code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase : Any = TypeVar("T") __lowerCAmelCase : Dict = Union[List[T], Tuple[T, ...]] __lowerCAmelCase : Optional[Any] = Union[T, List[T], Dict[str, T]] __lowerCAmelCase : Tuple = Union[str, bytes, os.PathLike]
509
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) class UpperCAmelCase ( __lowercase ): '''simple docstring''' snake_case_ = ["pixel_values"] def __init__( self : Dict ,A : List[Any] = True ,A : str = None ,A : Any = PILImageResampling.BICUBIC ,A : Tuple = True ,A : List[Any] = 1 / 2_55 ,A : Optional[Any] = True ,A : Optional[Any] = None ,A : Optional[Any] = None ,A : Tuple = True ,**A : List[Any] ,): super().__init__(**_a ) __A = size if size is not None else {'''height''': 3_84, '''width''': 3_84} __A = get_size_dict(_a ,default_to_square=_a ) __A = do_resize __A = size __A = resample __A = do_rescale __A = rescale_factor __A = do_normalize __A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __A = image_std if image_std is not None else OPENAI_CLIP_STD __A = do_convert_rgb def UpperCamelCase_ ( self : int ,A : Union[str, Any] ,A : List[str] ,A : str = PILImageResampling.BICUBIC ,A : Union[str, Any] = None ,**A : Union[str, Any] ,): __A = get_size_dict(_a ,default_to_square=_a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) __A = (size['''height'''], size['''width''']) return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a ) def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, Any] ,A : int ,A : List[str] = None ,**A : Optional[int] ,): return rescale(_a ,scale=_a ,data_format=_a ,**_a ) def UpperCamelCase_ ( self : int ,A : int ,A : Any ,A : Optional[Any] ,A : Any = None ,**A : List[Any] ,): return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a ) def UpperCamelCase_ ( self : Optional[Any] ,A : List[str] ,A : Optional[Any] = None ,A : int = None ,A : str = None ,A : List[str] = None ,A : Dict = None ,A : Optional[Any] = None ,A : List[Any] = None ,A : Dict = None ,A : str = None ,A : Any = None ,A : Tuple = ChannelDimension.FIRST ,**A : Optional[int] ,): __A = do_resize if do_resize is not None else self.do_resize __A = resample if resample is not None else self.resample __A = do_rescale if do_rescale is not None else self.do_rescale __A = rescale_factor if rescale_factor is not None else self.rescale_factor __A = do_normalize if do_normalize is not None else self.do_normalize __A = image_mean if image_mean is not None else self.image_mean __A = image_std if image_std is not None else self.image_std __A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __A = size if size is not None else self.size __A = get_size_dict(_a ,default_to_square=_a ) __A = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __A = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. __A = [to_numpy_array(_a ) for image in images] if do_resize: __A = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images] if do_rescale: __A = [self.rescale(image=_a ,scale=_a ) for image in images] if do_normalize: __A = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images] __A = [to_channel_dimension_format(_a ,_a ) for image in images] __A = BatchFeature(data={"pixel_values": images} ,tensor_type=_a ) return encoded_outputs
55
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
__A : Tuple = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} _A = 0 _A = 0 while place < len(__a ): if (place + 1 < len(__a )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [] for arabic, roman in ROMAN: (_A) = divmod(__a , __a ) result.append(roman * factor ) if number == 0: break return "".join(__a ) if __name__ == "__main__": import doctest doctest.testmod()
27
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __lowercase , unittest.TestCase): __lowercase : Any = LxmertTokenizer __lowercase : Optional[Any] = LxmertTokenizerFast __lowercase : Any = True __lowercase : Dict = True def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __snake_case = '''UNwant\u00E9d,running''' __snake_case = '''unwanted, running''' return input_text, output_text def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = tokenizer.tokenize(_a ) __snake_case = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __snake_case = tokenizer.encode(_a , add_special_tokens=_a ) __snake_case = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(_a ) __snake_case = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
24
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _A = datasets.logging.get_logger(__name__) _A = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" _A = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" _A = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n" def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : int=False , __lowerCAmelCase : Union[str, Any]="dummy_doc" ): """simple docstring""" lowerCAmelCase_ = {doc: key_lines} lowerCAmelCase_ = {doc: sys_lines} lowerCAmelCase_ = {} lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = reader.get_doc_mentions(__a , key_doc_lines[doc] , __a ) key_singletons_num += singletons_num if NP_only or min_span: lowerCAmelCase_ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) lowerCAmelCase_ = reader.get_doc_mentions(__a , sys_doc_lines[doc] , __a ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCAmelCase_ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) if remove_nested: lowerCAmelCase_ = reader.remove_nested_coref_mentions(__a , __a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCAmelCase_ = reader.remove_nested_coref_mentions(__a , __a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCAmelCase_ = reader.get_mention_assignments(__a , __a ) lowerCAmelCase_ = reader.get_mention_assignments(__a , __a ) lowerCAmelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( "Number of resulting singleton clusters in the key " F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ "files, respectively" ) return doc_coref_infos def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = get_coref_infos(__a , __a , __a , __a , __a , __a ) lowerCAmelCase_ = {} lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 for name, metric in metrics: lowerCAmelCase_ = evaluator.evaluate_documents(__a , __a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 100:.2f}""" , F""" Precision: {precision * 100:.2f}""" , F""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: lowerCAmelCase_ = (conll / 3) * 100 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({"conll_score": conll} ) return output_scores def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: lowerCAmelCase_ = line.split()[5] if not parse_col == "-": lowerCAmelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def __a ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False ) -> Any: lowerCAmelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCAmelCase_ = util.check_gold_parse_annotation(_a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use \'min_span\'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCAmelCase_ = evaluate( key_lines=_a , sys_lines=_a , metrics=_a , NP_only=_a , remove_nested=_a , keep_singletons=_a , min_span=_a , ) return score
290
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case (__lowercase): def __init__( self ): UpperCAmelCase_ : Tuple = [] def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_init_end" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_train_begin" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_train_end" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_epoch_begin" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_epoch_end" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_step_begin" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_step_end" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_evaluate" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_predict" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_save" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_log" ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ): self.events.append("on_prediction_step" ) @require_torch class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = tempfile.mkdtemp() def UpperCamelCase__ ( self ): shutil.rmtree(self.output_dir ) def UpperCamelCase__ ( self ,_snake_case=0 ,_snake_case=0 ,_snake_case=64 ,_snake_case=64 ,_snake_case=None ,_snake_case=False ,**_snake_case ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. UpperCAmelCase_ : List[Any] = RegressionDataset(length=_a ) UpperCAmelCase_ : Any = RegressionDataset(length=_a ) UpperCAmelCase_ : List[Any] = RegressionModelConfig(a=_a ,b=_a ) UpperCAmelCase_ : str = RegressionPreTrainedModel(_a ) UpperCAmelCase_ : List[str] = TrainingArguments(self.output_dir ,disable_tqdm=_a ,report_to=[] ,**_a ) return Trainer( _a ,_a ,train_dataset=_a ,eval_dataset=_a ,callbacks=_a ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): self.assertEqual(len(_a ) ,len(_a ) ) # Order doesn't matter UpperCAmelCase_ : Optional[Any] = sorted(_a ,key=lambda _snake_case : cb.__name__ if isinstance(_a ,_a ) else cb.__class__.__name__ ) UpperCAmelCase_ : Union[str, Any] = sorted(_a ,key=lambda _snake_case : cb.__name__ if isinstance(_a ,_a ) else cb.__class__.__name__ ) for cba, cba in zip(_a ,_a ): if isinstance(_a ,_a ) and isinstance(_a ,_a ): self.assertEqual(_a ,_a ) elif isinstance(_a ,_a ) and not isinstance(_a ,_a ): self.assertEqual(_a ,cba.__class__ ) elif not isinstance(_a ,_a ) and isinstance(_a ,_a ): self.assertEqual(cba.__class__ ,_a ) else: self.assertEqual(_a ,_a ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[Any] = ['''on_init_end''', '''on_train_begin'''] UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Dict = len(trainer.get_eval_dataloader() ) UpperCAmelCase_ : List[str] = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(_a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.get_trainer() UpperCAmelCase_ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase_ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(_a ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase_ : List[str] = self.get_trainer(disable_tqdm=_a ) UpperCAmelCase_ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase_ : int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_a ) expected_callbacks.remove(_a ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) UpperCAmelCase_ : str = self.get_trainer() UpperCAmelCase_ : Union[str, Any] = trainer.pop_callback(_a ) self.assertEqual(cb.__class__ ,_a ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) trainer.add_callback(_a ) expected_callbacks.insert(0 ,_a ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) # We can also add, pop, or remove by instance UpperCAmelCase_ : List[Any] = self.get_trainer() UpperCAmelCase_ : Union[str, Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(_a ) expected_callbacks.remove(_a ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) UpperCAmelCase_ : Tuple = self.get_trainer() UpperCAmelCase_ : List[Any] = trainer.callback_handler.callbacks[0] UpperCAmelCase_ : Union[str, Any] = trainer.pop_callback(_a ) self.assertEqual(_a ,_a ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) trainer.add_callback(_a ) expected_callbacks.insert(0 ,_a ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_a ) def UpperCamelCase__ ( self ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" ,category=_a ) UpperCAmelCase_ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase_ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(_a ,self.get_expected_events(_a ) ) # Independent log/save/eval UpperCAmelCase_ : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() UpperCAmelCase_ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(_a ,self.get_expected_events(_a ) ) UpperCAmelCase_ : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() UpperCAmelCase_ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(_a ,self.get_expected_events(_a ) ) UpperCAmelCase_ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy="steps" ) trainer.train() UpperCAmelCase_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_a ,self.get_expected_events(_a ) ) UpperCAmelCase_ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy="epoch" ) trainer.train() UpperCAmelCase_ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(_a ,self.get_expected_events(_a ) ) # A bit of everything UpperCAmelCase_ : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=10 ,eval_steps=5 ,evaluation_strategy="steps" ,) trainer.train() UpperCAmelCase_ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(_a ,self.get_expected_events(_a ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: UpperCAmelCase_ : int = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(_a ) in warn_mock.call_args[0][0]
71
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : int=9_9 , __UpperCamelCase : Tuple=1_3 , __UpperCamelCase : str=1_6 , __UpperCamelCase : int=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Tuple=True , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[Any]=3_2 , __UpperCamelCase : Any=4 , __UpperCamelCase : int=4 , __UpperCamelCase : str=3_0 , __UpperCamelCase : int=0 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : Any=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = d_model _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = eos_token_id _UpperCAmelCase = bos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = use_cache _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = None _UpperCAmelCase = decoder_seq_length _UpperCAmelCase = 2 _UpperCAmelCase = 1 def lowercase__ ( self : Optional[Any] )->Dict: _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_attention_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _UpperCAmelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : int , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = True _UpperCAmelCase = TrOCRDecoder(config=_a ).to(_a ).eval() _UpperCAmelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _UpperCAmelCase = model(_a , use_cache=_a ) _UpperCAmelCase = model(_a ) _UpperCAmelCase = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) _UpperCAmelCase = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(_a )['''last_hidden_state'''] _UpperCAmelCase = model(_a , past_key_values=_a )['''last_hidden_state'''] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_a , _a , atol=1e-3 ) def lowercase__ ( self : Optional[Any] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class _a ( __lowercase , __lowercase , __lowercase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCamelCase__ = (TrOCRForCausalLM,) if is_torch_available() else () UpperCamelCase__ = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} UpperCamelCase__ = True UpperCamelCase__ = False def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = TrOCRStandaloneDecoderModelTester(self , is_training=_a ) _UpperCAmelCase = ConfigTester(self , config_class=_a ) def lowercase__ ( self : Any )->Optional[Any]: pass def lowercase__ ( self : int )->Optional[Any]: pass def lowercase__ ( self : Any )->List[Any]: pass def lowercase__ ( self : Optional[Any] )->Union[str, Any]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_a ) def lowercase__ ( self : Union[str, Any] )->List[str]: return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : List[Any] )->str: pass
602
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
"""simple docstring""" def lowerCAmelCase_( lowercase_ : int ) -> int: _lowerCamelCase = abs(__a ) _lowerCamelCase = 0 while n > 0: res += n % 10 n //= 10 return res def lowerCAmelCase_( lowercase_ : int ) -> int: _lowerCamelCase = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowerCAmelCase_( lowercase_ : int ) -> int: return sum(int(__a ) for c in str(abs(__a ) ) ) def lowerCAmelCase_( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase_ : Callable , lowercase_ : int ) -> None: _lowerCamelCase = F"""{func.__name__}({value})""" _lowerCamelCase = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__a )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
661
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
from ...processing_utils import ProcessorMixin class __A ( __lowercase ): UpperCamelCase :str = "SpeechT5FeatureExtractor" UpperCamelCase :Tuple = "SpeechT5Tokenizer" def __init__(self , __magic_name__ , __magic_name__ ): super().__init__(_a , _a ) def __call__(self , *__magic_name__ , **__magic_name__ ): lowerCamelCase__ : Union[str, Any] = kwargs.pop("""audio""" , _a ) lowerCamelCase__ : Tuple = kwargs.pop("""text""" , _a ) lowerCamelCase__ : Union[str, Any] = kwargs.pop("""text_target""" , _a ) lowerCamelCase__ : Dict = kwargs.pop("""audio_target""" , _a ) lowerCamelCase__ : Union[str, Any] = kwargs.pop("""sampling_rate""" , _a ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: lowerCamelCase__ : int = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) elif text is not None: lowerCamelCase__ : Dict = self.tokenizer(_a , **_a ) else: lowerCamelCase__ : Tuple = None if audio_target is not None: lowerCamelCase__ : Optional[int] = self.feature_extractor(audio_target=_a , *_a , sampling_rate=_a , **_a ) lowerCamelCase__ : str = targets['''input_values'''] elif text_target is not None: lowerCamelCase__ : int = self.tokenizer(_a , **_a ) lowerCamelCase__ : Optional[Any] = targets['''input_ids'''] else: lowerCamelCase__ : Any = None if inputs is None: return targets if targets is not None: lowerCamelCase__ : int = labels lowerCamelCase__ : List[str] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__ : Optional[Any] = decoder_attention_mask return inputs def _snake_case (self , *__magic_name__ , **__magic_name__ ): lowerCamelCase__ : str = kwargs.pop("""input_values""" , _a ) lowerCamelCase__ : Optional[Any] = kwargs.pop("""input_ids""" , _a ) lowerCamelCase__ : List[str] = kwargs.pop("""labels""" , _a ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: lowerCamelCase__ : int = self.feature_extractor.pad(_a , *_a , **_a ) elif input_ids is not None: lowerCamelCase__ : List[Any] = self.tokenizer.pad(_a , **_a ) else: lowerCamelCase__ : Tuple = None if labels is not None: if "input_ids" in labels or (isinstance(_a , _a ) and "input_ids" in labels[0]): lowerCamelCase__ : List[Any] = self.tokenizer.pad(_a , **_a ) lowerCamelCase__ : Any = targets['''input_ids'''] else: lowerCamelCase__ : Union[str, Any] = self.feature_extractor.feature_size lowerCamelCase__ : Any = self.feature_extractor.num_mel_bins lowerCamelCase__ : Optional[int] = self.feature_extractor.pad(_a , *_a , **_a ) lowerCamelCase__ : Optional[int] = feature_size_hack lowerCamelCase__ : Dict = targets['''input_values'''] else: lowerCamelCase__ : Dict = None if inputs is None: return targets if targets is not None: lowerCamelCase__ : Dict = labels lowerCamelCase__ : Union[str, Any] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__ : Any = decoder_attention_mask return inputs def _snake_case (self , *__magic_name__ , **__magic_name__ ): return self.tokenizer.batch_decode(*_a , **_a ) def _snake_case (self , *__magic_name__ , **__magic_name__ ): return self.tokenizer.decode(*_a , **_a )
157
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ = 16 a_ = 32 def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : int = 16 ,_UpperCamelCase : str = "bert-base-cased" ): __lowerCamelCase = AutoTokenizer.from_pretrained(__a ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__a ,max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( __a ,batched=__a ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a ,padding='''max_length''' ,max_length=1_28 ,return_tensors='''pt''' ) return tokenizer.pad(__a ,padding='''longest''' ,return_tensors='''pt''' ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] ,shuffle=__a ,collate_fn=__a ,batch_size=__a ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] ,shuffle=__a ,collate_fn=__a ,batch_size=__a ) return train_dataloader, eval_dataloader def a__ ( _UpperCamelCase : List[str] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Any ,_UpperCamelCase : Optional[int] ): model.eval() __lowerCamelCase = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**__a ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a ,references=__a ,) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def a__ ( _UpperCamelCase : int ,_UpperCamelCase : Any ): __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = args.model_name_or_path set_seed(__a ) __lowerCamelCase = get_dataloaders(__a ,__a ,__a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(__a ,return_dict=__a ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() ,lr=__a ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=__a ,num_warmup_steps=0 ,num_training_steps=__a ,) else: __lowerCamelCase = DummyScheduler(__a ,total_num_steps=__a ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase = accelerator.prepare( __a ,__a ,__a ,__a ,__a ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split('''epoch_''' )[1] __lowerCamelCase = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(__a ) + 1 __lowerCamelCase = evaluation_loop(__a ,__a ,__a ,__a ) accelerator.print('''resumed checkpoint performance:''' ,__a ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' ,lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' ,optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir ,F"""state_{starting_epoch-1}.json""" ) ,'''r''' ) as f: __lowerCamelCase = json.load(__a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(__a ,__a ): model.train() for step, batch in enumerate(__a ): __lowerCamelCase = model(**__a ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = F"""epoch_{epoch}""" __lowerCamelCase = os.path.join(args.output_dir ,__a ) accelerator.save_state(__a ) __lowerCamelCase = evaluation_loop(__a ,__a ,__a ,__a ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]['''lr'''] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(F"""epoch {epoch}:""" ,__a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,F"""state_{epoch}.json""" ) ,'''w''' ) as f: json.dump(__a ,__a ) def a__ ( ): __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' ,type=__a ,default='''bert-base-cased''' ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=__a ,) parser.add_argument( '''--output_dir''' ,type=__a ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,) parser.add_argument( '''--resume_from_checkpoint''' ,type=__a ,default=__a ,help='''If the training should continue from a checkpoint folder.''' ,) parser.add_argument( '''--partial_train_epoch''' ,type=__a ,default=__a ,help='''If passed, the training will stop after this number of epochs.''' ,) parser.add_argument( '''--num_epochs''' ,type=__a ,default=2 ,help='''Number of train epochs.''' ,) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a ,__a ) if __name__ == "__main__": main()
175
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class a__ ( __lowercase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> Tuple: __A= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_a , 'num_attention_heads' ) ) class a__ : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any=13 , lowerCAmelCase_ : str=64 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[int]=16 , lowerCAmelCase_ : Tuple=[128, 256, 384] , lowerCAmelCase_ : Optional[Any]=[4, 6, 8] , lowerCAmelCase_ : Optional[Any]=[2, 3, 4] , lowerCAmelCase_ : Optional[Any]=[16, 16, 16] , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Any=[2, 2, 2] , lowerCAmelCase_ : Union[str, Any]=[2, 2, 2] , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Dict=2 , ) -> Tuple: __A= parent __A= batch_size __A= image_size __A= num_channels __A= kernel_size __A= stride __A= padding __A= hidden_sizes __A= num_attention_heads __A= depths __A= key_dim __A= drop_path_rate __A= patch_size __A= attention_ratio __A= mlp_ratio __A= initializer_range __A= [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __A= is_training __A= use_labels __A= num_labels __A= initializer_range def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: __A= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A= None if self.use_labels: __A= ids_tensor([self.batch_size] , self.num_labels ) __A= self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: __A= LevitModel(config=_a ) model.to(_a ) model.eval() __A= model(_a ) __A= (self.image_size, self.image_size) __A= image_size[0], image_size[1] for _ in range(4 ): __A= floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __A= floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str ) -> str: __A= self.num_labels __A= LevitForImageClassification(_a ) model.to(_a ) model.eval() __A= model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ) -> Dict: __A= self.prepare_config_and_inputs() __A= config_and_inputs __A= {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A : int = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A : Any = False A : Union[str, Any] = False A : Tuple = False A : List[str] = False A : List[Any] = False def lowerCAmelCase ( self : List[str] ) -> Optional[int]: __A= LevitModelTester(self ) __A= ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> int: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: pass @unittest.skip(reason='Levit does not output attentions' ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: pass def lowerCAmelCase ( self : str ) -> Tuple: __A= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A= model_class(_a ) __A= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A= [*signature.parameters.keys()] __A= ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ): __A= model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __A= model(**self._prepare_for_class(_a , _a ) ) __A= outputs.hidden_states __A= len(self.model_tester.depths ) + 1 self.assertEqual(len(_a ) , _a ) __A= (self.model_tester.image_size, self.model_tester.image_size) __A= image_size[0], image_size[1] for _ in range(4 ): __A= floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __A= floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __A= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A= True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A= True check_hidden_states_output(_a , _a , _a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: pass def lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str=False ) -> str: __A= super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowerCAmelCase ( self : List[str] ) -> str: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: if not self.model_tester.is_training: return __A= self.model_tester.prepare_config_and_inputs_for_common() __A= True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __A= model_class(_a ) model.to(_a ) model.train() __A= self._prepare_for_class(_a , _a , return_labels=_a ) __A= model(**_a ).loss loss.backward() def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __A= False __A= True for model_class in self.all_model_classes: if model_class in get_values(_a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __A= model_class(_a ) model.gradient_checkpointing_enable() model.to(_a ) model.train() __A= self._prepare_for_class(_a , _a , return_labels=_a ) __A= model(**_a ).loss loss.backward() def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs_for_common() __A= [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): __A= problem_type['''title'''] __A= problem_type['''num_labels'''] __A= model_class(_a ) model.to(_a ) model.train() __A= self._prepare_for_class(_a , _a , return_labels=_a ) if problem_type["num_labels"] > 1: __A= inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) __A= inputs['''labels'''].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_a ) as warning_list: __A= model(**_a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Any: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= LevitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase__( ): """simple docstring""" __A= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : List[Any] ) -> List[Any]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase ( self : List[Any] ) -> Dict: __A= LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _a ) __A= self.default_image_processor __A= prepare_img() __A= image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): __A= model(**_a ) # verify the logits __A= torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __A= torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
