code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = AutoConfig.from_pretrained("""gpt2""" ) lowercase__ = GenerationConfig.from_model_config(_UpperCAmelCase ) lowercase__ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = GenerationConfig() lowercase__ = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase__ = copy.deepcopy(_UpperCAmelCase ) lowercase__ = generation_config.update(**_UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_UpperCAmelCase , {"""foo""": """bar"""} ) def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" lowercase__ = GenerationConfig() lowercase__ = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase__ = GenerationConfig.from_model_config(_UpperCAmelCase ) assert not hasattr(_UpperCAmelCase , """foo""" ) # no new kwargs should be initialized if from config def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase__ (cls : int ) -> Optional[Any]: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Tuple ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id="""test-generation-config""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
15
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
1
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool , __magic_name__ : list[int] , __magic_name__ : float ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__magic_name__ ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __magic_name__ , __magic_name__ , __magic_name__ ) , minimax(depth + 1 , node_index * 2 + 1 , __magic_name__ , __magic_name__ , __magic_name__ ) , ) return min( minimax(depth + 1 , node_index * 2 , __magic_name__ , __magic_name__ , __magic_name__ ) , minimax(depth + 1 , node_index * 2 + 1 , __magic_name__ , __magic_name__ , __magic_name__ ) , ) def UpperCamelCase ( ) -> None: """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 123, 3_4423] lowercase__ = math.log(len(__magic_name__ ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __magic_name__ , __magic_name__ , __magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A : str = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : bool , _UpperCAmelCase : str = None , _UpperCAmelCase : list = None ) -> List[Any]: """simple docstring""" lowercase__ = None lowercase__ = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) lowercase__ = os.path.abspath("""examples""" ) for item in os.listdir(_UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: lowercase__ = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_UpperCAmelCase , feature_script=_UpperCAmelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): lowercase__ = compare_against_test( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = """\n""".join(_UpperCAmelCase ) if special_strings is not None: for string in special_strings: lowercase__ = diff.replace(_UpperCAmelCase , """""" ) self.assertEqual(_UpperCAmelCase , """""" ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , _UpperCAmelCase ) self.one_complete_example("""complete_nlp_example.py""" , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) lowercase__ = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.one_complete_example("""complete_cv_example.py""" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = False @classmethod def lowerCamelCase__ (cls : Tuple ) -> int: """simple docstring""" super().setUpClass() lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowercase__ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def lowerCamelCase__ (cls : List[Any] ) -> int: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" lowercase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() lowercase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() lowercase__ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) self.assertNotIn("""epoch 0:""" , _UpperCAmelCase ) self.assertIn("""epoch 1:""" , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() lowercase__ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) if torch.cuda.is_available(): lowercase__ = torch.cuda.device_count() else: lowercase__ = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , _UpperCAmelCase ) self.assertIn("""epoch 1:""" , _UpperCAmelCase ) else: self.assertIn("""epoch 0:""" , _UpperCAmelCase ) self.assertIn("""epoch 1:""" , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): lowercase__ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) lowercase__ = re.findall("""({.+})""" , _UpperCAmelCase ) lowercase__ = [r for r in results if """accuracy""" in r][-1] lowercase__ = ast.literal_eval(_UpperCAmelCase ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowercase__ = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """tracking""" ) ) ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
15
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Any = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''data2vec-audio''' def __init__(self : int , _UpperCAmelCase : str=32 , _UpperCAmelCase : Dict=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Dict=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=1E-5 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : str=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase : int=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : int=False , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Dict=19 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Dict=0.05 , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : List[str]="sum" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Dict=256 , _UpperCAmelCase : Optional[int]=(512, 512, 512, 512, 1500) , _UpperCAmelCase : List[str]=(5, 3, 3, 1, 1) , _UpperCAmelCase : Any=(1, 2, 3, 1, 1) , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : str=1 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Tuple , ) -> Dict: """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = feat_extract_activation lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = conv_pos_kernel_size lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size lowercase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # adapter lowercase__ = add_adapter lowercase__ = adapter_kernel_size lowercase__ = adapter_stride lowercase__ = num_adapter_layers lowercase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = xvector_output_dim @property def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" return math.prod(self.conv_stride )
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
1
from math import ceil def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(range(0 , __magic_name__ ) ) lowercase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase__ = [] for i in device_map_blocks: if device_map_blocks.count(__magic_name__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__magic_name__ ) # Missing blocks lowercase__ = [i for i in blocks if i not in device_map_blocks] lowercase__ = [i for i in device_map_blocks if i not in blocks] if len(__magic_name__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(__magic_name__ ) ) if len(__magic_name__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(__magic_name__ ) ) if len(__magic_name__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple ) -> str: """simple docstring""" lowercase__ = list(range(__magic_name__ ) ) lowercase__ = int(ceil(n_layers / len(__magic_name__ ) ) ) lowercase__ = [layers[i : i + n_blocks] for i in range(0 , __magic_name__ , __magic_name__ )] return dict(zip(__magic_name__ , __magic_name__ ) )
15
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
1
A : List[Any] = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] A : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
15
