_pipe( [prompt] , generator=_a , num_inference_steps=2 , output_type='np' , image=_a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase__ ( self ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 _A = init_image.resize((760, 504) ) _A = '''BAAI/AltDiffusion''' _A = AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A = '''A fantasy landscape, trending on artstation''' _A = torch.manual_seed(0 ) _A = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='np' , ) _A = output.images[0] _A = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _A = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _A = init_image.resize((768, 512) ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) _A = '''BAAI/AltDiffusion''' _A = AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A = '''A fantasy landscape, trending on artstation''' _A = torch.manual_seed(0 ) _A = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='np' , ) _A = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
27
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __lowercase): def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(_a , '''depth_multiplier''' ) ) class lowerCAmelCase : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=0.25 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE="relu6" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=None , ) -> Any: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = min_depth __snake_case = tf_padding __snake_case = int(last_hidden_size * depth_multiplier ) __snake_case = output_stride __snake_case = hidden_act __snake_case = classifier_dropout_prob __snake_case = use_labels __snake_case = is_training __snake_case = num_labels __snake_case = initializer_range __snake_case = scope def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __snake_case = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() __snake_case = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __snake_case = self.num_labels __snake_case = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() __snake_case = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __lowercase , __lowercase , unittest.TestCase): __lowercase : str = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __lowercase : Union[str, Any] = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) __lowercase : Dict = False __lowercase : List[Any] = False __lowercase : Tuple = False __lowercase : str = False def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = MobileNetVaModelTester(self ) __snake_case = MobileNetVaConfigTester(self , config_class=_a , has_text_modality=_a ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' pass def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(_a ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(_a , _a ) ) __snake_case = outputs.hidden_states __snake_case = 26 self.assertEqual(len(_a ) , _a ) __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(_a , _a , _a ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def lowerCAmelCase ( self ) -> str: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _UpperCamelCase ()-> str: '''simple docstring''' __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase): @cached_property def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(_a ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __snake_case = model(**_a ) # verify the logits __snake_case = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _a ) __snake_case = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
24
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCAmelCase ( __lowercase ): _lowercase ="beit" def __init__( self , _UpperCamelCase=8_192 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3_072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-1_2 , _UpperCamelCase=224 , _UpperCamelCase=16 , _UpperCamelCase=3 , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=True , _UpperCamelCase=[3, 5, 7, 11] , _UpperCamelCase=[1, 2, 3, 6] , _UpperCamelCase=True , _UpperCamelCase=0.4 , _UpperCamelCase=256 , _UpperCamelCase=1 , _UpperCamelCase=False , _UpperCamelCase=255 , **_UpperCamelCase , ) -> Tuple: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = use_mask_token lowerCAmelCase_ = use_absolute_position_embeddings lowerCAmelCase_ = use_relative_position_bias lowerCAmelCase_ = use_shared_relative_position_bias lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ = out_indices lowerCAmelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ = use_auxiliary_head lowerCAmelCase_ = auxiliary_loss_weight lowerCAmelCase_ = auxiliary_channels lowerCAmelCase_ = auxiliary_num_convs lowerCAmelCase_ = auxiliary_concat_input lowerCAmelCase_ = semantic_loss_ignore_index class _lowerCAmelCase ( __lowercase ): _lowercase =version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __a ( self ) -> float: return 1e-4
290
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