186
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__lowercase ): """simple docstring""" A__ : List[Any] = ["flax", "transformers"] def __init__( self : Optional[Any] , *_snake_case : Optional[int] , **_snake_case : Tuple ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls : Any , *_snake_case : Any , **_snake_case : Optional[Any] ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls : Optional[int] , *_snake_case : List[Any] , **_snake_case : Optional[int] ): requires_backends(cls , ['''flax''', '''transformers'''] ) class __lowerCAmelCase ( metaclass=__lowercase ): """simple docstring""" A__ : str = ["flax", "transformers"] def __init__( self : List[Any] , *_snake_case : Any , **_snake_case : Tuple ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls : Union[str, Any] , *_snake_case : Tuple , **_snake_case : int ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls : List[str] , *_snake_case : int , **_snake_case : Tuple ): requires_backends(cls , ['''flax''', '''transformers'''] ) class __lowerCAmelCase ( metaclass=__lowercase ): """simple docstring""" A__ : List[str] = ["flax", "transformers"] def __init__( self : Optional[Any] , *_snake_case : Union[str, Any] , **_snake_case : Dict ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[int] ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls : Any , *_snake_case : Tuple , **_snake_case : List[str] ): requires_backends(cls , ['''flax''', '''transformers'''] ) class __lowerCAmelCase ( metaclass=__lowercase ): """simple docstring""" A__ : List[Any] = ["flax", "transformers"] def __init__( self : Optional[Any] , *_snake_case : Union[str, Any] , **_snake_case : Optional[Any] ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls : List[str] , *_snake_case : Dict , **_snake_case : Optional[int] ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls : List[Any] , *_snake_case : Union[str, Any] , **_snake_case : str ): requires_backends(cls , ['''flax''', '''transformers'''] )
509
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase : '''simple docstring''' snake_case_ = XGLMConfig snake_case_ = {} snake_case_ = "gelu" def __init__( self : str ,A : Optional[int] ,A : List[str]=14 ,A : List[str]=7 ,A : str=True ,A : int=True ,A : Optional[Any]=True ,A : List[Any]=99 ,A : Dict=32 ,A : Optional[int]=2 ,A : Any=4 ,A : Optional[Any]=37 ,A : Optional[Any]="gelu" ,A : List[Any]=0.1 ,A : Tuple=0.1 ,A : int=5_12 ,A : Optional[Any]=0.02 ,): __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_labels __A = vocab_size __A = d_model __A = num_hidden_layers __A = num_attention_heads __A = ffn_dim __A = activation_function __A = activation_dropout __A = attention_dropout __A = max_position_embeddings __A = initializer_range __A = None __A = 0 __A = 2 __A = 1 def UpperCamelCase_ ( self : Optional[int] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def UpperCamelCase_ ( self : List[str] ): __A = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = self.get_config() __A = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase_ ( self : List[str] ): return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=_a ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=_a ,) def UpperCamelCase_ ( self : Dict ): __A = self.prepare_config_and_inputs() ( __A ) = config_and_inputs __A = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' snake_case_ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () snake_case_ = (TFXGLMForCausalLM,) if is_tf_available() else () snake_case_ = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFXGLMModelTester(self ) __A = ConfigTester(self ,config_class=_a ,n_embd=37 ) def UpperCamelCase_ ( self : Tuple ): self.config_tester.run_common_tests() @slow def UpperCamelCase_ ( self : Optional[Any] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFXGLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def UpperCamelCase_ ( self : Union[str, Any] ): super().test_resize_token_embeddings() @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Optional[Any] ,A : int=True ): __A = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __A = tf.convert_to_tensor([[2, 2_68, 98_65]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __A = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __A = model.generate(_a ,do_sample=_a ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,_a ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __A = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __A = tokenizer("Today is a nice day and" ,return_tensors="tf" ) __A = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __A = model.generate(_a ,do_sample=_a ,seed=[7, 0] ) __A = tokenizer.decode(output_ids[0] ,skip_special_tokens=_a ) __A = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_a ,_a ) @slow def UpperCamelCase_ ( self : Tuple ): __A = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __A = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __A = '''left''' # use different length sentences to test batching __A = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] __A = tokenizer(_a ,return_tensors="tf" ,padding=_a ) __A = inputs['''input_ids'''] __A = model.generate(input_ids=_a ,attention_mask=inputs["attention_mask"] ,max_new_tokens=12 ) __A = tokenizer(sentences[0] ,return_tensors="tf" ).input_ids __A = model.generate(input_ids=_a ,max_new_tokens=12 ) __A = tokenizer(sentences[1] ,return_tensors="tf" ).input_ids __A = model.generate(input_ids=_a ,max_new_tokens=12 ) __A = tokenizer.batch_decode(_a ,skip_special_tokens=_a ) __A = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=_a ) __A = tokenizer.decode(output_padded[0] ,skip_special_tokens=_a ) __A = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_a ,_a ) self.assertListEqual(_a ,[non_padded_sentence, padded_sentence] )
55
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _A = os.path.join(args.tf_model_dir , 'parameters.json' ) _A = json.loads(open(__a ).read() ) if not params: raise ValueError( F"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('.pt' ): _A = args.output + '''.pt''' _A = OrderedDict() with tf.device('/CPU:0' ): _A = tf.train.load_checkpoint(args.tf_model_dir ) _A = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _A = reader.get_tensor(__a ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _A = int(key_name[9] ) elif key_name.startswith('pasts/out' ): _A = 8 _A = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(__a ) elif key_name.startswith('model/moe' ): _A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _A = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(__a ) elif key_name.endswith('/softmlp/kernel' ): _A = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(__a ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _A = key_name[-9:-7] for i in range(16 ): _A = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) _A = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _A = torch.tensor(__a ) elif key_name.startswith('model/mlp' ): _A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _A = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(__a ) elif key_name.endswith('/p1/bias' ): _A = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(__a ) elif key_name.endswith('/p2/kernel' ): _A = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(__a ) elif key_name.endswith('/p2/bias' ): _A = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(__a ) elif key_name.startswith('model/ln' ): _A = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _A = '''model.blocks.%d.feed_forward.norm.bias''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(__a ) elif key_name.endswith('/g' ): _A = '''model.blocks.%d.feed_forward.norm.weight''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(__a ) elif key_name.startswith('model/att' ): _A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _A = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _A = state[:, 0, :, :] _A = state[:, 1, :, :] _A = state[:, 2, :, :] _A = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player _A = torch.tensor(__a ) _A = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player _A = torch.tensor(__a ) _A = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player _A = torch.tensor(__a ) elif key_name.endswith('/o/kernel' ): _A = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player _A = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(__a ) elif key_name.startswith('model/an' ): _A = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _A = '''model.blocks.%d.self_attn.norm.bias''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(__a ) elif key_name.endswith('/g' ): _A = '''model.blocks.%d.self_attn.norm.weight''' % player _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(__a ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _A = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] _A = '''model.%s.weight''' % nlayer _A = vnp.copy() # same in embedded _A = torch.tensor(__a ) if key_name.startswith('model/wte' ): _A = '''lm_head.weight''' _A = vnp.copy() # same in embedded _A = torch.tensor(__a ) elif key_name.startswith('model/wob' ): _A = '''final_logits_bias''' _A = vnp.copy() # same in embedded _A = state.reshape((1, -1) ) _A = torch.tensor(__a ) elif key_name == "model/dense/kernel": _A = '''model.last_project.weight''' _A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A = torch.tensor(__a ) elif key_name == "model/dense_1/bias": _A = '''model.last_project.bias''' _A = vnp.copy() # same because it is one dimensional _A = torch.tensor(__a ) torch.save(__a , args.output ) if __name__ == "__main__": __A : int = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __A : List[str] = parser.parse_args() convert_tf_gptsan_to_pt(args)
27
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCAmelCase_ : List[Any] = TypeVar('''KEY''') UpperCAmelCase_ : str = TypeVar('''VAL''') @dataclass(frozen=__lowercase , slots=__lowercase) class lowerCAmelCase ( Generic[KEY, VAL]): __lowercase : KEY __lowercase : VAL class lowerCAmelCase ( _Item): def __init__( self ) -> None: '''simple docstring''' super().__init__(_a , _a ) def __bool__( self ) -> bool: '''simple docstring''' return False UpperCAmelCase_ : List[str] = _DeletedItem() class lowerCAmelCase ( MutableMapping[KEY, VAL]): def __init__( self , __SCREAMING_SNAKE_CASE = 8 , __SCREAMING_SNAKE_CASE = 0.75 ) -> None: '''simple docstring''' __snake_case = initial_block_size __snake_case = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __snake_case = capacity_factor __snake_case = 0 def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return hash(_a ) % len(self._buckets ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' __snake_case = self._buckets[ind] if not stored: __snake_case = _Item(_a , _a ) self._len += 1 return True elif stored.key == key: __snake_case = _Item(_a , _a ) return True else: return False def lowerCAmelCase ( self ) -> bool: '''simple docstring''' __snake_case = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_a ) def lowerCAmelCase ( self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __snake_case = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' __snake_case = self._buckets __snake_case = [None] * new_size __snake_case = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCAmelCase ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowerCAmelCase ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Iterator[int]: '''simple docstring''' __snake_case = self._get_bucket_index(_a ) for _ in range(len(self._buckets ) ): yield ind __snake_case = self._get_next_ind(_a ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' for ind in self._iterate_buckets(_a ): if self._try_set(_a , _a , _a ): break def __setitem__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(_a , _a ) def __delitem__( self , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' for ind in self._iterate_buckets(_a ): __snake_case = self._buckets[ind] if item is None: raise KeyError(_a ) if item is _deleted: continue if item.key == key: __snake_case = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __SCREAMING_SNAKE_CASE ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(_a ): __snake_case = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_a ) def __len__( self ) -> int: '''simple docstring''' return self._len def __iter__( self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: '''simple docstring''' __snake_case = ''' ,'''.join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
24
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
_A = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowerCamelCase__ ( __lowerCAmelCase : bytes ): """simple docstring""" if not isinstance(__a , __a ): lowerCAmelCase_ = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(__a ) lowerCAmelCase_ = ''''''.join(bin(__a )[2:].zfill(8 ) for byte in data ) lowerCAmelCase_ = len(__a ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCAmelCase_ = b'''=''' * ((6 - len(__a ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__a ) % 6) else: lowerCAmelCase_ = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__a ) , 6 ) ).encode() + padding ) def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" if not isinstance(__a , __a ) and not isinstance(__a , __a ): lowerCAmelCase_ = ( '''argument should be a bytes-like object or ASCII string, ''' F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(__a ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__a , __a ): try: lowerCAmelCase_ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowerCAmelCase_ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__a ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCAmelCase_ = encoded_data[:-padding] lowerCAmelCase_ = ''''''.join( bin(B64_CHARSET.index(__a ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCAmelCase_ = ''''''.join( bin(B64_CHARSET.index(__a ) )[2:].zfill(6 ) for char in encoded_data ) lowerCAmelCase_ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__a ) , 8 ) ] return bytes(__a ) if __name__ == "__main__": import doctest doctest.testmod()
290
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
'''simple docstring''' import string def a__ ( _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ : int = '''''' for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ : Union[str, Any] = string.ascii_uppercase.find(__a ) UpperCAmelCase_ : Optional[int] = num - key if num < 0: UpperCAmelCase_ : Any = num + len(string.ascii_uppercase ) UpperCAmelCase_ : Optional[int] = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ : Optional[int] = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def a__ ( ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = input("Encrypted message: " ) UpperCAmelCase_ : Union[str, Any] = message.upper() decrypt(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
71
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
"""simple docstring""" from jiwer import compute_measures import datasets __A : Tuple = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" __A : List[str] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" __A : Any = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : Tuple )->Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def lowercase__ ( self : Any , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=False )->Optional[int]: if concatenate_texts: return compute_measures(_a , _a )["wer"] else: _UpperCAmelCase = 0 _UpperCAmelCase = 0 for prediction, reference in zip(_a , _a ): _UpperCAmelCase = compute_measures(_a , _a ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
602
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
"""simple docstring""" class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): _lowerCamelCase = data _lowerCamelCase = previous _lowerCamelCase = next_node def __str__( self ): return F"""{self.data}""" def snake_case__ ( self ): return self.data def snake_case__ ( self ): return self.next def snake_case__ ( self ): return self.previous class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = head def __iter__( self ): return self def snake_case__ ( self ): if not self.current: raise StopIteration else: _lowerCamelCase = self.current.get_data() _lowerCamelCase = self.current.get_next() return value class lowerCamelCase_: '''simple docstring''' def __init__( self ): _lowerCamelCase = None # First node in list _lowerCamelCase = None # Last node in list def __str__( self ): _lowerCamelCase = self.head _lowerCamelCase = [] while current is not None: nodes.append(current.get_data() ) _lowerCamelCase = current.get_next() return " ".join(str(_a ) for node in nodes ) def __contains__( self , lowerCamelCase__ ): _lowerCamelCase = self.head while current: if current.get_data() == value: return True _lowerCamelCase = current.get_next() return False def __iter__( self ): return LinkedListIterator(self.head ) def snake_case__ ( self ): if self.head: return self.head.get_data() return None def snake_case__ ( self ): if self.tail: return self.tail.get_data() return None def snake_case__ ( self , lowerCamelCase__ ): if self.head is None: _lowerCamelCase = node _lowerCamelCase = node else: self.insert_before_node(self.head , _a ) def snake_case__ ( self , lowerCamelCase__ ): if self.head is None: self.set_head(_a ) else: self.insert_after_node(self.tail , _a ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = Node(_a ) if self.head is None: self.set_head(_a ) else: self.set_tail(_a ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = node _lowerCamelCase = node.previous if node.get_previous() is None: _lowerCamelCase = node_to_insert else: _lowerCamelCase = node_to_insert _lowerCamelCase = node_to_insert def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = node _lowerCamelCase = node.next if node.get_next() is None: _lowerCamelCase = node_to_insert else: _lowerCamelCase = node_to_insert _lowerCamelCase = node_to_insert def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = 1 _lowerCamelCase = Node(_a ) _lowerCamelCase = self.head while node: if current_position == position: self.insert_before_node(_a , _a ) return current_position += 1 _lowerCamelCase = node.next self.insert_after_node(self.tail , _a ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = self.head while node: if node.get_data() == item: return node _lowerCamelCase = node.get_next() raise Exception('''Node not found''' ) def snake_case__ ( self , lowerCamelCase__ ): if (node := self.get_node(_a )) is not None: if node == self.head: _lowerCamelCase = self.head.get_next() if node == self.tail: _lowerCamelCase = self.tail.get_previous() self.remove_node_pointers(_a ) @staticmethod def snake_case__ ( lowerCamelCase__ ): if node.get_next(): _lowerCamelCase = node.previous if node.get_previous(): _lowerCamelCase = node.next _lowerCamelCase = None _lowerCamelCase = None def snake_case__ ( self ): return self.head is None def lowerCAmelCase_( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
661
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _A (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple ) ->Dict: '''simple docstring''' lowerCamelCase__ : Optional[int] = FunnelConfig.from_json_file(__a ) print(f"Building PyTorch model from configuration: {config}" ) lowerCamelCase__ : Optional[Any] = FunnelBaseModel(__a ) if base_model else FunnelModel(__a ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__a , __a , __a ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) _lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
157
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor a_ = logging.get_logger(__name__) class __lowerCAmelCase ( __lowercase ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
175
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : list[list[float]] ): """simple docstring""" __A= Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__a ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __A= float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements __A= [[0.0, 0.0], [0.0, 0.0]] __A= matrix[1][1], matrix[0][0] __A= -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__a ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__a ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __A= float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix __A= [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __A= (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __A= -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __A= (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __A= -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __A= (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __A= -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __A= (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __A= -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __A= (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __A= array(__a ) for i in range(3 ): for j in range(3 ): __A= cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __A= array(__a ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__a ) # Calculate the inverse of the matrix return [[float(d(__a ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
186
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ) -> Optional[int]: __lowercase : Tuple = AutoTokenizer.from_pretrained(__a ) __lowercase : int = SeqaSeqDataset(__a , __a , __a , __a , type_path='''train''' , **__a ) __lowercase : List[str] = tok.pad_token_id def get_lens(__lowerCAmelCase ): __lowercase : List[Any] = tqdm( DataLoader(__a , batch_size=512 , num_workers=8 , shuffle=__a , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __lowercase : Optional[Any] = [] for batch in dl: __lowercase : List[str] = batch['''input_ids'''].ne(__a ).sum(1 ).tolist() __lowercase : Optional[Any] = batch['''labels'''].ne(__a ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__a , __a ): max_lens.append(max(__a , __a ) ) else: max_lens.extend(__a ) return max_lens __lowercase : List[str] = get_lens(__a ) __lowercase : Tuple = SeqaSeqDataset(__a , __a , __a , __a , type_path='''val''' , **__a ) __lowercase : Union[str, Any] = get_lens(__a ) pickle_save(__a , train_ds.len_file ) pickle_save(__a , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
509
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
from __future__ import annotations def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(__a ) == 0: return [] __A = min(__a ), max(__a ) __A = int(max_value - min_value ) + 1 __A = [[] for _ in range(__a )] for i in my_list: buckets[int(i - min_value )].append(__a ) return [v for bucket in buckets for v in sorted(__a )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
55