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() A : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : List[str] ) -> int: """simple docstring""" if "resnet-50" in model_name: lowercase__ = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: lowercase__ = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) lowercase__ = DetrConfig(use_timm_backbone=__magic_name__ , backbone_config=__magic_name__ ) # set label attributes lowercase__ = """panoptic""" in model_name if is_panoptic: lowercase__ = 250 else: lowercase__ = 91 lowercase__ = """huggingface/label-files""" lowercase__ = """coco-detection-id2label.json""" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( __magic_name__ : Dict ) -> Dict: """simple docstring""" lowercase__ = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Dict: """simple docstring""" lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = """""" if is_panoptic: lowercase__ = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowercase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ = in_proj_weight_cross_attn[:256, :] lowercase__ = in_proj_bias_cross_attn[:256] lowercase__ = in_proj_weight_cross_attn[256:512, :] lowercase__ = in_proj_bias_cross_attn[256:512] lowercase__ = in_proj_weight_cross_attn[-256:, :] lowercase__ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None , __magic_name__ : List[str]=False ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = get_detr_config(__magic_name__ ) # load original model from torch hub lowercase__ = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(f'''Converting model {model_name}...''' ) lowercase__ = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=__magic_name__ ).eval() lowercase__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__magic_name__ ): if is_panoptic: lowercase__ = """detr.""" + src rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ , is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val # finally, create HuggingFace model and load state dict lowercase__ = DetrForSegmentation(__magic_name__ ) if is_panoptic else DetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() # verify our conversion on an image lowercase__ = """coco_panoptic""" if is_panoptic else """coco_detection""" lowercase__ = DetrImageProcessor(format=__magic_name__ ) lowercase__ = processor(images=prepare_img() , return_tensors="""pt""" ) lowercase__ = encoding["""pixel_values"""] lowercase__ = detr(__magic_name__ ) lowercase__ = model(__magic_name__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') A : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A : Dict = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : str=None ) -> int: """simple docstring""" lowercase__ = {} if top_k is not None: lowercase__ = top_k return {}, {}, postprocess_params def __call__(self : int , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" lowercase__ = load_image(_UpperCAmelCase ) lowercase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model(**_UpperCAmelCase ) return model_outputs def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=5 ) -> Tuple: """simple docstring""" if top_k > self.model.config.num_labels: lowercase__ = self.model.config.num_labels if self.framework == "pt": lowercase__ = model_outputs.logits.softmax(-1 )[0] lowercase__ , lowercase__ = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": lowercase__ = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) lowercase__ , lowercase__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase__ = scores.tolist() lowercase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
15
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Optional[Any] = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''roc_bert''' def __init__(self : Union[str, Any] , _UpperCAmelCase : str=3_0522 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3072 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Tuple=1E-1_2 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : List[Any]="absolute" , _UpperCAmelCase : str=None , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : List[str]=910 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : Optional[int]=2_4858 , _UpperCAmelCase : List[Any]=True , **_UpperCAmelCase : Any , ) -> List[str]: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = use_cache lowercase__ = enable_pronunciation lowercase__ = enable_shape lowercase__ = pronunciation_embed_dim lowercase__ = pronunciation_vocab_size lowercase__ = shape_embed_dim lowercase__ = shape_vocab_size lowercase__ = concat_input lowercase__ = position_embedding_type lowercase__ = classifier_dropout super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
15
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[Any]=True , __magic_name__ : Tuple="pt" ) -> Dict: """simple docstring""" lowercase__ = {"""add_prefix_space""": True} if isinstance(__magic_name__ , __magic_name__ ) and not line.startswith(""" """ ) else {} lowercase__ = padding_side return tokenizer( [line] , max_length=__magic_name__ , padding="""max_length""" if pad_to_max_length else None , truncation=__magic_name__ , return_tensors=__magic_name__ , add_special_tokens=__magic_name__ , **__magic_name__ , ) def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : Any=None , ) -> Union[str, Any]: """simple docstring""" lowercase__ = input_ids.ne(__magic_name__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]="train" , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any="" , ) -> Any: """simple docstring""" super().__init__() lowercase__ = Path(_UpperCAmelCase ).joinpath(type_path + """.source""" ) lowercase__ = Path(_UpperCAmelCase ).joinpath(type_path + """.target""" ) lowercase__ = self.get_char_lens(self.src_file ) lowercase__ = max_source_length lowercase__ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' lowercase__ = tokenizer lowercase__ = prefix if n_obs is not None: lowercase__ = self.src_lens[:n_obs] lowercase__ = src_lang lowercase__ = tgt_lang def __len__(self : Optional[int] ) -> List[Any]: """simple docstring""" return len(self.src_lens ) def __getitem__(self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" lowercase__ = index + 1 # linecache starts at 1 lowercase__ = self.prefix + linecache.getline(str(self.src_file ) , _UpperCAmelCase ).rstrip("""\n""" ) lowercase__ = linecache.getline(str(self.tgt_file ) , _UpperCAmelCase ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase__ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer ) lowercase__ = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer lowercase__ = encode_line(_UpperCAmelCase , _UpperCAmelCase , self.max_source_length , """right""" ) lowercase__ = encode_line(_UpperCAmelCase , _UpperCAmelCase , self.max_target_length , """right""" ) lowercase__ = source_inputs["""input_ids"""].squeeze() lowercase__ = target_inputs["""input_ids"""].squeeze() lowercase__ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase__ (_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return [len(_UpperCAmelCase ) for x in Path(_UpperCAmelCase ).open().readlines()] def lowerCamelCase__ (self : Any , _UpperCAmelCase : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" lowercase__ = torch.stack([x["""input_ids"""] for x in batch] ) lowercase__ = torch.stack([x["""attention_mask"""] for x in batch] ) lowercase__ = torch.stack([x["""decoder_input_ids"""] for x in batch] ) lowercase__ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer.pad_token_id ) lowercase__ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer.pad_token_id ) lowercase__ = trim_batch(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ , lowercase__ = trim_batch(_UpperCAmelCase , _UpperCAmelCase , attention_mask=_UpperCAmelCase ) lowercase__ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch A : Dict = getLogger(__name__) def UpperCamelCase ( __magic_name__ : List[List] ) -> Dict: """simple docstring""" return list(itertools.chain.from_iterable(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : str ) -> None: """simple docstring""" lowercase__ = get_git_info() save_json(__magic_name__ , os.path.join(__magic_name__ , """git_log.json""" ) ) def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Dict=4 , **__magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=__magic_name__ , **__magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Optional[int]: """simple docstring""" with open(__magic_name__ ) as f: return