'''simple docstring''' from __future__ import annotations _lowerCamelCase = list[list[int]] # assigning initial values to the grid _lowerCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _lowerCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a__ ( _SCREAMING_SNAKE_CASE : Matrix , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a__ ( _SCREAMING_SNAKE_CASE : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a__ ( _SCREAMING_SNAKE_CASE : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__a ): UpperCAmelCase_ : Optional[Any] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): UpperCAmelCase_ : List[str] = digit if sudoku(__a ) is not None: return grid UpperCAmelCase_ : Optional[int] = 0 return None def a__ ( _SCREAMING_SNAKE_CASE : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__a , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") _lowerCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
71
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Optional[int] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = "owlvit_text_model" def __init__( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=4_9_4_0_8 , __UpperCamelCase : List[str]=5_1_2 , __UpperCamelCase : Dict=2_0_4_8 , __UpperCamelCase : Any=1_2 , __UpperCamelCase : Optional[Any]=8 , __UpperCamelCase : Optional[Any]=1_6 , __UpperCamelCase : Optional[Any]="quick_gelu" , __UpperCamelCase : str=1e-5 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Union[str, Any]=1.0 , __UpperCamelCase : Any=0 , __UpperCamelCase : int=4_9_4_0_6 , __UpperCamelCase : Any=4_9_4_0_7 , **__UpperCamelCase : Optional[Any] , )->int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_act _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = attention_dropout _UpperCAmelCase = initializer_range _UpperCAmelCase = initializer_factor @classmethod def lowercase__ ( cls : Union[str, Any] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : Optional[int] )->"PretrainedConfig": cls._set_token_in_kwargs(_a ) _UpperCAmelCase = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = "owlvit_vision_model" def __init__( self : Optional[Any] , __UpperCamelCase : List[str]=7_6_8 , __UpperCamelCase : str=3_0_7_2 , __UpperCamelCase : Dict=1_2 , __UpperCamelCase : Optional[int]=1_2 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Union[str, Any]=7_6_8 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : Union[str, Any]="quick_gelu" , __UpperCamelCase : Optional[Any]=1e-5 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Any=1.0 , **__UpperCamelCase : Dict , )->Dict: super().__init__(**_a ) _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = hidden_act _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = attention_dropout _UpperCAmelCase = initializer_range _UpperCAmelCase = initializer_factor @classmethod def lowercase__ ( cls : Optional[int] , __UpperCamelCase : Dict , **__UpperCamelCase : List[Any] )->"PretrainedConfig": cls._set_token_in_kwargs(_a ) _UpperCAmelCase = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = "owlvit" UpperCamelCase__ = True def __init__( self : Optional[Any] , __UpperCamelCase : Tuple=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=5_1_2 , __UpperCamelCase : Union[str, Any]=2.6_5_9_2 , __UpperCamelCase : str=True , **__UpperCamelCase : Dict , )->Any: super().__init__(**_a ) if text_config is None: _UpperCAmelCase = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _UpperCAmelCase = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _UpperCAmelCase = OwlViTTextConfig(**_a ) _UpperCAmelCase = OwlViTVisionConfig(**_a ) _UpperCAmelCase = projection_dim _UpperCAmelCase = logit_scale_init_value _UpperCAmelCase = return_dict _UpperCAmelCase = 1.0 @classmethod def lowercase__ ( cls : Any , __UpperCamelCase : List[str] , **__UpperCamelCase : Optional[int] )->"PretrainedConfig": cls._set_token_in_kwargs(_a ) _UpperCAmelCase = cls.get_config_dict(_a , **_a ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) @classmethod def lowercase__ ( cls : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , **__UpperCamelCase : Union[str, Any] )->Dict: _UpperCAmelCase = {} _UpperCAmelCase = text_config _UpperCAmelCase = vision_config return cls.from_dict(_a , **_a ) def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output class _a ( __lowercase): """simple docstring""" @property def lowercase__ ( self : List[Any] )->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def lowercase__ ( self : int )->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def lowercase__ ( self : str )->float: return 1e-4 def lowercase__ ( self : str , __UpperCamelCase : int , __UpperCamelCase : List[Any] = -1 , __UpperCamelCase : List[Any] = -1 , __UpperCamelCase : int = None , )->Mapping[str, Any]: _UpperCAmelCase = super().generate_dummy_inputs( processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a ) _UpperCAmelCase = super().generate_dummy_inputs( processor.image_processor , batch_size=_a , framework=_a ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict )->int: return 1_4
602