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowerCamelCase( __lowercase , unittest.TestCase ): '''simple docstring''' __magic_name__ = RoFormerTokenizer __magic_name__ = RoFormerTokenizerFast __magic_name__ = True __magic_name__ = True def lowerCAmelCase__ ( self ): super().setUp() def lowerCAmelCase__ ( self , **snake_case_ ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_a ) def lowerCAmelCase__ ( self , **snake_case_ ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_a ) def lowerCAmelCase__ ( self ): _A = '''永和服装饰品有限公司,今天天气非常好''' _A = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def lowerCAmelCase__ ( self ): _A = self.get_tokenizer() _A = self.get_chinese_input_output_texts() _A = tokenizer.tokenize(_a ) self.assertListEqual(_a , output_text.split() ) _A = tokens + [tokenizer.unk_token] _A = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def lowerCAmelCase__ ( self ): _A = self.get_rust_tokenizer() _A = self.get_chinese_input_output_texts() _A = tokenizer.tokenize(_a ) self.assertListEqual(_a , output_text.split() ) _A = tokens + [tokenizer.unk_token] _A = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass
27
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput UpperCAmelCase_ : Any = 8 def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=BITS )-> List[str]: '''simple docstring''' __snake_case = x.device __snake_case = (x * 2_55).int().clamp(0 , 2_55 ) __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__a ) __snake_case = rearrange(__a , '''d -> d 1 1''' ) __snake_case = rearrange(__a , '''b c h w -> b c 1 h w''' ) __snake_case = ((x & mask) != 0).float() __snake_case = rearrange(__a , '''b c d h w -> b (c d) h w''' ) __snake_case = bits * 2 - 1 return bits def _UpperCamelCase (_lowerCamelCase : List[str] , _lowerCamelCase : List[str]=BITS )-> Optional[Any]: '''simple docstring''' __snake_case = x.device __snake_case = (x > 0).int() __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__a , dtype=torch.intaa ) __snake_case = rearrange(__a , '''d -> d 1 1''' ) __snake_case = rearrange(__a , '''b (c d) h w -> b c d h w''' , d=8 ) __snake_case = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def _UpperCamelCase (self : Optional[int] , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : float = 0.0 , _lowerCamelCase : bool = True , _lowerCamelCase : int=None , _lowerCamelCase : bool = True , )-> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __snake_case = self.alphas_cumprod[timestep] __snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(__a , -scale , __a ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __snake_case = self._get_variance(__a , __a ) __snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __snake_case = model_output.device if torch.is_tensor(__a ) else '''cpu''' __snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__a ).to(__a ) __snake_case = self._get_variance(__a , __a ) ** 0.5 * eta * noise __snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__a , pred_original_sample=__a ) def _UpperCamelCase (self : List[Any] , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : str="epsilon" , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : bool = True , )-> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' __snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __snake_case = torch.split(__a , sample.shape[1] , dim=1 ) else: __snake_case = None # 1. compute alphas, betas __snake_case = self.alphas_cumprod[t] __snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one __snake_case = 1 - alpha_prod_t __snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __snake_case = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(__a , -scale , __a ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case = 0 if t > 0: __snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__a ).to(model_output.device ) __snake_case = (self._get_variance(__a , predicted_variance=__a ) ** 0.5) * noise __snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__a , pred_original_sample=__a ) class lowerCAmelCase ( __lowercase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , ) -> Optional[Any]: '''simple docstring''' super().__init__() __snake_case = bit_scale __snake_case = ( ddim_bit_scheduler_step if isinstance(_a , _a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE = 256 , __SCREAMING_SNAKE_CASE = 256 , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' __snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_a , ) __snake_case = decimal_to_bits(_a ) * self.bit_scale __snake_case = latents.to(self.device ) self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __snake_case = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(_a , _a , _a ).prev_sample __snake_case = bits_to_decimal(_a ) if output_type == "pil": __snake_case = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
24
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
from ....configuration_utils import PretrainedConfig from ....utils import logging _A = logging.get_logger(__name__) # TODO: upload to AWS _A = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class _lowerCAmelCase ( __lowercase ): _lowercase ="retribert" def __init__( self , _UpperCamelCase=30_522 , _UpperCamelCase=768 , _UpperCamelCase=8 , _UpperCamelCase=12 , _UpperCamelCase=3_072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-1_2 , _UpperCamelCase=True , _UpperCamelCase=128 , _UpperCamelCase=0 , **_UpperCamelCase , ) -> Optional[int]: super().__init__(pad_token_id=_a , **_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = share_encoders lowerCAmelCase_ = projection_dim
290
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[str] = tau * frequency / samplerate UpperCAmelCase_ : int = sin(__a ) UpperCAmelCase_ : str = cos(__a ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = (1 - _cos) / 2 UpperCAmelCase_ : Optional[int] = 1 - _cos UpperCAmelCase_ : Union[str, Any] = 1 + alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Any = 1 - alpha UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[Any] = tau * frequency / samplerate UpperCAmelCase_ : Union[str, Any] = sin(__a ) UpperCAmelCase_ : Optional[int] = cos(__a ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = (1 + _cos) / 2 UpperCAmelCase_ : List[str] = -1 - _cos UpperCAmelCase_ : Tuple = 1 + alpha UpperCAmelCase_ : Optional[int] = -2 * _cos UpperCAmelCase_ : Optional[Any] = 1 - alpha UpperCAmelCase_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[Any] = tau * frequency / samplerate UpperCAmelCase_ : Union[str, Any] = sin(__a ) UpperCAmelCase_ : Optional[int] = cos(__a ) UpperCAmelCase_ : str = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[Any] = _sin / 2 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = -ba UpperCAmelCase_ : Tuple = 1 + alpha UpperCAmelCase_ : Any = -2 * _cos UpperCAmelCase_ : Any = 1 - alpha UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[str] = tau * frequency / samplerate UpperCAmelCase_ : Any = sin(__a ) UpperCAmelCase_ : Optional[int] = cos(__a ) UpperCAmelCase_ : Any = _sin / (2 * q_factor) UpperCAmelCase_ : int = 1 - alpha UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : Optional[Any] = 1 + alpha UpperCAmelCase_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[Any] = tau * frequency / samplerate UpperCAmelCase_ : Optional[Any] = sin(__a ) UpperCAmelCase_ : Optional[Any] = cos(__a ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : Dict = 10 ** (gain_db / 40) UpperCAmelCase_ : List[Any] = 1 + alpha * big_a UpperCAmelCase_ : int = -2 * _cos UpperCAmelCase_ : Dict = 1 - alpha * big_a UpperCAmelCase_ : Optional[Any] = 1 + alpha / big_a UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : int = 1 - alpha / big_a UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : Optional[Any] = tau * frequency / samplerate UpperCAmelCase_ : List[Any] = sin(__a ) UpperCAmelCase_ : Any = cos(__a ) UpperCAmelCase_ : str = _sin / (2 * q_factor) UpperCAmelCase_ : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Tuple = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Tuple = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : Dict = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Tuple = 2 * sqrt(__a ) * alpha UpperCAmelCase_ : List[str] = big_a * (pmc + aaa) UpperCAmelCase_ : List[str] = 2 * big_a * mpc UpperCAmelCase_ : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase_ : Optional[Any] = ppmc + aaa UpperCAmelCase_ : str = -2 * pmpc UpperCAmelCase_ : str = ppmc - aaa UpperCAmelCase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : int = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(__a ) UpperCAmelCase_ : Optional[int] = cos(__a ) UpperCAmelCase_ : Dict = _sin / (2 * q_factor) UpperCAmelCase_ : Tuple = 10 ** (gain_db / 40) UpperCAmelCase_ : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : List[str] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : List[Any] = 2 * sqrt(__a ) * alpha UpperCAmelCase_ : Any = big_a * (ppmc + aaa) UpperCAmelCase_ : Dict = -2 * big_a * pmpc UpperCAmelCase_ : Tuple = big_a * (ppmc - aaa) UpperCAmelCase_ : List[str] = pmc + aaa UpperCAmelCase_ : List[str] = 2 * mpc UpperCAmelCase_ : Optional[Any] = pmc - aaa UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
71
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : Union[str, Any] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = "nllb-moe" UpperCamelCase__ = ["past_key_values"] UpperCamelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , __UpperCamelCase : Any=1_2_8_1_1_2 , __UpperCamelCase : Union[str, Any]=1_0_2_4 , __UpperCamelCase : List[str]=1_2 , __UpperCamelCase : int=4_0_9_6 , __UpperCamelCase : int=1_6 , __UpperCamelCase : Optional[int]=1_2 , __UpperCamelCase : int=4_0_9_6 , __UpperCamelCase : List[str]=1_6 , __UpperCamelCase : Union[str, Any]=0.0_5 , __UpperCamelCase : Tuple=0.0_5 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[int]="relu" , __UpperCamelCase : Any=1_0_2_4 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : str=0.0 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : str=True , __UpperCamelCase : Any=False , __UpperCamelCase : Dict="float32" , __UpperCamelCase : List[str]=False , __UpperCamelCase : Optional[Any]=1_2_8 , __UpperCamelCase : Optional[int]=6_4 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Optional[Any]=0.0_0_1 , __UpperCamelCase : Optional[int]=0.0_0_1 , __UpperCamelCase : Dict="all" , __UpperCamelCase : List[str]=False , __UpperCamelCase : str=False , __UpperCamelCase : Optional[int]=1.0 , __UpperCamelCase : List[str]=0.2 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : int=0 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : str=False , **__UpperCamelCase : Tuple , )->str: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = encoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = router_z_loss_coef _UpperCAmelCase = router_aux_loss_coef _UpperCAmelCase = decoder_sparse_step _UpperCAmelCase = encoder_sparse_step _UpperCAmelCase = num_experts _UpperCAmelCase = expert_capacity _UpperCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) _UpperCAmelCase = router_dtype _UpperCAmelCase = router_ignore_padding_tokens _UpperCAmelCase = batch_prioritized_routing _UpperCAmelCase = second_expert_policy _UpperCAmelCase = normalize_router_prob_before_dropping _UpperCAmelCase = moe_eval_capacity_token_fraction _UpperCAmelCase = moe_token_dropout _UpperCAmelCase = output_router_logits super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , **_a , )
602
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __SCREAMING_SNAKE_CASE : Tuple = numpy.array([0, 0]) __SCREAMING_SNAKE_CASE : List[str] = numpy.array([0.5, 0.866_0254]) __SCREAMING_SNAKE_CASE : Tuple = numpy.array([1, 0]) __SCREAMING_SNAKE_CASE : str = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCAmelCase_( lowercase_ : list[numpy.ndarray] , lowercase_ : int ) -> list[numpy.ndarray]: _lowerCamelCase = initial_vectors for _ in range(__a ): _lowerCamelCase = iteration_step(__a ) return vectors def lowerCAmelCase_( lowercase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: _lowerCamelCase = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCamelCase = vectors[i + 1] new_vectors.append(__a ) _lowerCamelCase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCAmelCase_( lowercase_ : numpy.ndarray , lowercase_ : float ) -> numpy.ndarray: _lowerCamelCase = numpy.radians(__a ) _lowerCamelCase = numpy.cos(__a ), numpy.sin(__a ) _lowerCamelCase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a , __a ) def lowerCAmelCase_( lowercase_ : list[numpy.ndarray] ) -> None: _lowerCamelCase = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCamelCase = zip(*__a ) plt.plot(__a , __a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Tuple = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
661
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A ( unittest.TestCase ): def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = '''ylacombe/bark-small''' lowerCamelCase__ : Dict = tempfile.mkdtemp() lowerCamelCase__ : int = '''en_speaker_1''' lowerCamelCase__ : Dict = '''This is a test string''' lowerCamelCase__ : int = '''speaker_embeddings_path.json''' lowerCamelCase__ : List[Any] = '''speaker_embeddings''' def _snake_case (self , **__magic_name__ ): return AutoTokenizer.from_pretrained(self.checkpoint , **_a ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = BarkProcessor(tokenizer=_a ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _snake_case (self ): lowerCamelCase__ : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase__ : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase__ : int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _snake_case (self ): lowerCamelCase__ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase__ : Optional[int] = 35 lowerCamelCase__ : str = 2 lowerCamelCase__ : Dict = 8 lowerCamelCase__ : Any = { '''semantic_prompt''': np.ones(_a ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase__ : int = processor(text=self.input_string , voice_preset=_a ) lowerCamelCase__ : Optional[Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase__ : str = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_a , **_a ) lowerCamelCase__ : List[str] = processor(text=self.input_string , voice_preset=_a ) lowerCamelCase__ : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase__ : Dict = processor(text=self.input_string , voice_preset=self.voice_preset ) def _snake_case (self ): lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : Any = BarkProcessor(tokenizer=_a ) lowerCamelCase__ : int = processor(text=self.input_string ) lowerCamelCase__ : Optional[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
157
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
from __future__ import annotations import math def a__ ( _UpperCamelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__a ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True a_ = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( _UpperCamelCase : int ): if not isinstance(__a ,__a ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __lowerCamelCase = [] for num in range(len(__a ) ): __lowerCamelCase = 0 while 2 * i * i <= odd_composites[num]: __lowerCamelCase = odd_composites[num] - 2 * i * i if is_prime(__a ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__a ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(f"{solution() = }")
175
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class a__ ( __lowercase ): '''simple docstring''' A : Tuple = "gpt_neox" def __init__( self : str , lowerCAmelCase_ : Optional[int]=50_432 , lowerCAmelCase_ : Optional[int]=6_144 , lowerCAmelCase_ : List[str]=44 , lowerCAmelCase_ : str=64 , lowerCAmelCase_ : List[str]=24_576 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : List[str]=0.25 , lowerCAmelCase_ : Dict=10_000 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Any=2_048 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Optional[Any]=1E-5 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : List[str] , ) -> str: super().__init__(bos_token_id=_a , eos_token_id=_a , **_a ) __A= vocab_size __A= max_position_embeddings __A= hidden_size __A= num_hidden_layers __A= num_attention_heads __A= intermediate_size __A= hidden_act __A= rotary_pct __A= rotary_emb_base __A= attention_dropout __A= hidden_dropout __A= classifier_dropout __A= initializer_range __A= layer_norm_eps __A= use_cache __A= tie_word_embeddings __A= use_parallel_residual __A= rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _a ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"""got {self.rope_scaling}""" ) __A= self.rope_scaling.get('type' , _a ) __A= self.rope_scaling.get('factor' , _a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_a , _a ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
186
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: __lowercase : List[str] = int(__a ) if decimal in (0, 1): # Exit cases for the recursion return str(__a ) __lowercase : List[Any] = divmod(__a , 2 ) return binary_recursive(__a ) + str(__a ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: __lowercase : Union[str, Any] = str(__a ).strip() if not number: raise ValueError('''No input value was provided''' ) __lowercase : List[Any] = '''-''' if number.startswith('''-''' ) else '''''' __lowercase : Union[str, Any] = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F'{negative}0b{binary_recursive(int(__a ) )}' if __name__ == "__main__": from doctest import testmod testmod()
509
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __a ).groups()[0] class UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A : str ,A : List[Any]=None ,A : List[str]=None ): __A = file_names __A = image_transform __A = label_to_id def __len__( self : Union[str, Any] ): return len(self.file_names ) def __getitem__( self : Tuple ,A : Any ): __A = self.file_names[idx] __A = PIL.Image.open(_a ) __A = raw_image.convert("RGB" ) if self.image_transform is not None: __A = self.image_transform(_a ) __A = extract_label(_a ) if self.label_to_id is not None: __A = self.label_to_id[label] return {"image": image, "label": label} def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" if args.with_tracking: __A = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: __A = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __A = config['''lr'''] __A = int(config["num_epochs"] ) __A = int(config["seed"] ) __A = int(config["batch_size"] ) __A = config['''image_size'''] if not isinstance(__a , (list, tuple) ): __A = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": __A = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __A = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: __A = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __A = os.path.split(__a )[-1].split("." )[0] accelerator.init_trackers(__a , __a ) # Grab all the image filenames __A = [os.path.join(args.data_dir , __a ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences __A = [extract_label(__a ) for fname in file_names] __A = list(set(__a ) ) id_to_label.sort() __A = {lbl: i for i, lbl in enumerate(__a )} # Set the seed before splitting the data. np.random.seed(__a ) torch.manual_seed(__a ) torch.cuda.manual_seed_all(__a ) # Split our filenames between train and validation __A = np.random.permutation(len(__a ) ) __A = int(0.8 * len(__a ) ) __A = random_perm[:cut] __A = random_perm[cut:] # For training we use a simple RandomResizedCrop __A = Compose([RandomResizedCrop(__a , scale=(0.5, 1.0) ), ToTensor()] ) __A = PetsDataset( [file_names[i] for i in train_split] , image_transform=__a , label_to_id=__a ) # For evaluation, we use a deterministic Resize __A = Compose([Resize(__a ), ToTensor()] ) __A = PetsDataset([file_names[i] for i in eval_split] , image_transform=__a , label_to_id=__a ) # Instantiate dataloaders. __A = DataLoader(__a , shuffle=__a , batch_size=__a , num_workers=4 ) __A = DataLoader(__a , shuffle=__a , batch_size=__a , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __A = create_model("resnet50d" , pretrained=__a , num_classes=len(__a ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __A = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __A = False for param in model.get_classifier().parameters(): __A = True # We normalize the batches of images to be a bit faster. __A = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) __A = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __A = torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler __A = OneCycleLR(optimizer=__a , max_lr=__a , epochs=__a , steps_per_epoch=len(__a ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __A = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over __A = 0 # We also need to keep track of the starting epoch so files are named properly __A = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) __A = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __A = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __A = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __A = os.path.splitext(__a )[0] if "epoch" in training_difference: __A = int(training_difference.replace("epoch_" , "" ) ) + 1 __A = None else: __A = int(training_difference.replace("step_" , "" ) ) __A = resume_step // len(__a ) resume_step -= starting_epoch * len(__a ) # Now we train the model for epoch in range(__a , __a ): model.train() if args.with_tracking: __A = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __A = accelerator.skip_first_batches(__a , __a ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __A = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __A = {k: v.to(accelerator.device ) for k, v in batch.items()} __A = (batch['''image'''] - mean) / std __A = model(__a ) __A = torch.nn.functional.cross_entropy(__a , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__a , __a ): __A = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __A = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) model.eval() __A = 0 __A = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. __A = {k: v.to(accelerator.device ) for k, v in batch.items()} __A = (batch['''image'''] - mean) / std with torch.no_grad(): __A = model(__a ) __A = outputs.argmax(dim=-1 ) __A = accelerator.gather_for_metrics((predictions, batch["label"]) ) __A = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __A = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {1_0_0 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { "accuracy": 1_0_0 * eval_metric, "train_loss": total_loss.item() / len(__a ), "epoch": epoch, } , step=__a , ) if checkpointing_steps == "epoch": __A = F'''epoch_{epoch}''' if args.output_dir is not None: __A = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) if args.with_tracking: accelerator.end_training() def UpperCAmelCase ( ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__a , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__a , default=__a , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__a , default=__a , help="Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch." , ) parser.add_argument( "--output_dir" , type=__a , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__a , default=__a , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__a , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __A = parser.parse_args() __A = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 6_4, '''image_size''': 2_2_4} training_function(__a , __a ) if __name__ == "__main__": main()
55
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
import heapq import sys import numpy as np __A : Tuple = tuple[int, int] class lowerCamelCase: '''simple docstring''' def __init__( self ): _A = [] _A = set() def lowerCAmelCase__ ( self ): if not self.empty(): return self.elements[0][0] else: return float('inf' ) def lowerCAmelCase__ ( self ): return len(self.elements ) == 0 def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_a ) else: # update # print("update", item) _A = [] (_A) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (_A) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowerCAmelCase__ ( self , snake_case_ ): if item in self.set: self.set.remove(_a ) _A = [] (_A) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (_A) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowerCAmelCase__ ( self ): return self.elements[0][1] def lowerCAmelCase__ ( self ): (_A) = heapq.heappop(self.elements ) self.set.remove(_a ) return (priority, item) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = np.array(__a ) _A = np.array(__a ) return np.linalg.norm(a - b ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return consistent_heuristic(__a , __a ) // t def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = g_function[start] + Wa * heuristics[i](__a , __a ) return ans def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = np.chararray((n, n) ) for i in range(__a ): for j in range(__a ): _A = '''*''' for i in range(__a ): for j in range(__a ): if (j, (n - 1) - i) in blocks: _A = '''#''' _A = '''-''' _A = back_pointer[goal] while x != start: (_A) = x # print(x) _A = '''-''' _A = back_pointer[x] _A = '''-''' for i in range(__a ): for j in range(__a ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) _A = back_pointer[goal] while x != start: print(__a , end=' ' ) _A = back_pointer[x] print(__a ) sys.exit() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" for itera in range(__a ): open_list[itera].remove_element(__a ) # print("s", s) # print("j", j) (_A) = s _A = (x - 1, y) _A = (x + 1, y) _A = (x, y + 1) _A = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__a ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__a ) _A = -1 _A = float('inf' ) if valid(__a ) and g_function[neighbours] > g_function[s] + 1: _A = g_function[s] + 1 _A = s if neighbours not in close_list_anchor: open_list[0].put(__a , key(__a , 0 , __a , __a ) ) if neighbours not in close_list_inad: for var in range(1 , __a ): if key(__a , __a , __a , __a ) <= Wa * key( __a , 0 , __a , __a ): open_list[j].put( __a , key(__a , __a , __a , __a ) ) def __lowerCAmelCase( ) -> List[str]: """simple docstring""" _A = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __A : List[str] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __A : Optional[int] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __A : Tuple = make_common_ground() __A : Any = blocks_blk # hyper parameters __A : List[str] = 1 __A : Tuple = 1 __A : Optional[Any] = 20 __A : Optional[int] = 3 # one consistent and two other inconsistent # start and end destination __A : Dict = (0, 0) __A : Tuple = (n - 1, n - 1) __A : Union[str, Any] = 1 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = {start: 0, goal: float('inf' )} _A = {start: -1, goal: -1} _A = [] _A = set() for i in range(__a ): open_list.append(PriorityQueue() ) open_list[i].put(__a , key(__a , __a , __a , __a ) ) _A = [] _A = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , __a ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(__a , __a , __a ) else: _A = open_list[i].top_show() visited.add(__a ) expand_state( __a , __a , __a , __a , __a , __a , __a , __a , ) close_list_inad.append(__a ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(__a , __a , __a ) else: _A = open_list[0].top_show() visited.add(__a ) expand_state( __a , 0 , __a , __a , __a , __a , __a , __a , ) close_list_anchor.append(__a ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__a ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