json.load(__magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = git.Repo(search_parent_directories=__magic_name__ ) lowercase__ = { """repo_id""": str(__magic_name__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCamelCase ( __magic_name__ : Callable , __magic_name__ : Iterable ) -> List: """simple docstring""" return list(map(__magic_name__ , __magic_name__ ) ) def UpperCamelCase ( __magic_name__ : int , __magic_name__ : str ) -> Optional[int]: """simple docstring""" with open(__magic_name__ , """wb""" ) as f: return pickle.dump(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" def remove_articles(__magic_name__ : Optional[int] ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , __magic_name__ ) def white_space_fix(__magic_name__ : Optional[int] ): return " ".join(text.split() ) def remove_punc(__magic_name__ : Tuple ): lowercase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__magic_name__ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__magic_name__ ) ) ) ) def UpperCamelCase ( __magic_name__ : int , __magic_name__ : List[Any] ) -> str: """simple docstring""" lowercase__ = normalize_answer(__magic_name__ ).split() lowercase__ = normalize_answer(__magic_name__ ).split() lowercase__ = Counter(__magic_name__ ) & Counter(__magic_name__ ) lowercase__ = sum(common.values() ) if num_same == 0: return 0 lowercase__ = 1.0 * num_same / len(__magic_name__ ) lowercase__ = 1.0 * num_same / len(__magic_name__ ) lowercase__ = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( __magic_name__ : int , __magic_name__ : str ) -> List[Any]: """simple docstring""" return normalize_answer(__magic_name__ ) == normalize_answer(__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : List[str] ) -> Dict: """simple docstring""" assert len(__magic_name__ ) == len(__magic_name__ ) lowercase__ = 0 for hypo, pred in zip(__magic_name__ , __magic_name__ ): em += exact_match_score(__magic_name__ , __magic_name__ ) if len(__magic_name__ ) > 0: em /= len(__magic_name__ ) return {"em": em} def UpperCamelCase ( __magic_name__ : List[str] ) -> str: """simple docstring""" return model_prefix.startswith("""rag""" ) def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" lowercase__ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase__ = """dropout_rate""" for p in extra_params: if getattr(__magic_name__ , __magic_name__ , __magic_name__ ): if not hasattr(__magic_name__ , __magic_name__ ) and not hasattr(__magic_name__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__magic_name__ ) ) delattr(__magic_name__ , __magic_name__ ) continue lowercase__ = p if hasattr(__magic_name__ , __magic_name__ ) else equivalent_param[p] setattr(__magic_name__ , __magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) delattr(__magic_name__ , __magic_name__ ) return hparams, config
15
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = XLMRobertaTokenizer A__ = XLMRobertaTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XLMRobertaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ = """<pad>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_UpperCAmelCase ) , 1002 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = XLMRobertaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase__ = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = tempfile.mkdtemp() lowercase__ = tokenizer_r.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowercase__ = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way lowercase__ = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True lowercase__ = tempfile.mkdtemp() lowercase__ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) lowercase__ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way lowercase__ = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False lowercase__ = tempfile.mkdtemp() lowercase__ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) lowercase__ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase__ = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @cached_property def lowerCamelCase__ (self : str ) -> str: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_UpperCAmelCase , f.name ) lowercase__ = XLMRobertaTokenizer(f.name , keep_accents=_UpperCAmelCase ) lowercase__ = pickle.dumps(_UpperCAmelCase ) pickle.loads(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = """I was born in 92000, and this is falsé.""" lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(_UpperCAmelCase ) lowercase__ = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = """Hello World!""" lowercase__ = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowercase__ = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
15
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[Any] = {'vocab_file': 'vocab.json'} A : Optional[int] = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } A : Optional[int] = {'mgp-str': 2_7} class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]="[GO]" , _UpperCAmelCase : Optional[Any]="[GO]" , _UpperCAmelCase : str="[s]" , _UpperCAmelCase : int="[GO]" , **_UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" super().__init__( unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = {v: k for k, v in self.vocab.items()} @property def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" return len(self.vocab ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int ) -> Dict: """simple docstring""" lowercase__ = [] for s in text: char_tokens.extend(_UpperCAmelCase ) return char_tokens def lowerCamelCase__ (self : str , _UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token ) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.decoder.get(_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCAmelCase ) ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + """\n""" ) return (vocab_file,)
15
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: A : Optional[int] = None A : Dict = logging.get_logger(__name__) A : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} A : List[str] = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } A : Optional[Any] = { 'google/rembert': 2_5_6, } A : Tuple = '▁' class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = RemBertTokenizer def __init__(self : List[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Any=False , _UpperCAmelCase : int="[CLS]" , _UpperCAmelCase : Dict="[SEP]" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : int="[SEP]" , _UpperCAmelCase : int="<pad>" , _UpperCAmelCase : str="[CLS]" , _UpperCAmelCase : Union[str, Any]="[MASK]" , **_UpperCAmelCase : int , ) -> Dict: """simple docstring""" lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCAmelCase ) ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class A : '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Dict=64 , _UpperCAmelCase : str=None ) -> str: """simple docstring""" lowercase__ = np.random.default_rng(_UpperCAmelCase ) lowercase__ = length lowercase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowercase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__(self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.length def __getitem__(self : Union[str, Any] , _UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class A ( torch.nn.Module ): '''simple docstring''' def __init__(self : str , _UpperCAmelCase : str=0 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=False ) -> Any: """simple docstring""" super().__init__() lowercase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase__ = True def lowerCamelCase__ (self : int , _UpperCAmelCase : Tuple=None ) -> int: """simple docstring""" if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) lowercase__ = False return x * self.a[0] + self.b[0] class A ( torch.nn.Module ): '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=False ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ = torch.nn.Parameter(torch.tensor(_UpperCAmelCase ).float() ) lowercase__ = torch.nn.Parameter(torch.tensor(_UpperCAmelCase ).float() ) lowercase__ = True def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) lowercase__ = False return x * self.a + self.b def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : int = 16 ) -> Union[str, Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowercase__ = load_dataset("""csv""" , data_files=__magic_name__ ) lowercase__ = datasets["""train"""].unique("""label""" ) lowercase__ = {v: i for i, v in enumerate(__magic_name__ )} def tokenize_function(__magic_name__ : Dict ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) if "label" in examples: lowercase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(__magic_name__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__magic_name__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__magic_name__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowercase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=2 ) lowercase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=1 ) return train_dataloader, eval_dataloader