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_( __lowercase ): '''simple docstring''' def __init__( self , **lowerCamelCase__ ): requires_backends(self , ['''bs4'''] ) super().__init__(**_a ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _lowerCamelCase = parent.find_all(child.name , recursive=_a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_a ) else next(i for i, s in enumerate(_a , 1 ) if s is child ) ) _lowerCamelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = BeautifulSoup(_a , '''html.parser''' ) _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] for element in html_code.descendants: if type(_a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _lowerCamelCase = html.unescape(_a ).strip() if not text_in_this_tag: continue all_doc_strings.append(_a ) _lowerCamelCase = self.xpath_soup(_a ) stringaxtag_seq.append(_a ) stringaxsubs_seq.append(_a ) if len(_a ) != len(_a ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_a ) != len(_a ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = '''''' for tagname, subs in zip(_a , _a ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , lowerCamelCase__ ): _lowerCamelCase = False # Check that strings has a valid type if isinstance(_a , _a ): _lowerCamelCase = True elif isinstance(_a , (list, tuple) ): if len(_a ) == 0 or isinstance(html_strings[0] , _a ): _lowerCamelCase = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_a )}.""" ) _lowerCamelCase = bool(isinstance(_a , (list, tuple) ) and (isinstance(html_strings[0] , _a )) ) if not is_batched: _lowerCamelCase = [html_strings] # Get nodes + xpaths _lowerCamelCase = [] _lowerCamelCase = [] for html_string in html_strings: _lowerCamelCase = self.get_three_from_single(_a ) nodes.append(_a ) _lowerCamelCase = [] for node, tag_list, sub_list in zip(_a , _a , _a ): _lowerCamelCase = self.construct_xpath(_a , _a ) xpath_strings.append(_a ) xpaths.append(_a ) # return as Dict _lowerCamelCase = {'''nodes''': nodes, '''xpaths''': xpaths} _lowerCamelCase = BatchFeature(data=_a , tensor_type=_a ) return encoded_inputs
661
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right _lowercase = 5_00_03 _lowercase = 5_00_02 @require_sentencepiece @require_tokenizers class __A ( __lowercase , unittest.TestCase ): UpperCamelCase :Dict = PLBartTokenizer UpperCamelCase :str = None UpperCamelCase :Tuple = False def _snake_case (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : int = PLBartTokenizer(_a , language_codes="""base""" , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case (self ): lowerCamelCase__ : str = PLBartTokenizer(_a , language_codes="""base""" , keep_accents=_a ) lowerCamelCase__ : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase__ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase__ : int = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) lowerCamelCase__ : Any = tokenizer.vocab_size lowerCamelCase__ : Any = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 4 , _a )] self.assertListEqual(_a , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) lowerCamelCase__ : List[Any] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowerCamelCase__ : str = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) def _snake_case (self ): lowerCamelCase__ : int = PLBartTokenizer(_a , language_codes="""multi""" , keep_accents=_a ) lowerCamelCase__ : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase__ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase__ : Tuple = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) lowerCamelCase__ : Optional[Any] = tokenizer.vocab_size lowerCamelCase__ : Dict = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 7 , _a )] self.assertListEqual( _a , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) lowerCamelCase__ : Optional[Any] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowerCamelCase__ : str = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): UpperCamelCase :List[Any] = "uclanlp/plbart-python-en_XX" UpperCamelCase :int = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] UpperCamelCase :Optional[int] = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] UpperCamelCase :Optional[int] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def _snake_case (cls ): lowerCamelCase__ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) lowerCamelCase__ : Optional[int] = 1 return cls def _snake_case (self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 50003 ) def _snake_case (self ): lowerCamelCase__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def _snake_case (self ): self.assertIn(_a , self.tokenizer.all_special_ids ) lowerCamelCase__ : Union[str, Any] = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] lowerCamelCase__ : Tuple = self.tokenizer.decode(_a , skip_special_tokens=_a ) lowerCamelCase__ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def _snake_case (self ): lowerCamelCase__ : Dict = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , _a ) lowerCamelCase__ : Optional[Any] = 10 lowerCamelCase__ : List[str] = self.tokenizer(_a , max_length=_a , truncation=_a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _a ) self.assertEqual(len(_a ) , _a ) def _snake_case (self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [50004, 50001] ) def _snake_case (self ): lowerCamelCase__ : int = tempfile.mkdtemp() lowerCamelCase__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) lowerCamelCase__ : Tuple = PLBartTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _a ) @require_torch def _snake_case (self ): lowerCamelCase__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors="""pt""" ) lowerCamelCase__ : Tuple = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _snake_case (self ): lowerCamelCase__ : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_a , truncation=_a , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCamelCase__ : str = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) lowerCamelCase__ : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _snake_case (self ): lowerCamelCase__ : List[str] = self.tokenizer(self.src_text , padding=_a , truncation=_a , max_length=3 , return_tensors="""pt""" ) lowerCamelCase__ : str = self.tokenizer( text_target=self.tgt_text , padding=_a , truncation=_a , max_length=10 , return_tensors="""pt""" ) lowerCamelCase__ : Optional[Any] = targets['''input_ids'''] lowerCamelCase__ : str = shift_tokens_right(_a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case (self ): lowerCamelCase__ : Optional[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(_a ) , { # A, test, EOS, en_XX """input_ids""": [[150, 242, 2, 50003]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 50001, } , )
157
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
from __future__ import annotations def a__ ( _UpperCamelCase : list[int] ,_UpperCamelCase : int ): __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = sum(__a ) create_state_space_tree(__a ,__a ,__a ,__a ,__a ,__a ) return result def a__ ( _UpperCamelCase : list[int] ,_UpperCamelCase : int ,_UpperCamelCase : int ,_UpperCamelCase : list[int] ,_UpperCamelCase : list[list[int]] ,_UpperCamelCase : int ,): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a ,len(__a ) ): create_state_space_tree( __a ,__a ,index + 1 ,[*path, nums[index]] ,__a ,remaining_nums_sum - nums[index] ,) a_ = [3, 34, 4, 12, 5, 2] a_ = 9 a_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
175
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCAmelCase__ = '''__DUMMY_TRANSFORMERS_USER__''' UpperCAmelCase__ = '''Dummy User''' UpperCAmelCase__ = '''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''' UpperCAmelCase__ = '''https://hub-ci.huggingface.co''' UpperCAmelCase__ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' UpperCAmelCase__ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' UpperCAmelCase__ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE',__a ) @pytest.fixture def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" monkeypatch.setattr('datasets.config.HF_ENDPOINT',__a ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL',__a ) @pytest.fixture def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token',__a ) @pytest.fixture def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[int],_SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" HfFolder.save_token(__a ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def UpperCAmelCase__( ): """simple docstring""" return HfApi(endpoint=__a ) @pytest.fixture(scope='session' ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : HfApi ): """simple docstring""" __A= HfFolder.get_token() HfFolder.save_token(__a ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__a ) @pytest.fixture def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" def _cleanup_repo(_SCREAMING_SNAKE_CASE : int ): hf_api.delete_repo(__a,token=__a,repo_type='dataset' ) return _cleanup_repo @pytest.fixture def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" @contextmanager def _temporary_repo(_SCREAMING_SNAKE_CASE : Optional[Any] ): try: yield repo_id finally: cleanup_repo(__a ) return _temporary_repo @pytest.fixture(scope='session' ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : HfApi,_SCREAMING_SNAKE_CASE : str,_SCREAMING_SNAKE_CASE : int ): """simple docstring""" __A= f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __A= f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__a,token=__a,repo_type='dataset',private=__a ) hf_api.upload_file( token=__a,path_or_fileobj=str(__a ),path_in_repo='data/text_data.txt',repo_id=__a,repo_type='dataset',) yield repo_id try: hf_api.delete_repo(__a,token=__a,repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int,_SCREAMING_SNAKE_CASE : List[Any],_SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : HfApi,_SCREAMING_SNAKE_CASE : str,_SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" __A= f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __A= f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__a,token=__a,repo_type='dataset',private=__a ) hf_api.upload_file( token=__a,path_or_fileobj=str(__a ),path_in_repo='data.zip',repo_id=__a,repo_type='dataset',) yield repo_id try: hf_api.delete_repo(__a,token=__a,repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[Any],_SCREAMING_SNAKE_CASE : Tuple,_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : HfApi,_SCREAMING_SNAKE_CASE : Any,_SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __A= f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __A= f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__a,token=__a,repo_type='dataset',private=__a ) hf_api.upload_file( token=__a,path_or_fileobj=str(__a ),path_in_repo='data.zip',repo_id=__a,repo_type='dataset',) yield repo_id try: hf_api.delete_repo(__a,token=__a,repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[Any],_SCREAMING_SNAKE_CASE : Optional[Any],_SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
186
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0