27
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
'''simple docstring''' UpperCAmelCase_ : str = '''Input must be a string of 8 numbers plus letter''' UpperCAmelCase_ : str = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _UpperCamelCase (_lowerCamelCase : str )-> bool: '''simple docstring''' if not isinstance(__a , __a ): __snake_case = f'''Expected string as input, found {type(__a ).__name__}''' raise TypeError(__a ) __snake_case = spanish_id.replace('''-''' , '''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: __snake_case = int(spanish_id_clean[0:8] ) __snake_case = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
24
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCamelCase__ ( __lowerCAmelCase : Any ): """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCAmelCase_ = k.replace(__a , __a ) if k.startswith("encoder" ): lowerCAmelCase_ = k.replace(".attn" , ".self_attn" ) lowerCAmelCase_ = k.replace("norm1" , "self_attn_layer_norm" ) lowerCAmelCase_ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): lowerCAmelCase_ = k.replace("norm1" , "self_attn_layer_norm" ) lowerCAmelCase_ = k.replace("norm2" , "encoder_attn_layer_norm" ) lowerCAmelCase_ = k.replace("norm3" , "final_layer_norm" ) return k def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] ): """simple docstring""" lowerCAmelCase_ = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: lowerCAmelCase_ = sd.pop(__a ) lowerCAmelCase_ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd lowerCAmelCase_ = v _A = ["START"] @torch.no_grad() def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = model['''model'''] lowerCAmelCase_ = BlenderbotConfig.from_json_file(__a ) lowerCAmelCase_ = BlenderbotForConditionalGeneration(__a ) lowerCAmelCase_ = m.model.state_dict().keys() lowerCAmelCase_ = [] lowerCAmelCase_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCAmelCase_ = rename_state_dict_key(__a ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCAmelCase_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__a ) m.model.load_state_dict(__a , strict=__a ) m.half() m.save_pretrained(__a ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _A = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
290
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = 0 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(_a ,_a ) def UpperCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Tuple = Path(_a ) / '''preprocessor_config.json''' UpperCAmelCase_ : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} ,open(_a ,"w" ) ,) json.dump({"model_type": "clip"} ,open(_a ,"w" ) ) UpperCAmelCase_ : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a ,_a ) def UpperCamelCase__ ( self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[int] = Path(_a ) / '''preprocessor_config.json''' UpperCAmelCase_ : Any = Path(_a ) / '''config.json''' json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} ,open(_a ,"w" ) ,) json.dump({"model_type": "clip"} ,open(_a ,"w" ) ) UpperCAmelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a ,_a ) def UpperCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCAmelCase_ : Tuple = Path(_a ) / '''preprocessor_config.json''' UpperCAmelCase_ : List[str] = Path(_a ) / '''config.json''' json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} ,open(_a ,"w" ) ,) json.dump({"model_type": "clip"} ,open(_a ,"w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop("image_processor_type" ) UpperCAmelCase_ : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) UpperCAmelCase_ : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved UpperCAmelCase_ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(_a ,_a ) def UpperCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} ,open(_a ,"w" ) ,) UpperCAmelCase_ : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a ,_a ) def UpperCamelCase__ ( self ): with self.assertRaisesRegex( _a ,"clip-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ : Dict = AutoImageProcessor.from_pretrained("clip-base" ) def UpperCamelCase__ ( self ): with self.assertRaisesRegex( _a ,R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ : List[str] = AutoImageProcessor.from_pretrained(_a ,revision="aaaaaa" ) def UpperCamelCase__ ( self ): with self.assertRaisesRegex( _a ,"hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." ,): UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): UpperCAmelCase_ : str = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): UpperCAmelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" ,trust_remote_code=_a ) UpperCAmelCase_ : Union[str, Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" ,trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ ,"NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) UpperCAmelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained(_a ,trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,"NewImageProcessor" ) def UpperCamelCase__ ( self ): try: AutoConfig.register("custom" ,_a ) AutoImageProcessor.register(_a ,_a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a ,_a ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : int = Path(_a ) / '''preprocessor_config.json''' UpperCAmelCase_ : int = Path(_a ) / '''config.json''' json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} ,open(_a ,"w" ) ,) json.dump({"model_type": "clip"} ,open(_a ,"w" ) ) UpperCAmelCase_ : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) UpperCAmelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a ,_a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self ): class _snake_case (__lowercase): __A : Tuple =True try: AutoConfig.register("custom" ,_a ) AutoImageProcessor.register(_a ,_a ) # If remote code is not set, the default is to use local UpperCAmelCase_ : str = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ ,"NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : int = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" ,trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ ,"NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Dict = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" ,trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ ,"NewImageProcessor" ) self.assertTrue(not hasattr(_a ,"is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
71
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase) class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True}) UpperCamelCase__ = Features({"""text""": Value("""string""")}) UpperCamelCase__ = Features({}) UpperCamelCase__ = "text" @property def lowercase__ ( self : List[str] )->Dict[str, str]: return {self.text_column: "text"}
602
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCamelCase_( __lowercase ): '''simple docstring''' lowercase__ : int = "mobilenet_v1" def __init__( self , lowerCamelCase__=3 , lowerCamelCase__=2_2_4 , lowerCamelCase__=1.0 , lowerCamelCase__=8 , lowerCamelCase__="relu6" , lowerCamelCase__=True , lowerCamelCase__=0.9_9_9 , lowerCamelCase__=0.0_2 , lowerCamelCase__=0.0_0_1 , **lowerCamelCase__ , ): super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = depth_multiplier _lowerCamelCase = min_depth _lowerCamelCase = hidden_act _lowerCamelCase = tf_padding _lowerCamelCase = classifier_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps class lowerCamelCase_( __lowercase ): '''simple docstring''' lowercase__ : str = version.parse('1.11' ) @property def snake_case__ ( self ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def snake_case__ ( self ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def snake_case__ ( self ): return 1e-4
661
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _A (UpperCamelCase : str ) ->List[Any]: '''simple docstring''' lowerCamelCase__ : Tuple = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) lowerCamelCase__ : Dict = MaskFormerConfig(backbone_config=__a ) lowerCamelCase__ : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok lowerCamelCase__ : Optional[Any] = 847 lowerCamelCase__ : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok lowerCamelCase__ : Union[str, Any] = 150 lowerCamelCase__ : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok lowerCamelCase__ : int = 171 lowerCamelCase__ : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO lowerCamelCase__ : Dict = 133 lowerCamelCase__ : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok lowerCamelCase__ : List[Any] = 19 lowerCamelCase__ : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok lowerCamelCase__ : List[Any] = 65 lowerCamelCase__ : Dict = '''mapillary-vistas-id2label.json''' lowerCamelCase__ : Optional[int] = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def _A (UpperCamelCase : Optional[Any] ) ->Tuple: '''simple docstring''' lowerCamelCase__ : Optional[Any] = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight") ) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def _A (UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ : str = dct.pop(__a ) lowerCamelCase__ : str = val def _A (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase__ : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ : List[Any] = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCamelCase__ : Optional[int] = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = in_proj_weight[:dim, :] lowerCamelCase__ : List[Any] = in_proj_bias[: dim] lowerCamelCase__ : Optional[int] = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ : Tuple = in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ : int = in_proj_weight[ -dim :, : ] lowerCamelCase__ : Optional[int] = in_proj_bias[-dim :] # fmt: on def _A (UpperCamelCase : List[str] , UpperCamelCase : List[Any] ) ->List[Any]: '''simple docstring''' lowerCamelCase__ : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ : Union[str, Any] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) lowerCamelCase__ : List[Any] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Union[str, Any] = in_proj_weight[: hidden_size, :] lowerCamelCase__ : List[Any] = in_proj_bias[:config.hidden_size] lowerCamelCase__ : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ : Any = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Tuple = in_proj_weight[-hidden_size :, :] lowerCamelCase__ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ : List[Any] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) lowerCamelCase__ : List[str] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Optional[Any] = in_proj_weight[: hidden_size, :] lowerCamelCase__ : Any = in_proj_bias[:config.hidden_size] lowerCamelCase__ : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : List[str] = in_proj_weight[-hidden_size :, :] lowerCamelCase__ : int = in_proj_bias[-hidden_size :] # fmt: on def _A () ->torch.Tensor: '''simple docstring''' lowerCamelCase__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Dict = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def _A (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : bool = False ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a , """rb""" ) as f: lowerCamelCase__ : str = pickle.load(__a ) lowerCamelCase__ : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase__ : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_swin_q_k_v(__a , config.backbone_config ) read_in_decoder_q_k_v(__a , __a ) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase__ : Optional[int] = torch.from_numpy(__a ) # load 🤗 model lowerCamelCase__ : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a , param.shape ) lowerCamelCase__ : Tuple = model.load_state_dict(__a , strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, f"Unexpected keys: {unexpected_keys}" # verify results lowerCamelCase__ : Union[str, Any] = prepare_img() if "vistas" in model_name: lowerCamelCase__ : int = 65 elif "cityscapes" in model_name: lowerCamelCase__ : Tuple = 65535 else: lowerCamelCase__ : str = 255 lowerCamelCase__ : Dict = True if '''ade''' in model_name else False lowerCamelCase__ : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a , reduce_labels=__a ) lowerCamelCase__ : Optional[Any] = image_processor(__a , return_tensors="""pt""" ) lowerCamelCase__ : int = model(**__a ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase__ : Union[str, Any] = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __a , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f"nielsr/{model_name}" ) image_processor.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowercase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
157
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[int] ): return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : int ,_UpperCamelCase : List[str]="attention" ): __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) __lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) __lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) __lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) __lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[Any] ,_UpperCamelCase : Any=False ): if split_mlp_wi: __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] __lowerCamelCase = (wi_a, wi_a) else: __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : str ): return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def a__ ( _UpperCamelCase : dict ,*, _UpperCamelCase : int ,_UpperCamelCase : bool ,_UpperCamelCase : bool = False ): __lowerCamelCase = traverse_util.flatten_dict(variables['''target'''] ) __lowerCamelCase = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCamelCase = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) __lowerCamelCase = collections.OrderedDict() # Shared embeddings. __lowerCamelCase = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) __lowerCamelCase = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 1 (MLP). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) __lowerCamelCase = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) __lowerCamelCase = layer_norm if split_mlp_wi: __lowerCamelCase = wi[0].T __lowerCamelCase = wi[1].T else: __lowerCamelCase = wi.T __lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCamelCase = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T __lowerCamelCase = old['''encoder/encoder_norm/scale'''] if not scalable_attention: __lowerCamelCase = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T __lowerCamelCase = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) __lowerCamelCase = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) __lowerCamelCase = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 2 (MLP). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) __lowerCamelCase = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) __lowerCamelCase = layer_norm if split_mlp_wi: __lowerCamelCase = wi[0].T __lowerCamelCase = wi[1].T else: __lowerCamelCase = wi.T __lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCamelCase = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T __lowerCamelCase = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCamelCase = old['''decoder/logits_dense/kernel'''].T return new def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : bool ): __lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCamelCase = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCamelCase = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __lowerCamelCase = state_dict['''shared.weight'''] return state_dict def a__ ( _UpperCamelCase : List[str] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[Any] ): __lowerCamelCase = checkpoints.load_tax_checkpoint(__a ) __lowerCamelCase = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) __lowerCamelCase = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : bool = False ,_UpperCamelCase : bool = False ,): __lowerCamelCase = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCamelCase = UMTaEncoderModel(__a ) else: __lowerCamelCase = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) a_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
175
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
'''simple docstring''' def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int = 1000 ): """simple docstring""" __A= 1, 1 __A= [] for i in range(1,n + 1 ): __A= prev_numerator + 2 * prev_denominator __A= prev_numerator + prev_denominator if len(str(__a ) ) > len(str(__a ) ): result.append(__a ) __A= numerator __A= denominator return len(__a ) if __name__ == "__main__": print(F"""{solution() = }""")
186
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowerCAmelCase : Union[str, Any] = "\\n Text data.\n Second line of data." __lowerCAmelCase : Optional[int] = "file" @pytest.fixture(scope='''session''' ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: __lowercase : int = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __lowercase : Optional[int] = bytes(__a , '''utf-8''' ) with zstd.open(__a , '''wb''' ) as f: f.write(__a ) return path @pytest.fixture def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: with open(os.path.join(tmpfs.local_root_dir , __a ) , '''w''' ) as f: f.write(__a ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: __lowercase : Any = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __lowercase : Union[str, Any] = input_paths[compression_format] __lowercase : Dict = tmp_path / '''cache''' __lowercase : List[str] = DownloadConfig(cache_dir=__a , extract_compressed_file=__a ) __lowercase : str = cached_path(__a , download_config=__a ) with open(__a ) as f: __lowercase : List[Any] = f.read() with open(__a ) as f: __lowercase : Any = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: __lowercase : Union[str, Any] = '''custom_cache''' __lowercase : Union[str, Any] = '''custom_extracted_dir''' __lowercase : Union[str, Any] = tmp_path / '''custom_extracted_path''' if default_extracted: __lowercase : List[Any] = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __a ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__a ) ) __lowercase : Tuple = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowercase : Dict = xz_file __lowercase : int = ( DownloadConfig(extract_compressed_file=__a ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__a ) ) __lowercase : int = cached_path(__a , download_config=__a ) assert Path(__a ).parent.parts[-2:] == expected def UpperCAmelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: __lowercase : Optional[Any] = str(Path(__a ).resolve() ) assert cached_path(__a ) == text_file # relative path __lowercase : Optional[int] = str(Path(__a ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__a ) == text_file def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: __lowercase : Union[str, Any] = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__a ): cached_path(__a ) # relative path __lowercase : Tuple = '''./__missing_file__.txt''' with pytest.raises(__a ): cached_path(__a ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> List[str]: __lowercase : Tuple = get_from_cache(F'tmp://{tmpfs_file}' ) with open(__a ) as f: __lowercase : List[Any] = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __a ) def UpperCAmelCase_ ( ) -> Union[str, Any]: with pytest.raises(__a ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __a ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: __lowercase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): http_get('''https://huggingface.co''' , temp_file=__a ) with pytest.raises(__a ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __a ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Tuple: __lowercase : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): ftp_get('''ftp://huggingface.co''' , temp_file=__a ) with pytest.raises(__a ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __a ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: __lowercase : Tuple = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__a ): fsspec_get('''s3://huggingface.co''' , temp_file=__a ) with pytest.raises(__a ): fsspec_head('''s3://huggingface.co''' )
509
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' snake_case_ = StableDiffusionInpaintPipeline snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case_ = frozenset([] ) def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) __A = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=9 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=_a ,) __A = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __A = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) __A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act="gelu" ,projection_dim=5_12 ,) __A = CLIPTextModel(_a ) __A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __A = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase_ ( self : Optional[Any] ,A : int ,A : str=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __A = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_a ) ).to(_a ) __A = image.cpu().permute(0 ,2 ,3 ,1 )[0] __A = Image.fromarray(np.uinta(_a ) ).convert("RGB" ).resize((64, 64) ) __A = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(_a ).startswith("mps" ): __A = torch.manual_seed(_a ) else: __A = torch.Generator(device=_a ).manual_seed(_a ) __A = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): __A = '''cpu''' # ensure determinism for the device-dependent torch.Generator __A = self.get_dummy_components() __A = StableDiffusionInpaintPipeline(**_a ) __A = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __A = self.get_dummy_inputs(_a ) __A = sd_pipe(**_a ).images __A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : str ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) __A = '''stabilityai/stable-diffusion-2-inpainting''' __A = StableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __A = '''Face of a yellow cat, high resolution, sitting on a park bench''' __A = torch.manual_seed(0 ) __A = pipe( prompt=_a ,image=_a ,mask_image=_a ,generator=_a ,output_type="np" ,) __A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase_ ( self : Any ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) __A = '''stabilityai/stable-diffusion-2-inpainting''' __A = StableDiffusionInpaintPipeline.from_pretrained( _a ,torch_dtype=torch.floataa ,safety_checker=_a ,) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __A = '''Face of a yellow cat, high resolution, sitting on a park bench''' __A = torch.manual_seed(0 ) __A = pipe( prompt=_a ,image=_a ,mask_image=_a ,generator=_a ,output_type="np" ,) __A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase_ ( self : Optional[int] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = '''stabilityai/stable-diffusion-2-inpainting''' __A = PNDMScheduler.from_pretrained(_a ,subfolder="scheduler" ) __A = StableDiffusionInpaintPipeline.from_pretrained( _a ,safety_checker=_a ,scheduler=_a ,torch_dtype=torch.floataa ,) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __A = '''Face of a yellow cat, high resolution, sitting on a park bench''' __A = torch.manual_seed(0 ) __A = pipe( prompt=_a ,image=_a ,mask_image=_a ,generator=_a ,num_inference_steps=2 ,output_type="np" ,) __A = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
55
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCamelCase: '''simple docstring''' def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _A = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _A = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=_a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) _A = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _A = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _A = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=_a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) _A = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) _A = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase__ ( self ): _A = self.get_dummy_components() _A = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A = self.get_dummy_inputs(_a ) _A = inputs['''prompt'''] _A = inputs['''generator'''] _A = inputs['''num_inference_steps'''] _A = inputs['''output_type'''] if "image" in inputs: _A = inputs['''image'''] else: _A = None if "mask_image" in inputs: _A = inputs['''mask_image'''] else: _A = None if "original_image" in inputs: _A = inputs['''original_image'''] else: _A = None _A = pipe.encode_prompt(_a ) # inputs with prompt converted to embeddings _A = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: _A = image if mask_image is not None: _A = mask_image if original_image is not None: _A = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_a , _a , _a ) _A = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) _A = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_a , _a ) is None , F"`{optional_component}` did not stay set to None after loading." , ) _A = self.get_dummy_inputs(_a ) _A = inputs['''generator'''] _A = inputs['''num_inference_steps'''] _A = inputs['''output_type'''] # inputs with prompt converted to embeddings _A = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: _A = image if mask_image is not None: _A = mask_image if original_image is not None: _A = original_image _A = pipe_loaded(**_a )[0] _A = np.abs(to_np(_a ) - to_np(_a ) ).max() self.assertLess(_a , 1E-4 ) def lowerCAmelCase__ ( self ): _A = self.get_dummy_components() _A = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A = self.get_dummy_inputs(_a ) _A = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) _A = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _A = self.get_dummy_inputs(_a ) _A = pipe_loaded(**_a )[0] _A = np.abs(to_np(_a ) - to_np(_a ) ).max() self.assertLess(_a , 1E-4 )