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
1
import math import random def UpperCamelCase ( __magic_name__ : float , __magic_name__ : bool = False ) -> float: """simple docstring""" if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value A : Dict = 0.02 def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" lowercase__ = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__magic_name__ ): # Forward propagation lowercase__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowercase__ = (expected / 100) - layer_a # Error delta lowercase__ = layer_1_error * sigmoid_function(__magic_name__ , __magic_name__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() A : Tuple = int(input('Expected value: ')) A : Optional[int] = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
15
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
1
def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ = mf_knapsack(i - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) else: lowercase__ = max( mf_knapsack(i - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) , mf_knapsack(i - 1 , __magic_name__ , __magic_name__ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ = val return f[i][j] def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int ) -> Tuple: """simple docstring""" lowercase__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( __magic_name__ : int , __magic_name__ : list , __magic_name__ : list ) -> Optional[int]: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and isinstance(__magic_name__ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ = len(__magic_name__ ) if num_items != len(__magic_name__ ): lowercase__ = ( """The number of weights must be the same as the number of values.\n""" f'''But got {num_items} weights and {len(__magic_name__ )} values''' ) raise ValueError(__magic_name__ ) for i in range(__magic_name__ ): if not isinstance(wt[i] , __magic_name__ ): lowercase__ = ( """All weights must be integers but got weight of """ f'''type {type(wt[i] )} at index {i}''' ) raise TypeError(__magic_name__ ) lowercase__ , lowercase__ = knapsack(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = set() _construct_solution(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return optimal_val, example_optional_set def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int , __magic_name__ : int , __magic_name__ : set ) -> str: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__magic_name__ , __magic_name__ , i - 1 , __magic_name__ , __magic_name__ ) else: optimal_set.add(__magic_name__ ) _construct_solution(__magic_name__ , __magic_name__ , i - 1 , j - wt[i - 1] , __magic_name__ ) if __name__ == "__main__": A : List[str] = [3, 2, 4, 4] A : Tuple = [4, 3, 2, 3] A : Union[str, Any] = 4 A : Optional[Any] = 6 A : str = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] A , A : Optional[Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 A , A : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
15
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
1
from __future__ import annotations A : Optional[Any] = [] def UpperCamelCase ( __magic_name__ : list[list[int]] , __magic_name__ : int , __magic_name__ : int ) -> bool: """simple docstring""" for i in range(len(__magic_name__ ) ): if board[row][i] == 1: return False for i in range(len(__magic_name__ ) ): if board[i][column] == 1: return False for i, j in zip(range(__magic_name__ , -1 , -1 ) , range(__magic_name__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__magic_name__ , -1 , -1 ) , range(__magic_name__ , len(__magic_name__ ) ) ): if board[i][j] == 1: return False return True def UpperCamelCase ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> bool: """simple docstring""" if row >= len(__magic_name__ ): solution.append(__magic_name__ ) printboard(__magic_name__ ) print() return True for i in range(len(__magic_name__ ) ): if is_safe(__magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = 1 solve(__magic_name__ , row + 1 ) lowercase__ = 0 return False def UpperCamelCase ( __magic_name__ : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__magic_name__ ) ): for j in range(len(__magic_name__ ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) A : str = 8 A : Union[str, Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
15
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__magic_name__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__magic_name__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__magic_name__ ) return parser.parse_args() def UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase__ = parse_args() # Import training_script as a module. lowercase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase__ = script_fpath.stem lowercase__ = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
1
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__(self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : Dict=[30, 30] , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[str]=10 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : str=3 , _UpperCAmelCase : int=None , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Dict=10 , ) -> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope lowercase__ = n_targets lowercase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ = num_patches + 1 + self.num_detection_tokens def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ = [] for i in range(self.batch_size ): lowercase__ = {} lowercase__ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase ) lowercase__ = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase ) labels.append(_UpperCAmelCase ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = YolosModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = YolosForObjectDetection(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(pixel_values=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () A__ = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int=False ) -> str: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ = [] for i in range(self.model_tester.batch_size ): lowercase__ = {} lowercase__ = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long ) lowercase__ = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float ) labels.append(_UpperCAmelCase ) lowercase__ = labels return inputs_dict def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = YolosModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" pass def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True # in YOLOS, the seq_len is different lowercase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ = len(_UpperCAmelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # YOLOS has a different seq_length lowercase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = YolosModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> List[str]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(inputs.pixel_values ) # verify outputs lowercase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=_UpperCAmelCase , ) lowercase__ = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify postprocessing lowercase__ = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(_UpperCAmelCase ) lowercase__ = [75, 75, 17, 63, 17] lowercase__ = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(_UpperCAmelCase ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , _UpperCAmelCase , atol=1E-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , _UpperCAmelCase ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , _UpperCAmelCase ) )