27
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase (_lowerCamelCase : int | str )-> bool: '''simple docstring''' __snake_case = str(__a ) return n == n[::-1] def _UpperCamelCase (_lowerCamelCase : int = 1_00_00_00 )-> Optional[Any]: '''simple docstring''' __snake_case = 0 for i in range(1 , __a ): if is_palindrome(__a ) and is_palindrome(bin(__a ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
24
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def a__ ( _SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) UpperCAmelCase_ : Union[str, Any] = precision UpperCAmelCase_ : str = ceil(precision / 14 ) UpperCAmelCase_ : Dict = 42_68_80 * Decimal(1_00_05 ).sqrt() UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Optional[Any] = 13_59_14_09 UpperCAmelCase_ : List[Any] = Decimal(__a ) for k in range(1 , __a ): UpperCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__a ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCamelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
71
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowercase ( ): '''simple docstring''' print('''Making key files...''' ) make_key_files('''rsa''' , 1024 ) print('''Key files generation successful.''' ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' print('''Generating prime p...''' ) _UpperCAmelCase = rabinMiller.generate_large_prime(__a ) print('''Generating prime q...''' ) _UpperCAmelCase = rabinMiller.generate_large_prime(__a ) _UpperCAmelCase = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: _UpperCAmelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__a , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) _UpperCAmelCase = cryptoMath.find_mod_inverse(__a , (p - 1) * (q - 1) ) _UpperCAmelCase = (n, e) _UpperCAmelCase = (n, d) return (public_key, private_key) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print('''\nWARNING:''' ) print( f'\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() _UpperCAmelCase = generate_key(__a ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , '''w''' ) as out_file: out_file.write(f'{key_size},{public_key[0]},{public_key[1]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , '''w''' ) as out_file: out_file.write(f'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
602
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
"""simple docstring""" def lowerCAmelCase_( lowercase_ : list[int] , lowercase_ : list[int] ) -> None: _lowerCamelCase = len(__a ) print('''The following activities are selected:''' ) # The first activity is always selected _lowerCamelCase = 0 print(__a , end=''',''' ) # Consider rest of the activities for j in range(__a ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__a , end=''',''' ) _lowerCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : List[str] = [1, 3, 0, 5, 8, 5] __SCREAMING_SNAKE_CASE : Optional[int] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
661
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
import math from collections.abc import Iterator from itertools import takewhile def _A (UpperCamelCase : int ) ->bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _A () ->Iterator[int]: '''simple docstring''' lowerCamelCase__ : Dict = 2 while True: if is_prime(__a ): yield num num += 1 def _A (UpperCamelCase : int = 2000000 ) ->int: '''simple docstring''' return sum(takewhile(lambda UpperCamelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
157
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class __lowerCAmelCase ( __lowercase ): lowerCAmelCase__ = "funnel" lowerCAmelCase__ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=[4, 4, 4] , __UpperCAmelCase=None , __UpperCAmelCase=2 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=64 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=None , __UpperCAmelCase=1E-9 , __UpperCAmelCase="mean" , __UpperCAmelCase="relative_shift" , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = block_sizes __lowerCamelCase = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __lowerCamelCase = num_decoder_layers __lowerCamelCase = d_model __lowerCamelCase = n_head __lowerCamelCase = d_head __lowerCamelCase = d_inner __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = initializer_range __lowerCamelCase = initializer_std __lowerCamelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" __lowerCamelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" __lowerCamelCase = attention_type __lowerCamelCase = separate_cls __lowerCamelCase = truncate_seq __lowerCamelCase = pool_q_only super().__init__(**_a ) @property def lowerCamelCase ( self ): '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
175
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class a__ ( __lowercase ): '''simple docstring''' A : Optional[int] = "vit_msn" def __init__( self : Any , lowerCAmelCase_ : Union[str, Any]=768 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Dict=3_072 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[Any]=1E-06 , lowerCAmelCase_ : Optional[int]=224 , lowerCAmelCase_ : int=16 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Union[str, Any] , ) -> int: super().__init__(**_a ) __A= hidden_size __A= num_hidden_layers __A= num_attention_heads __A= intermediate_size __A= hidden_act __A= hidden_dropout_prob __A= attention_probs_dropout_prob __A= initializer_range __A= layer_norm_eps __A= image_size __A= patch_size __A= num_channels __A= qkv_bias
186
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
509
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase ( __lowercase ): '''simple docstring''' snake_case_ = "convbert" def __init__( self : Any ,A : List[str]=3_05_22 ,A : List[str]=7_68 ,A : List[str]=12 ,A : List[str]=12 ,A : Optional[Any]=30_72 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : str=5_12 ,A : Dict=2 ,A : str=0.02 ,A : Any=1E-12 ,A : Union[str, Any]=1 ,A : Optional[int]=0 ,A : Optional[Any]=2 ,A : Optional[int]=7_68 ,A : Dict=2 ,A : Tuple=9 ,A : int=1 ,A : List[str]=None ,**A : List[str] ,): super().__init__( pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ,) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = embedding_size __A = head_ratio __A = conv_kernel_size __A = num_groups __A = classifier_dropout class UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self : int ): if self.task == "multiple-choice": __A = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
55
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __A : int = "Usage of script: script_name <size_of_canvas:int>" __A : List[str] = [0] * 100 + [1] * 10 random.shuffle(choice) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[list[bool]]: """simple docstring""" _A = [[False for i in range(__a )] for j in range(__a )] return canvas def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _A = bool(random.getrandbits(1 ) ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> list[list[bool]]: """simple docstring""" _A = np.array(__a ) _A = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _A = __judge_point( __a , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _A = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _A = current_canvas.tolist() return return_canvas def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = 0 _A = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _A = pt if pt: if alive < 2: _A = False elif alive == 2 or alive == 3: _A = True elif alive > 3: _A = False else: if alive == 3: _A = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __A : Dict = int(sys.argv[1]) # main working structure of this module. __A : Optional[int] = create_canvas(canvas_size) seed(c) __A , __A : Tuple = plt.subplots() fig.show() __A : Any = ListedColormap(["w", "k"]) try: while True: __A : Any = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
27
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {} UpperCAmelCase_ : List[Any] = {} UpperCAmelCase_ : int = {} def _UpperCamelCase (_lowerCamelCase : type , _lowerCamelCase : Optional[str] , _lowerCamelCase : Optional[List[str]] = None , )-> Any: '''simple docstring''' __snake_case = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) __snake_case = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) __snake_case = format_type def _UpperCamelCase (_lowerCamelCase : Exception , _lowerCamelCase : Optional[str] , _lowerCamelCase : Optional[List[str]] = None )-> str: '''simple docstring''' __snake_case = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __snake_case = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: UpperCAmelCase_ : str = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: UpperCAmelCase_ : Union[str, Any] = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: UpperCAmelCase_ : Union[str, Any] = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def _UpperCamelCase (_lowerCamelCase : Optional[str] )-> Optional[str]: '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCamelCase (_lowerCamelCase : Optional[str] , **_lowerCamelCase : Optional[Any] )-> Formatter: '''simple docstring''' __snake_case = get_format_type_from_alias(__a ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__a ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
24
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=30 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=None , _UpperCamelCase=2 , ) -> List[Any]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = scope lowerCAmelCase_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase_ = (image_size // patch_size) ** 2 lowerCAmelCase_ = num_patches + 1 def __a ( self ) -> Any: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[Any]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: lowerCAmelCase_ = ViTModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: lowerCAmelCase_ = ViTForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = ViTForMaskedImageModeling(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(_a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = self.type_sequence_label_size lowerCAmelCase_ = ViTForImageClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = ViTForImageClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self ) -> int: lowerCAmelCase_ = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __lowercase , __lowercase , unittest.TestCase ): _lowercase =( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _lowercase =( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) _lowercase =True _lowercase =False _lowercase =False _lowercase =False def __a ( self ) -> str: lowerCAmelCase_ = ViTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def __a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __a ( self ) -> Optional[Any]: pass def __a ( self ) -> Tuple: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __a ( self ) -> int: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __a ( self ) -> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = ViTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def __a ( self ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self ) -> Tuple: lowerCAmelCase_ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(_a ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**_a ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) lowerCAmelCase_ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def __a ( self ) -> int: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. lowerCAmelCase_ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(_a ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=_a , return_tensors="pt" ) lowerCAmelCase_ = inputs.pixel_values.to(_a ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(_a , interpolate_pos_encoding=_a ) # verify the logits lowerCAmelCase_ = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , _a ) lowerCAmelCase_ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=_a , return_tensors="pt" ) lowerCAmelCase_ = inputs.pixel_values.to(_a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase_ = model(_a )
290
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
71
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A : List[str] = get_tests_dir("fixtures") class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : List[str] )->Tuple: # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_0_0 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_a ) as mock_head: _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self : Any )->Tuple: # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _a ( unittest.TestCase): """simple docstring""" @classmethod def lowercase__ ( cls : Optional[int] )->Optional[Any]: _UpperCAmelCase = TOKEN HfFolder.save_token(_a ) @classmethod def lowercase__ ( cls : Tuple )->Tuple: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _a , repo_id='''test-feature-extractor''' , push_to_hub=_a , use_auth_token=self._token ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def lowercase__ ( self : int )->Dict: _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _a , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_a , use_auth_token=self._token ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def lowercase__ ( self : int )->Any: CustomFeatureExtractor.register_for_auto_class() _UpperCAmelCase = CustomFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=_a ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
602
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __SCREAMING_SNAKE_CASE : Tuple = '''src/diffusers''' # Matches is_xxx_available() __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __SCREAMING_SNAKE_CASE : Any = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __SCREAMING_SNAKE_CASE : Any = ''' {0} = None ''' __SCREAMING_SNAKE_CASE : Any = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __SCREAMING_SNAKE_CASE : str = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowerCAmelCase_( lowercase_ : Dict ) -> str: _lowerCamelCase = _re_backend.findall(__a ) if len(__a ) == 0: return None return "_and_".join(__a ) def lowerCAmelCase_( ) -> Union[str, Any]: with open(os.path.join(__a , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() # Get to the point we do the actual imports for type checking _lowerCamelCase = 0 _lowerCamelCase = {} # Go through the end of the file while line_index < len(__a ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _lowerCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 _lowerCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__a ) and len(lines[line_index] ) > 1: _lowerCamelCase = lines[line_index] _lowerCamelCase = _re_single_line_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__a ) > 0: _lowerCamelCase = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> str: if name.isupper(): return DUMMY_CONSTANT.format(__a ) elif name.islower(): return DUMMY_FUNCTION.format(__a , __a ) else: return DUMMY_CLASS.format(__a , __a ) def lowerCAmelCase_( lowercase_ : List[Any]=None ) -> Tuple: if backend_specific_objects is None: _lowerCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename _lowerCamelCase = {} for backend, objects in backend_specific_objects.items(): _lowerCamelCase = '''[''' + ''', '''.join(F"""\"{b}\"""" for b in backend.split('''_and_''' ) ) + ''']''' _lowerCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__a , __a ) for o in objects] ) _lowerCamelCase = dummy_file return dummy_files def lowerCAmelCase_( lowercase_ : Union[str, Any]=False ) -> Optional[Any]: _lowerCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _lowerCamelCase = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _lowerCamelCase = os.path.join(__a , '''utils''' ) _lowerCamelCase = { backend: os.path.join(__a , F"""dummy_{short_names.get(__a , __a )}_objects.py""" ) for backend in dummy_files.keys() } _lowerCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__a ): with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.read() else: _lowerCamelCase = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(__a , __a )}_objects.py as the main """ '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F"""diffusers.utils.dummy_{short_names.get(__a , __a )}_objects.py. Run `make fix-copies` """ '''to fix this.''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __SCREAMING_SNAKE_CASE : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
661
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _lowercase = logging.get_logger(__name__) class __A ( __lowercase ): UpperCamelCase :List[Any] = CLIPConfig UpperCamelCase :List[Any] = ["CLIPEncoderLayer"] def __init__(self , __magic_name__ ): super().__init__(_a ) lowerCamelCase__ : List[str] = CLIPVisionModelWithProjection(config.vision_config ) lowerCamelCase__ : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCamelCase__ : Any = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__=0.5 , __magic_name__=0.5 ): lowerCamelCase__ : Dict = self.vision_model(_a )[0] lowerCamelCase__ : Union[str, Any] = self.p_head(_a ) lowerCamelCase__ : str = nsfw_detected.flatten() lowerCamelCase__ : Optional[int] = nsfw_detected > p_threshold lowerCamelCase__ : Dict = nsfw_detected.tolist() if any(_a ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(_a ): if nsfw_detected_: lowerCamelCase__ : Union[str, Any] = np.zeros(images[idx].shape ) lowerCamelCase__ : str = self.w_head(_a ) lowerCamelCase__ : Dict = watermark_detected.flatten() lowerCamelCase__ : Optional[Any] = watermark_detected > w_threshold lowerCamelCase__ : str = watermark_detected.tolist() if any(_a ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(_a ): if watermark_detected_: lowerCamelCase__ : Dict = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
157
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=32 * 4 , __UpperCAmelCase=32 * 6 , __UpperCAmelCase=4 , __UpperCAmelCase=32 , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = mask_feature_size def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCamelCase ( self ): '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_config.decoder_layers ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskFormerModel(config=_a ) model.to(_a ) model.eval() __lowerCamelCase = model(pixel_values=_a , pixel_mask=_a ) __lowerCamelCase = model(_a , output_hidden_states=_a ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MaskFormerForInstanceSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(__UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=_a , pixel_mask=_a ) __lowerCamelCase = model(_a ) comm_check_on_output(_a ) __lowerCamelCase = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __lowercase , __lowercase , unittest.TestCase ): lowerCAmelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase__ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MaskFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=_a , has_text_modality=_a ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_a , **_a , output_hidden_states=_a ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(_a ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: __lowerCamelCase = MaskFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=_a ), '''mask_labels''': torch.randn((2, 10, *size) , device=_a ), '''class_labels''': torch.zeros(2 , 10 , device=_a ).long(), } __lowerCamelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_a ) __lowerCamelCase = model(**_a ) self.assertTrue(outputs.loss is not None ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_a , **_a , output_hidden_states=_a ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(_a ).to(_a ) __lowerCamelCase = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def lowerCamelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(_a ) model.to(_a ) model.train() __lowerCamelCase = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def lowerCamelCase ( self ): '''simple docstring''' # only MaskFormerForInstanceSegmentation has the loss __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(_a ) model.to(_a ) model.train() __lowerCamelCase = model(_a , mask_labels=_a , class_labels=_a ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a_ = 1E-4 def a__ ( ): __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_a ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(_a , return_tensors='''pt''' ).to(_a ) __lowerCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 800, 1088) ) with torch.no_grad(): __lowerCamelCase = model(**_a ) __lowerCamelCase = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) __lowerCamelCase = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) __lowerCamelCase = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_a ) .eval() ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(_a , return_tensors='''pt''' ).to(_a ) __lowerCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 800, 1088) ) with torch.no_grad(): __lowerCamelCase = model(**_a ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __lowerCamelCase = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] __lowerCamelCase = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0], [3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0], [1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_a ) .eval() ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(_a , return_tensors='''pt''' ).to(_a ) __lowerCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 800, 1088) ) with torch.no_grad(): __lowerCamelCase = model(**_a ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __lowerCamelCase = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] __lowerCamelCase = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_a ) .eval() ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __lowerCamelCase = inputs['''pixel_values'''].to(_a ) __lowerCamelCase = [el.to(_a ) for el in inputs['''mask_labels''']] __lowerCamelCase = [el.to(_a ) for el in inputs['''class_labels''']] with torch.no_grad(): __lowerCamelCase = model(**_a ) self.assertTrue(outputs.loss is not None )
175
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline UpperCAmelCase__ = { '''n_samples''': 6_4, '''horizon''': 3_2, '''num_inference_steps''': 2_0, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": UpperCAmelCase__ = '''hopper-medium-v2''' UpperCAmelCase__ = gym.make(env_name) UpperCAmelCase__ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) UpperCAmelCase__ = env.reset() UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 1_0_0_0 UpperCAmelCase__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy UpperCAmelCase__ = pipeline(obs, planning_horizon=3_2) # execute action in environment UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = env.step(denorm_actions) UpperCAmelCase__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) UpperCAmelCase__ = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
186
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list: __lowercase : Tuple = len(__a ) __lowercase : str = [] for i in range(len(__a ) - pat_len + 1 ): __lowercase : Any = True for j in range(__a ): if s[i + j] != pattern[j]: __lowercase : Optional[int] = False break if match_found: position.append(__a ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
509
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Union[str, Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase( __lowercase ): '''simple docstring''' __magic_name__ = ["pixel_values"] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = 1 / 255 , snake_case_ = True , snake_case_ = None , snake_case_ = None , **snake_case_ , ): super().__init__(**_a ) _A = size if size is not None else {'''shortest_edge''': 384} _A = get_size_dict(_a , default_to_square=_a ) _A = do_resize _A = size # Default value set here for backwards compatibility where the value in config is None _A = crop_pct if crop_pct is not None else 224 / 256 _A = resample _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = None , **snake_case_ , ): _A = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" ) _A = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _A = int(shortest_edge / crop_pct ) _A = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) _A = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): _A = do_resize if do_resize is not None else self.do_resize _A = crop_pct if crop_pct is not None else self.crop_pct _A = resample if resample is not None else self.resample _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = size if size is not None else self.size _A = get_size_dict(_a , default_to_square=_a ) _A = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _A = [to_numpy_array(_a ) for image in images] if do_resize: _A = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images] if do_rescale: _A = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _A = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _A = [to_channel_dimension_format(_a , _a ) for image in images] _A = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
27
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase_ : Any = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCAmelCase ( __lowercase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1 ) -> Optional[int]: '''simple docstring''' __snake_case = tokenizer __snake_case = dataset __snake_case = len(_a ) if n_tasks is None else n_tasks __snake_case = n_copies def __iter__( self ) -> Optional[int]: '''simple docstring''' __snake_case = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) __snake_case = self.tokenizer(_a , padding=_a , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase ( __lowercase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __snake_case = start_length __snake_case = eof_strings __snake_case = tokenizer def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __snake_case = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_a ) def _UpperCamelCase (_lowerCamelCase : Tuple )-> Union[str, Any]: '''simple docstring''' __snake_case = re.split('''(%s)''' % '''|'''.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def _UpperCamelCase (_lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any]=20 , **_lowerCamelCase : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' __snake_case = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): __snake_case = batch['''ids'''].shape[-1] __snake_case = accelerator.unwrap_model(__a ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times __snake_case = batch['''task_id'''].repeat(__a ) __snake_case = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) __snake_case = accelerator.gather((generated_tokens, generated_tasks) ) __snake_case = generated_tokens.cpu().numpy() __snake_case = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) __snake_case = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __snake_case = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def _UpperCamelCase ()-> str: '''simple docstring''' __snake_case = HfArgumentParser(__a ) __snake_case = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __snake_case = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __snake_case = '''false''' if args.num_workers is None: __snake_case = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __snake_case = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer __snake_case = AutoTokenizer.from_pretrained(args.model_ckpt ) __snake_case = tokenizer.eos_token __snake_case = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __snake_case = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric __snake_case = load_dataset('''openai_humaneval''' ) __snake_case = load_metric('''code_eval''' ) __snake_case = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) __snake_case = args.n_samples // args.batch_size __snake_case = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences __snake_case = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __snake_case = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception __snake_case = accelerator.prepare(__a , __a ) __snake_case = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: __snake_case = [] for task in tqdm(range(__a ) ): __snake_case = human_eval['''test'''][task]['''test'''] __snake_case = f'''check({human_eval["test"][task]["entry_point"]})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric __snake_case = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
24
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _lowerCAmelCase ( __lowercase ): _lowercase ="visual_bert" def __init__( self , _UpperCamelCase=30_522 , _UpperCamelCase=768 , _UpperCamelCase=512 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3_072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-1_2 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = visual_embedding_dim lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = bypass_transformer lowerCAmelCase_ = special_visual_initialize
290
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=7 ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = None if token is not None: UpperCAmelCase_ : List[str] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) UpperCAmelCase_ : Any = '''636036''' UpperCAmelCase_ : Any = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' UpperCAmelCase_ : List[Any] = requests.get(__a , headers=__a ).json() return result["workflow_runs"] def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = get_daily_ci_runs(__a ) UpperCAmelCase_ : List[Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCAmelCase_ : int = workflow_run['''id'''] break return workflow_run_id def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Dict = get_last_daily_ci_runs(__a ) if workflow_run_id is not None: UpperCAmelCase_ : Optional[int] = get_artifacts_links(worflow_run_id=__a , token=__a ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCAmelCase_ : List[str] = artifacts_links[artifact_name] download_artifact( artifact_name=__a , artifact_url=__a , output_dir=__a , token=__a ) def a__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" get_last_daily_ci_artifacts(__a , __a , __a ) UpperCAmelCase_ : List[Any] = {} for artifact_name in artifact_names: UpperCAmelCase_ : List[str] = os.path.join(__a , F'''{artifact_name}.zip''' ) if os.path.isfile(__a ): UpperCAmelCase_ : Any = {} with zipfile.ZipFile(__a ) as z: for filename in z.namelist(): if not os.path.isdir(__a ): # read the file with z.open(__a ) as f: UpperCAmelCase_ : Optional[int] = f.read().decode("UTF-8" ) return results
71
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' def is_valid_tree(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a , __a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( _SCREAMING_SNAKE_CASE : TreeNode | None , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __a , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __a ) ) return is_binary_search_tree_recursive_check(__a , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
602
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ['''PerceiverFeatureExtractor'''] __SCREAMING_SNAKE_CASE : Tuple = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Dict ,_UpperCamelCase : List[str] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Tuple ): with open(__a ) as metadata_file: __lowerCamelCase = json.load(__a ) __lowerCamelCase = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __lowerCamelCase = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file __lowerCamelCase = load_original_entity_vocab(__a ) # add an entry for [MASK2] __lowerCamelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __lowerCamelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __lowerCamelCase = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) __lowerCamelCase = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: __lowerCamelCase = json.load(__a ) __lowerCamelCase = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) __lowerCamelCase = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens __lowerCamelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] __lowerCamelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] __lowerCamelCase = state_dict['''embeddings.word_embeddings.weight'''] __lowerCamelCase = word_emb[ent_init_index].unsqueeze(0 ) __lowerCamelCase = word_emb[enta_init_index].unsqueeze(0 ) __lowerCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __lowerCamelCase = state_dict[bias_name] __lowerCamelCase = decoder_bias[ent_init_index].unsqueeze(0 ) __lowerCamelCase = decoder_bias[enta_init_index].unsqueeze(0 ) __lowerCamelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowerCamelCase = F"""encoder.layer.{layer_index}.attention.self.""" __lowerCamelCase = state_dict[prefix + matrix_name] __lowerCamelCase = state_dict[prefix + matrix_name] __lowerCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowerCamelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] __lowerCamelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) __lowerCamelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __lowerCamelCase = state_dict['''entity_predictions.bias'''] __lowerCamelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) __lowerCamelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) __lowerCamelCase = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) __lowerCamelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): __lowerCamelCase = state_dict[key] else: __lowerCamelCase = state_dict[key] __lowerCamelCase = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __lowerCamelCase = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) __lowerCamelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' __lowerCamelCase = (0, 9) __lowerCamelCase = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) __lowerCamelCase = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __lowerCamelCase = torch.Size((1, 33, 7_68) ) __lowerCamelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __lowerCamelCase = torch.Size((1, 1, 7_68) ) __lowerCamelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __lowerCamelCase = MLukeTokenizer.from_pretrained(__a ) __lowerCamelCase = '''Tokyo is the capital of <mask>.''' __lowerCamelCase = (24, 30) __lowerCamelCase = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) __lowerCamelCase = model(**__a ) __lowerCamelCase = encoding['''input_ids'''][0].tolist() __lowerCamelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) __lowerCamelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) __lowerCamelCase = outputs.entity_logits[0][0].argmax().item() __lowerCamelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def a__ ( _UpperCamelCase : List[Any] ): __lowerCamelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] __lowerCamelCase = [json.loads(__a ) for line in open(__a )] __lowerCamelCase = {} for entry in data: __lowerCamelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __lowerCamelCase = entity_id break __lowerCamelCase = F"""{language}:{entity_name}""" __lowerCamelCase = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
175
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
'''simple docstring''' def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int = 1000 ): """simple docstring""" __A= 2**power __A= 0 while n: __A= r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
186
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __lowerCAmelCase ( __lowercase ): """simple docstring""" A__ : Tuple = "xlnet" A__ : Dict = ["mems"] A__ : str = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , _snake_case : Union[str, Any]=3_2000 , _snake_case : Optional[Any]=1024 , _snake_case : int=24 , _snake_case : List[Any]=16 , _snake_case : Union[str, Any]=4096 , _snake_case : Optional[int]="gelu" , _snake_case : int=True , _snake_case : Union[str, Any]="bi" , _snake_case : Any=0.02 , _snake_case : Dict=1E-1_2 , _snake_case : Optional[Any]=0.1 , _snake_case : Union[str, Any]=512 , _snake_case : List[str]=None , _snake_case : int=True , _snake_case : List[str]=False , _snake_case : List[Any]=False , _snake_case : List[Any]=-1 , _snake_case : Tuple=False , _snake_case : Any="last" , _snake_case : List[str]=True , _snake_case : Union[str, Any]="tanh" , _snake_case : Dict=0.1 , _snake_case : Dict=5 , _snake_case : Optional[int]=5 , _snake_case : List[Any]=5 , _snake_case : List[Any]=1 , _snake_case : Union[str, Any]=2 , **_snake_case : str , ): __lowercase : Any = vocab_size __lowercase : Any = d_model __lowercase : Any = n_layer __lowercase : Optional[Any] = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) __lowercase : Tuple = d_model // n_head __lowercase : int = ff_activation __lowercase : str = d_inner __lowercase : int = untie_r __lowercase : List[str] = attn_type __lowercase : Union[str, Any] = initializer_range __lowercase : Union[str, Any] = layer_norm_eps __lowercase : Tuple = dropout __lowercase : Optional[int] = mem_len __lowercase : Union[str, Any] = reuse_len __lowercase : Dict = bi_data __lowercase : List[str] = clamp_len __lowercase : Tuple = same_length __lowercase : List[Any] = summary_type __lowercase : Tuple = summary_use_proj __lowercase : Dict = summary_activation __lowercase : Dict = summary_last_dropout __lowercase : int = start_n_top __lowercase : int = end_n_top __lowercase : Any = bos_token_id __lowercase : Optional[Any] = pad_token_id __lowercase : int = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , _a , ) __lowercase : Optional[Any] = kwargs['''use_cache'''] __lowercase : List[str] = use_mems_eval __lowercase : List[Any] = use_mems_train super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) @property def snake_case_ ( self : int ): logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , _snake_case : List[str] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
509
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__a , n - 1 , __a ) * a) % mod else: __A = binary_exponentiation(__a , n / 2 , __a ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE :Any = 701 SCREAMING_SNAKE_CASE :int = 10_0000_0000 SCREAMING_SNAKE_CASE :Tuple = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
55
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 10 def lowerCAmelCase__ ( self ): _A = [1, 2, 3, 4] _A = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def lowerCAmelCase__ ( self ): _A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def lowerCAmelCase__ ( self ): _A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_a , self.block_size , 0 ) , _a ) def lowerCAmelCase__ ( self ): _A = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' _A = process_story(_a ) self.assertEqual(_a , [] ) def lowerCAmelCase__ ( self ): _A = '''''' _A = process_story(_a ) self.assertEqual(_a , [] ) self.assertEqual(_a , [] ) def lowerCAmelCase__ ( self ): _A = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) _A = process_story(_a ) _A = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_a , _a ) _A = ['''It was the best of times.'''] self.assertEqual(_a , _a ) def lowerCAmelCase__ ( self ): _A = torch.tensor([1, 2, 3, 4] ) _A = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_a , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): _A = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _A = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_a , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): _A = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _A = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_a , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): _A = 101 _A = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _A = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _A = compute_token_type_ids(_a , _a ) np.testing.assert_array_equal(_a , _a )
27
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _UpperCamelCase (_lowerCamelCase : bytes , _lowerCamelCase : int )-> np.array: '''simple docstring''' __snake_case = f'''{sampling_rate}''' __snake_case = '''1''' __snake_case = '''f32le''' __snake_case = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __snake_case = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error __snake_case = output_stream[0] __snake_case = np.frombuffer(__a , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : str = "f32le" , )-> str: '''simple docstring''' __snake_case = f'''{sampling_rate}''' __snake_case = '''1''' if format_for_conversion == "s16le": __snake_case = 2 elif format_for_conversion == "f32le": __snake_case = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __snake_case = platform.system() if system == "Linux": __snake_case = '''alsa''' __snake_case = '''default''' elif system == "Darwin": __snake_case = '''avfoundation''' __snake_case = ''':0''' elif system == "Windows": __snake_case = '''dshow''' __snake_case = '''default''' __snake_case = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] __snake_case = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __snake_case = _ffmpeg_stream(__a , __a ) for item in iterator: yield item def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[Union[Tuple[float, float], float]] = None , _lowerCamelCase : str = "f32le" , )-> Optional[int]: '''simple docstring''' if stream_chunk_s is not None: __snake_case = stream_chunk_s else: __snake_case = chunk_length_s __snake_case = ffmpeg_microphone(__a , __a , format_for_conversion=__a ) if format_for_conversion == "s16le": __snake_case = np.intaa __snake_case = 2 elif format_for_conversion == "f32le": __snake_case = np.floataa __snake_case = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __snake_case = chunk_length_s / 6 __snake_case = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a , (int, float) ): __snake_case = [stride_length_s, stride_length_s] __snake_case = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __snake_case = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __snake_case = datetime.datetime.now() __snake_case = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a , __a , stride=(stride_left, stride_right) , stream=__a ): # Put everything back in numpy scale __snake_case = np.frombuffer(item['''raw'''] , dtype=__a ) __snake_case = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) __snake_case = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Tuple[int, int] , _lowerCamelCase : bool = False )-> Optional[int]: '''simple docstring''' __snake_case = b'''''' __snake_case = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __snake_case = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: __snake_case = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator __snake_case = (_stride_left, stride_right) __snake_case = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: __snake_case = False yield item __snake_case = stride_left __snake_case = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: __snake_case = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: __snake_case = False yield item def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int )-> Tuple: '''simple docstring''' __snake_case = 2**24 # 16Mo try: with subprocess.Popen(__a , stdout=subprocess.PIPE , bufsize=__a ) as ffmpeg_process: while True: __snake_case = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
24
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" lowerCAmelCase_ = BeautifulSoup(requests.get(__a ).text , "html.parser" ) lowerCAmelCase_ = soup.findAll("h1" ) lowerCAmelCase_ = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
290
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ,__a : Any ) -> int: """simple docstring""" _a : int = 0 if start < end: _a : Tuple = randint(__a ,__a ) _a : Tuple = a[end] _a : List[str] = a[pivot] _a : Any = temp _a , _a : Optional[int] = _in_place_partition(__a ,__a ,__a ) count += _in_place_quick_sort(__a ,__a ,p - 1 ) count += _in_place_quick_sort(__a ,p + 1 ,__a ) return count def __UpperCAmelCase ( __a : List[Any] ,__a : Tuple ,__a : Dict ) -> Dict: """simple docstring""" _a : Dict = 0 _a : Tuple = randint(__a ,__a ) _a : List[Any] = a[end] _a : str = a[pivot] _a : str = temp _a : Dict = start - 1 for index in range(__a ,__a ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a : int = new_pivot_index + 1 _a : Any = a[new_pivot_index] _a : Optional[int] = a[index] _a : str = temp _a : Union[str, Any] = a[new_pivot_index + 1] _a : Tuple = a[end] _a : Any = temp return new_pivot_index + 1, count a__ = TemporaryFile() a__ = 100 # 1000 elements are to be sorted a__ , a__ = 0, 1 # mean and standard deviation a__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a__ = np.load(outfile) a__ = len(M) - 1 a__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
14
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=32 ,_snake_case=3 ,_snake_case=4 ,_snake_case=[10, 20, 30, 40] ,_snake_case=[2, 2, 3, 2] ,_snake_case=True ,_snake_case=True ,_snake_case=37 ,_snake_case="gelu" ,_snake_case=10 ,_snake_case=0.02 ,_snake_case=["stage2", "stage3", "stage4"] ,_snake_case=3 ,_snake_case=None ,): UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : List[Any] = num_stages UpperCAmelCase_ : List[str] = hidden_sizes UpperCAmelCase_ : Tuple = depths UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Optional[int] = num_stages def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return ConvNextConfig( num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,) def UpperCamelCase__ ( self ): return UperNetConfig( backbone_config=self.get_backbone_config() ,hidden_size=5_12 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=_a ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=40 ,auxiliary_channels=2_56 ,auxiliary_num_convs=1 ,auxiliary_concat_input=_a ,loss_ignore_index=2_55 ,num_labels=self.num_labels ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Dict = UperNetForSemanticSegmentation(config=_a ) model.to(_a ) model.eval() UpperCAmelCase_ : List[str] = model(_a ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Dict = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _snake_case (__lowercase , __lowercase , unittest.TestCase): __A : Tuple =(UperNetForSemanticSegmentation,) if is_torch_available() else () __A : Union[str, Any] ={"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} __A : Tuple =False __A : int =False __A : List[Any] =False __A : List[Any] =False __A : Tuple =False __A : Tuple =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = UperNetModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def UpperCamelCase__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): return def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_a ) UpperCAmelCase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_a ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="UperNet does not have a base model" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="UperNet does not have a base model" ) def UpperCamelCase__ ( self ): pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`" ) def UpperCamelCase__ ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): def check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Any = model(**self._prepare_for_class(_a ,_a ) ) UpperCAmelCase_ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_a ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = True check_hidden_states_output(_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : int = True check_hidden_states_output(_a ,_a ,_a ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(_a ) UpperCAmelCase_ : Tuple = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @unittest.skip(reason="UperNet does not have tied weights" ) def UpperCamelCase__ ( self ): pass @slow def UpperCamelCase__ ( self ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = UperNetForSemanticSegmentation.from_pretrained(_a ) self.assertIsNotNone(_a ) def a__ ( ) -> Dict: """simple docstring""" UpperCAmelCase_ : str = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) UpperCAmelCase_ : Optional[int] = Image.open(__a ).convert("RGB" ) return image @require_torch @require_vision @slow class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) UpperCAmelCase_ : List[str] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(_a ) UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : Union[str, Any] = processor(images=_a ,return_tensors="pt" ).to(_a ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**_a ) UpperCAmelCase_ : str = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape ,_a ) UpperCAmelCase_ : Tuple = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,_a ,atol=1E-4 ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) UpperCAmelCase_ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(_a ) UpperCAmelCase_ : Dict = prepare_img() UpperCAmelCase_ : Union[str, Any] = processor(images=_a ,return_tensors="pt" ).to(_a ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**_a ) UpperCAmelCase_ : int = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape ,_a ) UpperCAmelCase_ : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,_a ,atol=1E-4 ) )
71
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
0