15
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image A : Tuple = ['text', 'image', 'audio'] def UpperCamelCase ( __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__magic_name__ , __magic_name__ ): inputs.append(create_inputs(__magic_name__ ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def UpperCamelCase ( __magic_name__ : List ) -> Tuple: """simple docstring""" lowercase__ = [] for output in outputs: if isinstance(__magic_name__ , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__magic_name__ , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__magic_name__ , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class A : '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) lowercase__ = self.tool.inputs for _input in inputs: if isinstance(_input , _UpperCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = create_inputs(self.tool.inputs ) lowercase__ = self.tool(*_UpperCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: lowercase__ = [outputs] self.assertListEqual(output_types(_UpperCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = create_inputs(self.tool.inputs ) lowercase__ = self.tool(*_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [outputs] self.assertEqual(len(_UpperCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(_UpperCAmelCase , self.tool.outputs ): lowercase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = create_inputs(self.tool.inputs ) lowercase__ = [] for _input, input_type in zip(_UpperCAmelCase , self.tool.inputs ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase__ = self.tool(*_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [outputs] self.assertEqual(len(_UpperCAmelCase ) , len(self.tool.outputs ) )
15
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
1
import doctest from collections import deque import numpy as np class A : '''simple docstring''' def __init__(self : List[str] ) -> None: """simple docstring""" lowercase__ = [2, 1, 2, -1] lowercase__ = [1, 2, 3, 4] def lowerCamelCase__ (self : Tuple ) -> list[float]: """simple docstring""" lowercase__ = len(self.first_signal ) lowercase__ = len(self.second_signal ) lowercase__ = max(_UpperCAmelCase , _UpperCAmelCase ) # create a zero matrix of max_length x max_length lowercase__ = [[0] * max_length for i in range(_UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCAmelCase ): lowercase__ = deque(self.second_signal ) rotated_signal.rotate(_UpperCAmelCase ) for j, item in enumerate(_UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal lowercase__ = np.matmul(np.transpose(_UpperCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
15
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
1
from scipy.stats import spearmanr import datasets A : int = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' A : Any = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' A : Union[str, Any] = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=False ) -> Tuple: """simple docstring""" lowercase__ = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
15
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
1
import argparse import struct import unittest class A : '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : bytes ) -> None: """simple docstring""" lowercase__ = data # Initialize hash values lowercase__ = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, ] # Initialize round constants lowercase__ = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, ] lowercase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowercase__ = b"""\x80""" + (b"""\x00""" * (63 - (len(_UpperCAmelCase ) + 8) % 64)) lowercase__ = struct.pack(""">Q""" , (len(_UpperCAmelCase ) * 8) ) return data + padding + big_endian_integer def lowerCamelCase__ (self : Tuple ) -> None: """simple docstring""" lowercase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase__ = list(struct.unpack(""">16L""" , _UpperCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowercase__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowercase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression lowercase__ = self.ror(_UpperCAmelCase , 6 ) ^ self.ror(_UpperCAmelCase , 11 ) ^ self.ror(_UpperCAmelCase , 25 ) lowercase__ = (e & f) ^ ((~e & 0xffffffff) & g) lowercase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 lowercase__ = self.ror(_UpperCAmelCase , 2 ) ^ self.ror(_UpperCAmelCase , 13 ) ^ self.ror(_UpperCAmelCase , 22 ) lowercase__ = (a & b) ^ (a & c) ^ (b & c) lowercase__ = (sa + maj) % 0x100000000 lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) lowercase__ = [a, b, c, d, e, f, g, h] # Modify final values lowercase__ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] lowercase__ = """""".join([hex(_UpperCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowerCamelCase__ (self : str , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return 0xffffffff & (value << (32 - rotations)) | (value >> rotations) class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> None: """simple docstring""" import hashlib lowercase__ = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(_UpperCAmelCase ).hash , hashlib.shaaaa(_UpperCAmelCase ).hexdigest() ) def UpperCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowercase__ = f.read() else: lowercase__ = bytes(__magic_name__ , """utf-8""" ) print(SHAaaa(__magic_name__ ).hash ) if __name__ == "__main__": main()
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
1
def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int ) -> int: """simple docstring""" if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowercase__ = [p / w for p, w in zip(__magic_name__ , __magic_name__ )] # Creating a copy of the list and sorting profit/weight in ascending order lowercase__ = sorted(__magic_name__ ) # declaring useful variables lowercase__ = len(__magic_name__ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowercase__ = sorted_profit_by_weight[length - i - 1] lowercase__ = profit_by_weight.index(__magic_name__ ) lowercase__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) A : Tuple = [int(x) for x in input('Input profits separated by spaces: ').split()] A : Optional[int] = [int(x) for x in input('Input weights separated by spaces: ').split()] A : Optional[int] = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
15
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A : Optional[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] A : Union[str, Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] A : List[Any] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) A : str = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) A : str = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> int: """simple docstring""" for tf_name, hf_name in patterns: lowercase__ = k.replace(__magic_name__ , __magic_name__ ) return k def UpperCamelCase ( __magic_name__ : dict , __magic_name__ : dict ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" lowercase__ = BigBirdPegasusConfig(**__magic_name__ ) lowercase__ = BigBirdPegasusForConditionalGeneration(__magic_name__ ) lowercase__ = torch_model.state_dict() lowercase__ = {} # separating decoder weights lowercase__ = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} lowercase__ = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): lowercase__ = [k.endswith(__magic_name__ ) for ending in KEYS_TO_IGNORE] if any(__magic_name__ ): continue lowercase__ = DECODER_PATTERNS lowercase__ = rename_state_dict_key(__magic_name__ , __magic_name__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowercase__ = v.T lowercase__ = torch.from_numpy(__magic_name__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): lowercase__ = [k.endswith(__magic_name__ ) for ending in KEYS_TO_IGNORE] if any(__magic_name__ ): continue lowercase__ = REMAINING_PATTERNS lowercase__ = rename_state_dict_key(__magic_name__ , __magic_name__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowercase__ = v.T lowercase__ = torch.from_numpy(__magic_name__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' lowercase__ = mapping["""model.embed_positions.weight"""] lowercase__ = mapping.pop("""model.embed_positions.weight""" ) lowercase__ , lowercase__ = torch_model.load_state_dict(__magic_name__ , strict=__magic_name__ ) lowercase__ = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( __magic_name__ : Tuple ) -> Dict: """simple docstring""" lowercase__ = tf.train.list_variables(__magic_name__ ) lowercase__ = {} lowercase__ = ["""global_step"""] for name, shape in tqdm(__magic_name__ , desc="""converting tf checkpoint to dict""" ): lowercase__ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase__ = tf.train.load_variable(__magic_name__ , __magic_name__ ) lowercase__ = array return tf_weights def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : dict ) -> int: """simple docstring""" lowercase__ = get_tf_weights_as_numpy(__magic_name__ ) lowercase__ = convert_bigbird_pegasus(__magic_name__ , __magic_name__ ) torch_model.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') A : Any = parser.parse_args() A : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
15
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
1
import warnings from .generation import TFGenerationMixin class A ( UpperCAmelCase__ ): '''simple docstring''' warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , UpperCAmelCase__ , )
15
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets A : str = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' A : List[str] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' A : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[Any]=False ) -> Optional[Any]: """simple docstring""" if rouge_types is None: lowercase__ = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] lowercase__ = rouge_scorer.RougeScorer(rouge_types=_UpperCAmelCase , use_stemmer=_UpperCAmelCase ) if use_aggregator: lowercase__ = scoring.BootstrapAggregator() else: lowercase__ = [] for ref, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = scorer.score(_UpperCAmelCase , _UpperCAmelCase ) if use_aggregator: aggregator.add_scores(_UpperCAmelCase ) else: scores.append(_UpperCAmelCase ) if use_aggregator: lowercase__ = aggregator.aggregate() else: lowercase__ = {} for key in scores[0]: lowercase__ = [score[key] for score in scores] return result
15
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
1
from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''onnx'''] def __init__(self : List[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Any ) -> List[str]: """simple docstring""" requires_backends(self , ["""onnx"""] ) @classmethod def lowerCamelCase__ (cls : Dict , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""onnx"""] ) @classmethod def lowerCamelCase__ (cls : List[Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : str ) -> Any: """simple docstring""" requires_backends(cls , ["""onnx"""] )
15
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME A : Union[str, Any] = ['small', 'medium', 'large'] A : int = 'lm_head.decoder.weight' A : str = 'lm_head.weight' def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(__magic_name__ ) lowercase__ = d.pop(__magic_name__ ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) A : int = parser.parse_args() for MODEL in DIALOGPT_MODELS: A : Tuple = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') A : Dict = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A : Union[str, Any] = random.Random() def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : List[Any]=1.0 , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None ) -> Optional[Any]: """simple docstring""" if rng is None: lowercase__ = global_rng lowercase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : int=400 , _UpperCAmelCase : Tuple=2000 , _UpperCAmelCase : str=10 , _UpperCAmelCase : Union[str, Any]=160 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : int=4000 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[int]=True , ) -> Tuple: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = min_seq_length lowercase__ = max_seq_length lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ = padding_value lowercase__ = sampling_rate lowercase__ = return_attention_mask lowercase__ = do_normalize lowercase__ = feature_size lowercase__ = chunk_length lowercase__ = hop_length def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[int]=False ) -> Tuple: """simple docstring""" def _flatten(_UpperCAmelCase : Any ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: lowercase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" lowercase__ = WhisperFeatureExtractionTester(self ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) lowercase__ = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) lowercase__ = feat_extract_first.to_dict() lowercase__ = feat_extract_second.to_dict() lowercase__ = feat_extract_first.mel_filters lowercase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(_UpperCAmelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(_UpperCAmelCase ) lowercase__ = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) lowercase__ = feat_extract_first.to_dict() lowercase__ = feat_extract_second.to_dict() lowercase__ = feat_extract_first.mel_filters lowercase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ = feature_extractor(_UpperCAmelCase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowercase__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowercase__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test batched lowercase__ = feature_extractor(_UpperCAmelCase , return_tensors="""np""" ).input_features lowercase__ = feature_extractor(_UpperCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ = np.asarray(_UpperCAmelCase ) lowercase__ = feature_extractor(_UpperCAmelCase , return_tensors="""np""" ).input_features lowercase__ = feature_extractor(_UpperCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test truncation required lowercase__ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowercase__ = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] lowercase__ = [x[: feature_extractor.n_samples] for x in speech_inputs] lowercase__ = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs_truncated] lowercase__ = feature_extractor(_UpperCAmelCase , return_tensors="""np""" ).input_features lowercase__ = feature_extractor(_UpperCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" import torch lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = np.random.rand(100 , 32 ).astype(np.floataa ) lowercase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowercase__ = ds.sort("""id""" ).select(range(_UpperCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on lowercase__ = self._load_datasamples(1 ) lowercase__ = WhisperFeatureExtractor() lowercase__ = feature_extractor(_UpperCAmelCase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _UpperCAmelCase , atol=1E-4 ) ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = self._load_datasamples(1 )[0] lowercase__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue lowercase__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_UpperCAmelCase )[0] self.assertTrue(np.all(np.mean(_UpperCAmelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase ) - 1 ) < 1E-3 ) )
15
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = MobileBertConfig.from_json_file(__magic_name__ ) print(f'''Building PyTorch model from configuration: {config}''' ) lowercase__ = MobileBertForPreTraining(__magic_name__ ) # Load weights from tf checkpoint lowercase__ = load_tf_weights_in_mobilebert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
15
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