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __A : Union[str, Any] = logging.get_logger(__name__) class _a : """simple docstring""" def __init__( self : str , __UpperCamelCase : Tuple = None , __UpperCamelCase : int = None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : int=None )->Union[str, Any]: if not conversation_id: _UpperCAmelCase = uuid.uuida() if past_user_inputs is None: _UpperCAmelCase = [] if generated_responses is None: _UpperCAmelCase = [] _UpperCAmelCase = conversation_id _UpperCAmelCase = past_user_inputs _UpperCAmelCase = generated_responses _UpperCAmelCase = text def __eq__( self : List[Any] , __UpperCamelCase : Optional[int] )->Any: if not isinstance(_a , _a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] = False )->List[str]: if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten ' F'with: \"{text}\".' ) _UpperCAmelCase = text else: logger.warning( F'User input added while unprocessed input was existing: \"{self.new_user_input}\" new input ' F'ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input' ) else: _UpperCAmelCase = text def lowercase__ ( self : str )->Optional[int]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _UpperCAmelCase = None def lowercase__ ( self : int , __UpperCamelCase : Optional[int] )->Optional[Any]: self.generated_responses.append(_a ) def lowercase__ ( self : List[Any] )->str: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : List[str] )->Optional[int]: _UpperCAmelCase = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _UpperCAmelCase = '''user''' if is_user else '''bot''' output += F'{name} >> {text} \n' return output @add_end_docstrings( __lowercase , r"""\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n """ , ) class _a ( __lowercase): """simple docstring""" def __init__( self : Tuple , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : int )->List[str]: super().__init__(*_a , **_a ) if self.tokenizer.pad_token_id is None: _UpperCAmelCase = self.tokenizer.eos_token def lowercase__ ( self : Any , __UpperCamelCase : int=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : Optional[int] )->Union[str, Any]: _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} if min_length_for_response is not None: _UpperCAmelCase = min_length_for_response if minimum_tokens is not None: _UpperCAmelCase = minimum_tokens if "max_length" in generate_kwargs: _UpperCAmelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_a ) return preprocess_params, forward_params, postprocess_params def __call__( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int=0 , **__UpperCamelCase : int )->int: _UpperCAmelCase = super().__call__(_a , num_workers=_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs def lowercase__ ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any]=3_2 )->Dict[str, Any]: if not isinstance(_a , _a ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): _UpperCAmelCase = self.tokenizer._build_conversation_input_ids(_a ) else: # If the tokenizer cannot handle conversations, we default to only the old version _UpperCAmelCase = self._legacy_parse_and_tokenize(_a ) if self.framework == "pt": _UpperCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": _UpperCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : str=1_0 , **__UpperCamelCase : Optional[int] )->Union[str, Any]: _UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) _UpperCAmelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) _UpperCAmelCase = max_length - minimum_tokens _UpperCAmelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: _UpperCAmelCase = model_inputs['''attention_mask'''][:, -trim:] _UpperCAmelCase = model_inputs.pop('''conversation''' ) _UpperCAmelCase = max_length _UpperCAmelCase = self.model.generate(**_a , **_a ) if self.model.config.is_encoder_decoder: _UpperCAmelCase = 1 else: _UpperCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase__ ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=True )->Union[str, Any]: _UpperCAmelCase = model_outputs['''output_ids'''] _UpperCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) _UpperCAmelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_a ) return conversation def lowercase__ ( self : Optional[int] , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.tokenizer.eos_token_id _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_a , add_special_tokens=_a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_a , add_special_tokens=_a ) ) if len(_a ) > self.tokenizer.model_max_length: _UpperCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
602
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : int = 0 def __lowercase ( self ) -> List[str]: _a : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : Optional[Any] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' _a : Any = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: _a : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _a : Tuple = Path(_a ) / '''preprocessor_config.json''' _a : List[str] = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _a : Tuple = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) _a : Tuple = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _a : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) _a : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __lowercase ( self ) -> Any: with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): _a : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowercase ( self ) -> List[Any]: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : List[str] = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def __lowercase ( self ) -> Dict: with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _a : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowercase ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _a : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) _a : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowercase ( self ) -> Dict: try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = Path(_a ) / '''preprocessor_config.json''' _a : int = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) _a : int = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) _a : Optional[Any] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local _a : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _a : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _a : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __SCREAMING_SNAKE_CASE : int = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase_( ) -> Union[str, Any]: _lowerCamelCase = '''https://pypi.org/pypi/diffusers/json''' _lowerCamelCase = json.loads(request.urlopen(__a ).read() )['''releases'''].keys() return sorted(__a , key=lambda lowercase_ : version.Version(__a ) ) def lowerCAmelCase_( ) -> List[str]: if HF_MODULES_CACHE in sys.path: return sys.path.append(__a ) os.makedirs(__a , exist_ok=__a ) _lowerCamelCase = Path(__a ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCAmelCase_( lowercase_ : Union[str, os.PathLike] ) -> Optional[Any]: init_hf_modules() _lowerCamelCase = Path(__a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__a , exist_ok=__a ) _lowerCamelCase = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> Union[str, Any]: with open(__a , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = f.read() # Imports of the form `import .xxx` _lowerCamelCase = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __a , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __a , flags=re.MULTILINE ) # Unique-ify return list(set(__a ) ) def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> Union[str, Any]: _lowerCamelCase = False _lowerCamelCase = [module_file] _lowerCamelCase = [] # Let's recurse through all relative imports while not no_change: _lowerCamelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(__a ) ) _lowerCamelCase = Path(__a ).parent _lowerCamelCase = [str(module_path / m ) for m in new_imports] _lowerCamelCase = [f for f in new_import_files if f not in all_relative_imports] _lowerCamelCase = [F"""{f}.py""" for f in new_import_files] _lowerCamelCase = len(__a ) == 0 all_relative_imports.extend(__a ) return all_relative_imports def lowerCAmelCase_( lowercase_ : str ) -> Any: with open(__a , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = f.read() # Imports of the form `import xxx` _lowerCamelCase = re.findall('''^\s*import\s+(\S+)\s*$''' , __a , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __a , flags=re.MULTILINE ) # Only keep the top-level module _lowerCamelCase = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all _lowerCamelCase = list(set(__a ) ) _lowerCamelCase = [] for imp in imports: try: importlib.import_module(__a ) except ImportError: missing_packages.append(__a ) if len(__a ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{", ".join(__a )}. Run `pip install {" ".join(__a )}`""" ) return get_relative_imports(__a ) def lowerCAmelCase_( lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> Optional[int]: _lowerCamelCase = module_path.replace(os.path.sep , '''.''' ) _lowerCamelCase = importlib.import_module(__a ) if class_name is None: return find_pipeline_class(__a ) return getattr(__a , __a ) def lowerCAmelCase_( lowercase_ : Any ) -> List[Any]: from ..pipelines import DiffusionPipeline _lowerCamelCase = dict(inspect.getmembers(__a , inspect.isclass ) ) _lowerCamelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __a ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) _lowerCamelCase = cls return pipeline_class def lowerCAmelCase_( lowercase_ : Union[str, os.PathLike] , lowercase_ : str , lowercase_ : Optional[Union[str, os.PathLike]] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[Dict[str, str]] = None , lowercase_ : Optional[Union[bool, str]] = None , lowercase_ : Optional[str] = None , lowercase_ : bool = False , ) -> Optional[Any]: _lowerCamelCase = str(__a ) _lowerCamelCase = os.path.join(__a , __a ) if os.path.isfile(__a ): _lowerCamelCase = module_file_or_url _lowerCamelCase = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: _lowerCamelCase = get_diffusers_versions() # cut ".dev0" _lowerCamelCase = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: _lowerCamelCase = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _lowerCamelCase = F"""v{revision}""" elif revision == "main": _lowerCamelCase = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {", ".join(available_versions + ["main"] )}.""" ) # community pipeline on GitHub _lowerCamelCase = COMMUNITY_PIPELINES_URL.format(revision=__a , pipeline=__a ) try: _lowerCamelCase = cached_download( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _lowerCamelCase = '''git''' _lowerCamelCase = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _lowerCamelCase = hf_hub_download( __a , __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _lowerCamelCase = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _lowerCamelCase = check_imports(__a ) # Now we move the module inside our cached dynamic modules. _lowerCamelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__a ) _lowerCamelCase = Path(__a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__a , submodule_path / module_file ) for module_needed in modules_needed: _lowerCamelCase = F"""{module_needed}.py""" shutil.copy(os.path.join(__a , __a ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__a , __a ): _lowerCamelCase = use_auth_token elif use_auth_token is True: _lowerCamelCase = HfFolder.get_token() else: _lowerCamelCase = None _lowerCamelCase = model_info(__a , revision=__a , token=__a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _lowerCamelCase = submodule_path / commit_hash _lowerCamelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(__a ) if not (submodule_path / module_file).exists(): shutil.copy(__a , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __a , F"""{module_needed}.py""" , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return os.path.join(__a , __a ) def lowerCAmelCase_( lowercase_ : Union[str, os.PathLike] , lowercase_ : str , lowercase_ : Optional[str] = None , lowercase_ : Optional[Union[str, os.PathLike]] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[Dict[str, str]] = None , lowercase_ : Optional[Union[bool, str]] = None , lowercase_ : Optional[str] = None , lowercase_ : bool = False , **lowercase_ : Tuple , ) -> int: _lowerCamelCase = get_cached_module_file( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return get_class_in_module(__a , final_module.replace('''.py''' , '''''' ) )
661
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _A (UpperCamelCase : Namespace ) ->Dict: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowercase = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class __A ( __lowercase ): @staticmethod def _snake_case (__magic_name__ ): lowerCamelCase__ : Union[str, Any] = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=_a , required=_a , help="""Model\'s type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=_a , required=_a , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=_a , required=_a , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=_a , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=_a , default=_a , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=_a ) def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , *__magic_name__ , ): lowerCamelCase__ : str = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"Loading model {model_type}" ) lowerCamelCase__ : int = model_type lowerCamelCase__ : Optional[Any] = tf_checkpoint lowerCamelCase__ : Union[str, Any] = pytorch_dump_output lowerCamelCase__ : Tuple = config lowerCamelCase__ : str = finetuning_task_name def _snake_case (self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) if "ckpt" in self._tf_checkpoint.lower(): lowerCamelCase__ : Union[str, Any] = self._tf_checkpoint lowerCamelCase__ : str = '''''' else: lowerCamelCase__ : int = self._tf_checkpoint lowerCamelCase__ : str = '''''' convert_transfo_xl_checkpoint_to_pytorch( _a , self._config , self._pytorch_dump_output , _a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
157
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a__ = numpy.array([0, 0]) a__ = numpy.array([0.5, 0.8660254]) a__ = numpy.array([1, 0]) a__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( __a : list[numpy.ndarray] ,__a : int ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = initial_vectors for _ in range(__a ): _a : int = iteration_step(__a ) return vectors def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" _a : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _a : str = vectors[i + 1] new_vectors.append(__a ) _a : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( __a : numpy.ndarray ,__a : float ) -> numpy.ndarray: """simple docstring""" _a : Tuple = numpy.radians(__a ) _a , _a : List[Any] = numpy.cos(__a ), numpy.sin(__a ) _a : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a ,__a ) def __UpperCAmelCase ( __a : list[numpy.ndarray] ) -> None: """simple docstring""" _a : str = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _a , _a : Optional[int] = zip(*__a ) plt.plot(__a ,__a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def a__ ( _UpperCamelCase : int ,_UpperCamelCase : Dict=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str]=0 ): __lowerCamelCase = [] for old_item in old_list: __lowerCamelCase = old_item.replace('''in_layers.0''' ,'''norm1''' ) __lowerCamelCase = new_item.replace('''in_layers.2''' ,'''conv1''' ) __lowerCamelCase = new_item.replace('''out_layers.0''' ,'''norm2''' ) __lowerCamelCase = new_item.replace('''out_layers.3''' ,'''conv2''' ) __lowerCamelCase = new_item.replace('''emb_layers.1''' ,'''time_emb_proj''' ) __lowerCamelCase = new_item.replace('''skip_connection''' ,'''conv_shortcut''' ) __lowerCamelCase = shave_segments(__a ,n_shave_prefix_segments=__a ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple=0 ): __lowerCamelCase = [] for old_item in old_list: __lowerCamelCase = old_item __lowerCamelCase = new_item.replace('''norm.weight''' ,'''group_norm.weight''' ) __lowerCamelCase = new_item.replace('''norm.bias''' ,'''group_norm.bias''' ) __lowerCamelCase = new_item.replace('''proj_out.weight''' ,'''proj_attn.weight''' ) __lowerCamelCase = new_item.replace('''proj_out.bias''' ,'''proj_attn.bias''' ) __lowerCamelCase = shave_segments(__a ,n_shave_prefix_segments=__a ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Dict ,_UpperCamelCase : Dict ,_UpperCamelCase : List[str]=None ,_UpperCamelCase : Any=None ,_UpperCamelCase : List[str]=None ): assert isinstance(__a ,__a ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __lowerCamelCase = old_checkpoint[path] __lowerCamelCase = old_tensor.shape[0] // 3 __lowerCamelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __lowerCamelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 __lowerCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __lowerCamelCase = old_tensor.split(channels // num_heads ,dim=1 ) __lowerCamelCase = query.reshape(__a ) __lowerCamelCase = key.reshape(__a ) __lowerCamelCase = value.reshape(__a ) for path in paths: __lowerCamelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __lowerCamelCase = new_path.replace('''middle_block.0''' ,'''mid_block.resnets.0''' ) __lowerCamelCase = new_path.replace('''middle_block.1''' ,'''mid_block.attentions.0''' ) __lowerCamelCase = new_path.replace('''middle_block.2''' ,'''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: __lowerCamelCase = new_path.replace(replacement['''old'''] ,replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __lowerCamelCase = old_checkpoint[path['''old''']][:, :, 0] else: __lowerCamelCase = old_checkpoint[path['''old''']] def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Dict ): __lowerCamelCase = {} __lowerCamelCase = checkpoint['''time_embed.0.weight'''] __lowerCamelCase = checkpoint['''time_embed.0.bias'''] __lowerCamelCase = checkpoint['''time_embed.2.weight'''] __lowerCamelCase = checkpoint['''time_embed.2.bias'''] __lowerCamelCase = checkpoint['''input_blocks.0.0.weight'''] __lowerCamelCase = checkpoint['''input_blocks.0.0.bias'''] __lowerCamelCase = checkpoint['''out.0.weight'''] __lowerCamelCase = checkpoint['''out.0.bias'''] __lowerCamelCase = checkpoint['''out.2.weight'''] __lowerCamelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only __lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) __lowerCamelCase = { layer_id: [key for key in checkpoint if F"""input_blocks.{layer_id}""" in key] for layer_id in range(__a ) } # Retrieves the keys for the middle blocks only __lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) __lowerCamelCase = { layer_id: [key for key in checkpoint if F"""middle_block.{layer_id}""" in key] for layer_id in range(__a ) } # Retrieves the keys for the output blocks only __lowerCamelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) __lowerCamelCase = { layer_id: [key for key in checkpoint if F"""output_blocks.{layer_id}""" in key] for layer_id in range(__a ) } for i in range(1 ,__a ): __lowerCamelCase = (i - 1) // (config['''num_res_blocks'''] + 1) __lowerCamelCase = (i - 1) % (config['''num_res_blocks'''] + 1) __lowerCamelCase = [key for key in input_blocks[i] if F"""input_blocks.{i}.0""" in key] __lowerCamelCase = [key for key in input_blocks[i] if F"""input_blocks.{i}.1""" in key] if F"""input_blocks.{i}.0.op.weight""" in checkpoint: __lowerCamelCase = checkpoint[ F"""input_blocks.{i}.0.op.weight""" ] __lowerCamelCase = checkpoint[ F"""input_blocks.{i}.0.op.bias""" ] continue __lowerCamelCase = renew_resnet_paths(__a ) __lowerCamelCase = {'''old''': F"""input_blocks.{i}.0""", '''new''': F"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} __lowerCamelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path, resnet_op] ,config=__a ) if len(__a ): __lowerCamelCase = renew_attention_paths(__a ) __lowerCamelCase = { '''old''': F"""input_blocks.{i}.1""", '''new''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } __lowerCamelCase = { F"""input_blocks.{i}.1.qkv.bias""": { '''key''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""input_blocks.{i}.1.qkv.weight""": { '''key''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path] ,attention_paths_to_split=__a ,config=__a ,) __lowerCamelCase = middle_blocks[0] __lowerCamelCase = middle_blocks[1] __lowerCamelCase = middle_blocks[2] __lowerCamelCase = renew_resnet_paths(__a ) assign_to_checkpoint(__a ,__a ,__a ,config=__a ) __lowerCamelCase = renew_resnet_paths(__a ) assign_to_checkpoint(__a ,__a ,__a ,config=__a ) __lowerCamelCase = renew_attention_paths(__a ) __lowerCamelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( __a ,__a ,__a ,attention_paths_to_split=__a ,config=__a ) for i in range(__a ): __lowerCamelCase = i // (config['''num_res_blocks'''] + 1) __lowerCamelCase = i % (config['''num_res_blocks'''] + 1) __lowerCamelCase = [shave_segments(__a ,2 ) for name in output_blocks[i]] __lowerCamelCase = {} for layer in output_block_layers: __lowerCamelCase = layer.split('''.''' )[0], shave_segments(__a ,1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__a ) else: __lowerCamelCase = [layer_name] if len(__a ) > 1: __lowerCamelCase = [key for key in output_blocks[i] if F"""output_blocks.{i}.0""" in key] __lowerCamelCase = [key for key in output_blocks[i] if F"""output_blocks.{i}.1""" in key] __lowerCamelCase = renew_resnet_paths(__a ) __lowerCamelCase = renew_resnet_paths(__a ) __lowerCamelCase = {'''old''': F"""output_blocks.{i}.0""", '''new''': F"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(__a ,__a ,__a ,additional_replacements=[meta_path] ,config=__a ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __lowerCamelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) __lowerCamelCase = checkpoint[ F"""output_blocks.{i}.{index}.conv.weight""" ] __lowerCamelCase = checkpoint[ F"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(__a ) == 2: __lowerCamelCase = [] if len(__a ): __lowerCamelCase = renew_attention_paths(__a ) __lowerCamelCase = { '''old''': F"""output_blocks.{i}.1""", '''new''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } __lowerCamelCase = { F"""output_blocks.{i}.1.qkv.bias""": { '''key''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""output_blocks.{i}.1.qkv.weight""": { '''key''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( __a ,__a ,__a ,additional_replacements=[meta_path] ,attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None ,config=__a ,) else: __lowerCamelCase = renew_resnet_paths(__a ,n_shave_prefix_segments=1 ) for path in resnet_0_paths: __lowerCamelCase = '''.'''.join(['''output_blocks''', str(__a ), path['''old''']] ) __lowerCamelCase = '''.'''.join(['''up_blocks''', str(__a ), '''resnets''', str(__a ), path['''new''']] ) __lowerCamelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") a_ = parser.parse_args() a_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: a_ = json.loads(f.read()) a_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] a_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: a_ = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) a_ = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) a_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
175
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class a__ ( __lowercase ): '''simple docstring''' A : Optional[Any] = "detr" A : int = ["past_key_values"] A : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Dict=100 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : Optional[Any]=2_048 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : List[str]=6 , lowerCAmelCase_ : Dict=2_048 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[int]="relu" , lowerCAmelCase_ : Optional[int]=256 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : List[Any]=1.0 , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Union[str, Any]="sine" , lowerCAmelCase_ : Optional[Any]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Tuple=0.1 , **lowerCAmelCase_ : List[Any] , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __A= CONFIG_MAPPING['''resnet'''](out_features=['stage4'] ) elif isinstance(_a , _a ): __A= backbone_config.get('model_type' ) __A= CONFIG_MAPPING[backbone_model_type] __A= config_class.from_dict(_a ) # set timm attributes to None __A= None, None, None __A= use_timm_backbone __A= backbone_config __A= num_channels __A= num_queries __A= d_model __A= encoder_ffn_dim __A= encoder_layers __A= encoder_attention_heads __A= decoder_ffn_dim __A= decoder_layers __A= decoder_attention_heads __A= dropout __A= attention_dropout __A= activation_dropout __A= activation_function __A= init_std __A= init_xavier_std __A= encoder_layerdrop __A= decoder_layerdrop __A= encoder_layers __A= auxiliary_loss __A= position_embedding_type __A= backbone __A= use_pretrained_backbone __A= dilation # Hungarian matcher __A= class_cost __A= bbox_cost __A= giou_cost # Loss coefficients __A= mask_loss_coefficient __A= dice_loss_coefficient __A= bbox_loss_coefficient __A= giou_loss_coefficient __A= eos_coefficient super().__init__(is_encoder_decoder=_a , **_a ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase ( self : Optional[Any] ) -> int: return self.d_model @classmethod def lowerCAmelCase ( cls : Union[str, Any] , lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> Optional[int]: return cls(backbone_config=_a , **_a ) def lowerCAmelCase ( self : Tuple ) -> Dict[str, any]: __A= copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __A= self.backbone_config.to_dict() __A= self.__class__.model_type return output class a__ ( __lowercase ): '''simple docstring''' A : List[str] = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def lowerCAmelCase ( self : str ) -> float: return 1E-5 @property def lowerCAmelCase ( self : Union[str, Any] ) -> int: return 12
186
from scipy.stats import spearmanr import datasets a__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a__ = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowercase ( self , _a , _a , _a=False ) -> str: _a : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
14
0
def UpperCAmelCase_ ( __lowerCAmelCase ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) __lowercase : Optional[Any] = sorted(string.lower() ) return len(__a ) == len(set(__a ) ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = input("Enter a string ").strip() __lowerCAmelCase : Optional[int] = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
509
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" __A = [int(__a ) for i in ip_va_address.split("." ) if i.isdigit()] return len(__a ) == 4 and all(0 <= int(__a ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = input().strip() SCREAMING_SNAKE_CASE :Any = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
55
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A : str = logging.get_logger(__name__) __A : Dict = {"vocab_file": "spiece.model"} __A : str = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCamelCase( __lowercase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=False , snake_case_=True , snake_case_=False , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<sep>" , snake_case_="<pad>" , snake_case_="<cls>" , snake_case_="<mask>" , snake_case_=["<eop>", "<eod>"] , snake_case_ = None , **snake_case_ , ): _A = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _A = 3 _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) _A = jieba _A = str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowerCAmelCase__ ( self ): return len(self.sp_model ) def lowerCAmelCase__ ( self ): _A = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _A = self.__dict__.copy() _A = None return state def __setstate__( self , snake_case_ ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , snake_case_ ): if self.remove_space: _A = ''' '''.join(inputs.strip().split() ) else: _A = inputs _A = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _A = unicodedata.normalize('NFKD' , _a ) _A = ''''''.join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: _A = outputs.lower() return outputs def lowerCAmelCase__ ( self , snake_case_ ): _A = self.preprocess_text(_a ) _A = self.sp_model.encode(_a , out_type=_a ) _A = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _A = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A = cur_pieces[1:] else: _A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def lowerCAmelCase__ ( self , snake_case_ ): return self.sp_model.PieceToId(_a ) def lowerCAmelCase__ ( self , snake_case_ ): return self.sp_model.IdToPiece(_a ) def lowerCAmelCase__ ( self , snake_case_ ): _A = ''''''.join(_a ).replace(_a , ' ' ).strip() return out_string def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(_a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _A = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def lowerCAmelCase__ ( self , *snake_case_ , **snake_case_ ): _A = super()._decode(*_a , **_a ) _A = text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
27
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ : str = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' UpperCAmelCase_ : str = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' UpperCAmelCase_ : Union[str, Any] = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCAmelCase ( datasets.Metric): def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=False ) -> Tuple: '''simple docstring''' __snake_case = compute_bleu( reference_corpus=_a , translation_corpus=_a , max_order=_a , smooth=_a ) (__snake_case) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
24
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : List[Any] = name _a : List[str] = value _a : List[str] = weight def __repr__( self ) -> Optional[int]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowercase ( self ) -> List[Any]: return self.value def __lowercase ( self ) -> int: return self.name def __lowercase ( self ) -> Optional[int]: return self.weight def __lowercase ( self ) -> Optional[Any]: return self.value / self.weight def __UpperCAmelCase ( __a : Optional[int] ,__a : Tuple ,__a : List[str] ) -> List[str]: """simple docstring""" _a : Optional[int] = [] for i in range(len(__a ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( __a : int ,__a : Union[str, Any] ,__a : int ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = sorted(__a ,key=__a ,reverse=__a ) _a : Any = [] _a , _a : Optional[int] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> int: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=1_3 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=2_2_4 , _a=1_0_0_0 , _a=[3, 3, 6, 4] , _a=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Tuple: _a : Dict = parent _a : Optional[int] = batch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = is_training _a : Tuple = use_labels _a : Dict = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Dict = num_labels _a : List[str] = image_size _a : Dict = layer_depths _a : str = embed_dims def __lowercase ( self ) -> Optional[Any]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : int = None if self.use_labels: _a : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> int: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , ) def __lowercase ( self , _a , _a , _a ) -> str: _a : List[Any] = SwiftFormerModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowercase ( self , _a , _a , _a ) -> Optional[Any]: _a : List[str] = self.num_labels _a : Optional[int] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _a : Union[str, Any] = SwiftFormerForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self ) -> Tuple: ((_a) , (_a) , (_a)) : Optional[int] = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = SwiftFormerModelTester(self ) _a : int = ConfigTester( self , config_class=_a , has_text_modality=_a , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> Dict: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __lowercase ( self ) -> str: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowercase ( self ) -> int: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self ) -> Optional[int]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self ) -> Optional[Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = SwiftFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> int: def check_hidden_states_output(_a , _a , _a ): _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 8 self.assertEqual(len(_a ) , _a ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_a ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(_a , _a , _a ) def __lowercase ( self ) -> str: def _config_zero_init(_a ): _a : List[Any] = copy.deepcopy(_a ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_a , _a , 1e-1_0 ) if isinstance(getattr(_a , _a , _a ) , _a ): _a : int = _config_zero_init(getattr(_a , _a ) ) setattr(_a , _a , _a ) return configs_no_init _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Dict = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : Dict = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" _a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __lowercase ( self ) -> Dict: _a : Any = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_a ) _a : Any = self.default_image_processor _a : Any = prepare_img() _a : Any = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_a ) # verify the logits _a : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _a ) _a : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
14
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__lowercase) class _snake_case (__lowercase): __A : str =field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True}) __A : ClassVar[Features] =Features({"image": Image()}) __A : ClassVar[Features] =Features({"labels": ClassLabel}) __A : str ="image" __A : str ="labels" def UpperCamelCase__ ( self ,_snake_case ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,_a ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCAmelCase_ : Dict = copy.deepcopy(self ) UpperCAmelCase_ : List[Any] = self.label_schema.copy() UpperCAmelCase_ : Any = features[self.label_column] UpperCAmelCase_ : int = label_schema return task_template @property def UpperCamelCase__ ( self ): return { self.image_column: "image", self.label_column: "labels", }
71
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowercase ( ): '''simple docstring''' _UpperCAmelCase = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _UpperCAmelCase = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(__a ) DownloadCommand.register_subcommand(__a ) EnvironmentCommand.register_subcommand(__a ) RunCommand.register_subcommand(__a ) ServeCommand.register_subcommand(__a ) UserCommands.register_subcommand(__a ) AddNewModelCommand.register_subcommand(__a ) AddNewModelLikeCommand.register_subcommand(__a ) LfsCommands.register_subcommand(__a ) PTtoTFCommand.register_subcommand(__a ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(__a , '''func''' ): parser.print_help() exit(1 ) # Run _UpperCAmelCase = args.func(__a ) service.run() if __name__ == "__main__": main()
602
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = XLMProphetNetTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = True def __lowercase ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = XLMProphetNetTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ) -> Any: _a : Tuple = '''[PAD]''' _a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __lowercase ( self ) -> str: _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_a ) , 1_0_1_2 ) def __lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def __lowercase ( self ) -> str: _a : Tuple = XLMProphetNetTokenizer(_a , keep_accents=_a ) _a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a : List[Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowercase ( self ) -> List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowercase ( self ) -> Tuple: _a : str = '''Hello World!''' _a : Tuple = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __lowercase ( self ) -> str: # fmt: off _a : str = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
14
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __SCREAMING_SNAKE_CASE : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def lowerCAmelCase_( lowercase_ : List[str] ) -> str: _lowerCamelCase = list(s_dict.keys() ) for key in keys: _lowerCamelCase = R'''.*/layers_(\d+)''' _lowerCamelCase = key if re.match(__a , __a ): _lowerCamelCase = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __a ) _lowerCamelCase = R'''(encoder|decoder)\/''' if re.match(__a , __a ): _lowerCamelCase = re.match(__a , __a ).groups() if groups[0] == "encoder": _lowerCamelCase = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __a ) _lowerCamelCase = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __a ) elif groups[0] == "decoder": _lowerCamelCase = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __a ) _lowerCamelCase = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _lowerCamelCase = new_key.replace(__a , __a ) print(F"""{key} -> {new_key}""" ) _lowerCamelCase = s_dict.pop(__a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCamelCase = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCamelCase = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _lowerCamelCase = s_dict[key].shape[0] _lowerCamelCase = s_dict[key] for idx in range(__a ): _lowerCamelCase = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(__a ) return s_dict __SCREAMING_SNAKE_CASE : Dict = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def lowerCAmelCase_( lowercase_ : int , lowercase_ : Any ) -> Union[str, Any]: import regex as re with open(__a , '''r''' ) as f: _lowerCamelCase = f.read() _lowerCamelCase = re.findall(r'''(.*) = ([0-9.]*)''' , __a ) _lowerCamelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _lowerCamelCase = float(__a ) if '''.''' in value else int(__a ) _lowerCamelCase = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __a )[0] _lowerCamelCase = str(activation[1] ) _lowerCamelCase = num_experts _lowerCamelCase = SwitchTransformersConfig(**__a ) return config def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Dict=None , lowercase_ : int="./" , lowercase_ : Union[str, Any]=8 ) -> Dict: print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) _lowerCamelCase = checkpoints.load_tax_checkpoint(__a ) if gin_file is not None: _lowerCamelCase = convert_gin_to_config(__a , __a ) else: _lowerCamelCase = SwitchTransformersConfig.from_pretrained(__a ) _lowerCamelCase = SwitchTransformersForConditionalGeneration(__a ) _lowerCamelCase = flax_params['''target'''] _lowerCamelCase = flatten_dict(__a , sep='''/''' ) _lowerCamelCase = rename_keys(__a ) _lowerCamelCase = unflatten_dict(__a , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__a , __a ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(__a ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
661
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A ( __lowercase ): UpperCamelCase :int = 0 UpperCamelCase :bool = False UpperCamelCase :float = 3.0 class __A ( unittest.TestCase ): def _snake_case (self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def _snake_case (self ): # If no defaults are changed, `to_kwargs` returns an empty dict. lowerCamelCase__ : Tuple = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() lowerCamelCase__ : List[Any] = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowerCamelCase__ : Union[str, Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def _snake_case (self ): lowerCamelCase__ : int = ['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": _lowercase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _lowercase = Accelerator(kwargs_handlers=[ddp_scaler]) _lowercase = torch.nn.Linear(1_00, 2_00) _lowercase = accelerator.prepare(model) # Check the values changed in kwargs _lowercase = '''''' _lowercase = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
157
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __lowercase , unittest.TestCase ): lowerCAmelCase__ = LDMTextToImagePipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase = CLIPTextModel(_a ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(_a ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(_a ) else: __lowerCamelCase = torch.Generator(device=_a ).manual_seed(_a ) __lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = LDMTextToImagePipeline(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = self.get_dummy_inputs(_a ) __lowerCamelCase = pipe(**_a ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __lowerCamelCase = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' __lowerCamelCase = torch.manual_seed(_a ) __lowerCamelCase = np.random.RandomState(_a ).standard_normal((1, 4, 32, 32) ) __lowerCamelCase = torch.from_numpy(_a ).to(device=_a , dtype=_a ) __lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_a ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = self.get_inputs(_a ) __lowerCamelCase = pipe(**_a ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __lowerCamelCase = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) __lowerCamelCase = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' __lowerCamelCase = torch.manual_seed(_a ) __lowerCamelCase = np.random.RandomState(_a ).standard_normal((1, 4, 32, 32) ) __lowerCamelCase = torch.from_numpy(_a ).to(device=_a , dtype=_a ) __lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_a ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = self.get_inputs(_a ) __lowerCamelCase = pipe(**_a ).images[0] __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) __lowerCamelCase = np.abs(expected_image - image ).max() assert max_diff < 1E-3
175
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[Any],_SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" __A= OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): __A= '''segformer.encoder.''' + key if key.startswith('backbone' ): __A= key.replace('backbone','segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __A= key[key.find('patch_embed' ) + len('patch_embed' )] __A= key.replace(f"""patch_embed{idx}""",f"""patch_embeddings.{int(__a )-1}""" ) if "norm" in key: __A= key.replace('norm','layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __A= key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] __A= key.replace(f"""layer_norm{idx}""",f"""layer_norm.{int(__a )-1}""" ) if "layer_norm1" in key: __A= key.replace('layer_norm1','layer_norm_1' ) if "layer_norm2" in key: __A= key.replace('layer_norm2','layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 __A= key[key.find('block' ) + len('block' )] __A= key.replace(f"""block{idx}""",f"""block.{int(__a )-1}""" ) if "attn.q" in key: __A= key.replace('attn.q','attention.self.query' ) if "attn.proj" in key: __A= key.replace('attn.proj','attention.output.dense' ) if "attn" in key: __A= key.replace('attn','attention.self' ) if "fc1" in key: __A= key.replace('fc1','dense1' ) if "fc2" in key: __A= key.replace('fc2','dense2' ) if "linear_pred" in key: __A= key.replace('linear_pred','classifier' ) if "linear_fuse" in key: __A= key.replace('linear_fuse.conv','linear_fuse' ) __A= key.replace('linear_fuse.bn','batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __A= key[key.find('linear_c' ) + len('linear_c' )] __A= key.replace(f"""linear_c{idx}""",f"""linear_c.{int(__a )-1}""" ) if key.startswith('head' ): __A= key.replace('head','classifier' ) __A= value return new_state_dict def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : str,_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __A= state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) __A= state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict __A= kv_weight[ : config.hidden_sizes[i], : ] __A= kv_bias[: config.hidden_sizes[i]] __A= kv_weight[ config.hidden_sizes[i] :, : ] __A= kv_bias[ config.hidden_sizes[i] : ] def UpperCAmelCase__( ): """simple docstring""" __A= '''http://images.cocodataset.org/val2017/000000039769.jpg''' __A= Image.open(requests.get(__a,stream=__a ).raw ) return image @torch.no_grad() def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Dict,_SCREAMING_SNAKE_CASE : str,_SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __A= SegformerConfig() __A= False # set attributes based on model_name __A= '''huggingface/label-files''' if "segformer" in model_name: __A= model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: __A= 150 __A= '''ade20k-id2label.json''' __A= (1, 150, 128, 128) elif "city" in model_name: __A= 19 __A= '''cityscapes-id2label.json''' __A= (1, 19, 128, 128) else: raise ValueError(f"""Model {model_name} not supported""" ) elif "mit" in model_name: __A= True __A= model_name[4:6] __A= 1000 __A= '''imagenet-1k-id2label.json''' __A= (1, 1000) else: raise ValueError(f"""Model {model_name} not supported""" ) # set config attributes __A= json.load(open(hf_hub_download(__a,__a,repo_type='dataset' ),'r' ) ) __A= {int(__a ): v for k, v in idalabel.items()} __A= idalabel __A= {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __A= [64, 128, 320, 512] __A= 256 elif size == "b2": __A= [64, 128, 320, 512] __A= 768 __A= [3, 4, 6, 3] elif size == "b3": __A= [64, 128, 320, 512] __A= 768 __A= [3, 4, 18, 3] elif size == "b4": __A= [64, 128, 320, 512] __A= 768 __A= [3, 8, 27, 3] elif size == "b5": __A= [64, 128, 320, 512] __A= 768 __A= [3, 6, 40, 3] else: raise ValueError(f"""Size {size} not supported""" ) # load image processor (only resize + normalize) __A= SegformerImageProcessor( image_scale=(512, 512),keep_ratio=__a,align=__a,do_random_crop=__a ) # prepare image __A= prepare_img() __A= image_processor(images=__a,return_tensors='pt' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict if encoder_only: __A= torch.load(__a,map_location=torch.device('cpu' ) ) else: __A= torch.load(__a,map_location=torch.device('cpu' ) )['''state_dict'''] # rename keys __A= rename_keys(__a,encoder_only=__a ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__a,__a ) # create HuggingFace model and load state dict if encoder_only: __A= False __A= SegformerForImageClassification(__a ) else: __A= SegformerForSemanticSegmentation(__a ) model.load_state_dict(__a ) model.eval() # forward pass __A= model(__a ) __A= outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __A= torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": __A= torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": __A= torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": __A= torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": __A= torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": __A= torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __A= torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": __A= torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": __A= torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": __A= torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": __A= torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": __A= torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": __A= torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": __A= torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": __A= torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: __A= logits.argmax(-1 ).item() print('Predicted class:',model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3],__a,atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCAmelCase__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
186
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> Dict: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : int ,__a : List[str]="attention" ) -> List[str]: """simple docstring""" _a : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Tuple = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _a : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Any = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _a : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Union[str, Any] ,__a : List[Any] ,__a : Any=False ) -> Any: """simple docstring""" if split_mlp_wi: _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : List[str] = (wi_a, wi_a) else: _a : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : str ) -> List[str]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __a : dict ,*, __a : int ,__a : bool ,__a : bool = False ) -> Any: """simple docstring""" _a : Dict = traverse_util.flatten_dict(variables['''target'''] ) _a : Any = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : Optional[int] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) _a : Tuple = collections.OrderedDict() # Shared embeddings. _a : Any = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Optional[Any] = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) _a : List[str] = layer_norm _a : Optional[Any] = k.T _a : str = o.T _a : List[Any] = q.T _a : Tuple = v.T # Block i, layer 1 (MLP). _a : str = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Any = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) _a : str = layer_norm if split_mlp_wi: _a : List[Any] = wi[0].T _a : Any = wi[1].T else: _a : Any = wi.T _a : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Dict = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T _a : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _a : List[Any] = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T _a : Optional[Any] = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). _a : Union[str, Any] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _a , _a , _a , _a : Optional[Any] = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) _a : Optional[Any] = layer_norm _a : Dict = k.T _a : str = o.T _a : str = q.T _a : List[str] = v.T # Block i, layer 1 (Cross Attention). _a : Any = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _a , _a , _a , _a : str = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) _a : Optional[Any] = layer_norm _a : Optional[int] = k.T _a : Dict = o.T _a : str = q.T _a : int = v.T # Block i, layer 2 (MLP). _a : Optional[int] = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _a , _a : Tuple = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : List[Any] = wi[1].T else: _a : Dict = wi.T _a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Tuple = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T _a : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : Any = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( __a : Dict ,__a : bool ) -> Tuple: """simple docstring""" _a : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Any = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _a : str = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Dict ,__a : Union[str, Any] ,__a : List[Any] ) -> int: """simple docstring""" _a : List[str] = checkpoints.load_tax_checkpoint(__a ) _a : str = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) _a : str = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : Any ,__a : Union[str, Any] ,__a : bool = False ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(__a ) else: _a : Tuple = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
0
def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) __lowercase : Union[str, Any] = '''''' while len(__a ) % 3 != 0: __lowercase : Tuple = '''0''' + bin_string __lowercase : int = [ bin_string[index : index + 3] for index in range(len(__a ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowercase : str = 0 for index, val in enumerate(__a ): oct_val += int(2 ** (2 - index) * int(__a ) ) oct_string += str(__a ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
509
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a__ = '''Usage of script: script_name <size_of_canvas:int>''' a__ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( __a : int ) -> list[list[bool]]: """simple docstring""" _a : int = [[False for i in range(__a )] for j in range(__a )] return canvas def __UpperCAmelCase ( __a : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(__a ): for j, _ in enumerate(__a ): _a : Optional[int] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( __a : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" _a : Any = np.array(__a ) _a : Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): _a : Tuple = __judge_point( __a ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _a : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _a : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( __a : bool ,__a : list[list[bool]] ) -> bool: """simple docstring""" _a : Optional[Any] = 0 _a : str = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _a : Optional[int] = pt if pt: if alive < 2: _a : Dict = False elif alive == 2 or alive == 3: _a : Optional[Any] = True elif alive > 3: _a : str = False else: if alive == 3: _a : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a__ = int(sys.argv[1]) # main working structure of this module. a__ = create_canvas(canvas_size) seed(c) a__ , a__ = plt.subplots() fig.show() a__ = ListedColormap(['''w''', '''k''']) try: while True: a__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
0