from collections.abc import Callable import numpy as np def UpperCamelCase ( __magic_name__ : Callable , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> np.array: """simple docstring""" lowercase__ = int(np.ceil((x_end - xa) / step_size ) ) lowercase__ = np.zeros((n + 1,) ) lowercase__ = ya lowercase__ = xa for k in range(__magic_name__ ): lowercase__ = y[k] + step_size * ode_func(__magic_name__ , y[k] ) lowercase__ = y[k] + ( (step_size / 2) * (ode_func(__magic_name__ , y[k] ) + ode_func(x + step_size , __magic_name__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
15
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
1
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowercase__ = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" lowercase__ = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" lowercase__ = max(len(__magic_name__ ) , len(__magic_name__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__magic_name__ ) , b_binary.zfill(__magic_name__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
1
import math import os import sys def UpperCamelCase ( __magic_name__ : str ) -> str: """simple docstring""" lowercase__ = """""" try: with open(__magic_name__ , """rb""" ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = f'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def UpperCamelCase ( __magic_name__ : dict[str, str] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : str ) -> None: """simple docstring""" lexicon.pop(__magic_name__ ) lowercase__ = last_match_id if math.loga(__magic_name__ ).is_integer(): for curr_key in lexicon: lowercase__ = """0""" + lexicon[curr_key] lowercase__ = bin(__magic_name__ )[2:] def UpperCamelCase ( __magic_name__ : str ) -> str: """simple docstring""" lowercase__ = {"""0""": """0""", """1""": """1"""} lowercase__ , lowercase__ = """""", """""" lowercase__ = len(__magic_name__ ) for i in range(len(__magic_name__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) index += 1 lowercase__ = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase__ = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> str: """simple docstring""" lowercase__ = os.path.getsize(__magic_name__ ) lowercase__ = bin(__magic_name__ )[2:] lowercase__ = len(__magic_name__ ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> None: """simple docstring""" lowercase__ = 8 try: with open(__magic_name__ , """wb""" ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(__magic_name__ ) , __magic_name__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__magic_name__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> None: """simple docstring""" lowercase__ = read_file_binary(__magic_name__ ) lowercase__ = compress_data(__magic_name__ ) lowercase__ = add_file_length(__magic_name__ , __magic_name__ ) write_file_binary(__magic_name__ , __magic_name__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
15
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
1
from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : str , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Tuple , *_UpperCAmelCase : int , **_UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Optional[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : int ) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> int: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Tuple ) -> int: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Optional[int] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Optional[int] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A ( metaclass=UpperCAmelCase__ ): '''simple docstring''' A__ = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Optional[int] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def lowerCamelCase__ (cls : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
15
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
1
def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase__ = f'''The input value of [n={number}] has to be > 0''' raise ValueError(__magic_name__ ) else: lowercase__ = sylvester(number - 1 ) lowercase__ = num - 1 lowercase__ = num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
15
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
1
import math A : List[Any] = 1_0 A : Union[str, Any] = 7 A : List[str] = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( __magic_name__ : int = 20 ) -> str: """simple docstring""" lowercase__ = math.comb(__magic_name__ , __magic_name__ ) lowercase__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __magic_name__ ) lowercase__ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
15
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase ( __magic_name__ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: """simple docstring""" lowercase__ = [] if isinstance(__magic_name__ , __magic_name__ ): for v in tree.values(): shapes.extend(_fetch_dims(__magic_name__ ) ) elif isinstance(__magic_name__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__magic_name__ ) ) elif isinstance(__magic_name__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Tuple[int, ...] ) -> Tuple[int, ...]: """simple docstring""" lowercase__ = [] for d in reversed(__magic_name__ ): idx.append(flat_idx % d ) lowercase__ = flat_idx // d return tuple(reversed(__magic_name__ ) ) @torch.jit.ignore def UpperCamelCase ( __magic_name__ : Sequence[int] , __magic_name__ : Sequence[int] , __magic_name__ : Sequence[int] , __magic_name__ : Optional[Sequence[bool]] = None , __magic_name__ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: """simple docstring""" def reduce_edge_list(__magic_name__ : List[bool] ) -> None: lowercase__ = True for i in range(len(__magic_name__ ) ): lowercase__ = -1 * (i + 1) l[reversed_idx] &= tally lowercase__ = l[reversed_idx] if start_edges is None: lowercase__ = [s == 0 for s in start] reduce_edge_list(__magic_name__ ) if end_edges is None: lowercase__ = [e == (d - 1) for e, d in zip(__magic_name__ , __magic_name__ )] reduce_edge_list(__magic_name__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__magic_name__ ) == 0: return [()] elif len(__magic_name__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] lowercase__ = [] lowercase__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__magic_name__ , __magic_name__ ): if s == e: path_list.append(slice(__magic_name__ , s + 1 ) ) else: break lowercase__ = tuple(__magic_name__ ) lowercase__ = len(__magic_name__ ) # start == end, and we're done if divergence_idx == len(__magic_name__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = start[divergence_idx] return tuple( path + (slice(__magic_name__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = end[divergence_idx] return tuple( path + (slice(__magic_name__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) lowercase__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCamelCase ( __magic_name__ : torch.Tensor , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> torch.Tensor: """simple docstring""" lowercase__ = t.shape[:no_batch_dims] lowercase__ = list(_flat_idx_to_idx(__magic_name__ , __magic_name__ ) ) # _get_minimal_slice_set is inclusive lowercase__ = list(_flat_idx_to_idx(flat_end - 1 , __magic_name__ ) ) # Get an ordered list of slices to perform lowercase__ = _get_minimal_slice_set( __magic_name__ , __magic_name__ , __magic_name__ , ) lowercase__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCamelCase ( __magic_name__ : Callable , __magic_name__ : Dict[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool = False , __magic_name__ : Any = None , __magic_name__ : bool = False , ) -> Any: """simple docstring""" if not (len(__magic_name__ ) > 0): raise ValueError("""Must provide at least one input""" ) lowercase__ = [shape[:no_batch_dims] for shape in _fetch_dims(__magic_name__ )] lowercase__ = tuple([max(__magic_name__ ) for s in zip(*__magic_name__ )] ) def _prep_inputs(__magic_name__ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) lowercase__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t lowercase__ = tensor_tree_map(_prep_inputs , __magic_name__ ) lowercase__ = None if _out is not None: lowercase__ = tensor_tree_map(lambda __magic_name__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) lowercase__ = 1 for d in orig_batch_dims: flat_batch_dim *= d lowercase__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__magic_name__ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowercase__ = 0 lowercase__ = prepped_outputs for _ in range(__magic_name__ ): # Chunk the input if not low_mem: lowercase__ = _select_chunk else: lowercase__ = partial( _chunk_slice , flat_start=__magic_name__ , flat_end=min(__magic_name__ , i + chunk_size ) , no_batch_dims=len(__magic_name__ ) , ) lowercase__ = tensor_tree_map(__magic_name__ , __magic_name__ ) # Run the layer on the chunk lowercase__ = layer(**__magic_name__ ) # Allocate space for the output if out is None: lowercase__ = tensor_tree_map(lambda __magic_name__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __magic_name__ ) # Put the chunk in its pre-allocated space if isinstance(__magic_name__ , __magic_name__ ): def assign(__magic_name__ : dict , __magic_name__ : dict ) -> None: for k, v in da.items(): if isinstance(__magic_name__ , __magic_name__ ): assign(__magic_name__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowercase__ = da[k] assign(__magic_name__ , __magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): for xa, xa in zip(__magic_name__ , __magic_name__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: lowercase__ = xa elif isinstance(__magic_name__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowercase__ = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size lowercase__ = tensor_tree_map(lambda __magic_name__ : t.view(orig_batch_dims + t.shape[1:] ) , __magic_name__ ) return out class A : '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : int = 512 , ) -> str: """simple docstring""" lowercase__ = max_chunk_size lowercase__ = None lowercase__ = None def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Callable , _UpperCAmelCase : tuple , _UpperCAmelCase : int ) -> int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowercase__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowercase__ = [c for c in candidates if c > min_chunk_size] lowercase__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_UpperCAmelCase : int ) -> bool: try: with torch.no_grad(): fn(*_UpperCAmelCase , chunk_size=_UpperCAmelCase ) return True except RuntimeError: return False lowercase__ = 0 lowercase__ = len(_UpperCAmelCase ) - 1 while i > min_viable_chunk_size_index: lowercase__ = test_chunk_size(candidates[i] ) if not viable: lowercase__ = (min_viable_chunk_size_index + i) // 2 else: lowercase__ = i lowercase__ = (i + len(_UpperCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Iterable , _UpperCAmelCase : Iterable ) -> bool: """simple docstring""" lowercase__ = True for aa, aa in zip(_UpperCAmelCase , _UpperCAmelCase ): assert type(_UpperCAmelCase ) == type(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [v for _, v in sorted(aa.items() , key=lambda _UpperCAmelCase : x[0] )] lowercase__ = [v for _, v in sorted(aa.items() , key=lambda _UpperCAmelCase : x[0] )] consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) else: consistent &= aa == aa return consistent def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Callable , _UpperCAmelCase : tuple , _UpperCAmelCase : int , ) -> int: """simple docstring""" lowercase__ = True lowercase__ = tree_map(lambda _UpperCAmelCase : a.shape if isinstance(_UpperCAmelCase , torch.Tensor ) else a , _UpperCAmelCase , _UpperCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_UpperCAmelCase ) lowercase__ = self._compare_arg_caches(self.cached_arg_data , _UpperCAmelCase ) else: # Otherwise, we can reuse the precomputed value lowercase__ = False if not consistent: lowercase__ = self._determine_favorable_chunk_size( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) lowercase__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
15
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A : int = logging.get_logger(__name__) class A : '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : str = None , _UpperCAmelCase : uuid.UUID = None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" if not conversation_id: lowercase__ = uuid.uuida() if past_user_inputs is None: lowercase__ = [] if generated_responses is None: lowercase__ = [] lowercase__ = conversation_id lowercase__ = past_user_inputs lowercase__ = generated_responses lowercase__ = text def __eq__(self : Tuple , _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) lowercase__ = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: lowercase__ = text def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowercase__ = None def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str ) -> List[Any]: """simple docstring""" self.generated_responses.append(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self : Any ) -> List[Any]: """simple docstring""" lowercase__ = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): lowercase__ = """user""" if is_user else """bot""" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( UpperCAmelCase__ , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Tuple , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) if self.tokenizer.pad_token_id is None: lowercase__ = self.tokenizer.eos_token def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=None , **_UpperCAmelCase : str ) -> int: """simple docstring""" lowercase__ = {} lowercase__ = {} lowercase__ = {} if min_length_for_response is not None: lowercase__ = min_length_for_response if minimum_tokens is not None: lowercase__ = minimum_tokens if "max_length" in generate_kwargs: lowercase__ = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowercase__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self : List[str] , _UpperCAmelCase : Union[Conversation, List[Conversation]] , _UpperCAmelCase : Dict=0 , **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" lowercase__ = super().__call__(_UpperCAmelCase , num_workers=_UpperCAmelCase , **_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Conversation , _UpperCAmelCase : Any=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): lowercase__ = self.tokenizer._build_conversation_input_ids(_UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowercase__ = self._legacy_parse_and_tokenize(_UpperCAmelCase ) if self.framework == "pt": lowercase__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowercase__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=10 , **_UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" lowercase__ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) lowercase__ = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) lowercase__ = max_length - minimum_tokens lowercase__ = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: lowercase__ = model_inputs["""attention_mask"""][:, -trim:] lowercase__ = model_inputs.pop("""conversation""" ) lowercase__ = max_length lowercase__ = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) if self.model.config.is_encoder_decoder: lowercase__ = 1 else: lowercase__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any=True ) -> Any: """simple docstring""" lowercase__ = model_outputs["""output_ids"""] lowercase__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) lowercase__ = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(_UpperCAmelCase ) return conversation def lowerCamelCase__ (self : str , _UpperCAmelCase : Conversation ) -> Dict: """simple docstring""" lowercase__ = self.tokenizer.eos_token_id lowercase__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > self.tokenizer.model_max_length: lowercase__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
15
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
1
import numpy as np import datasets A : List[str] = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' A : str = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' A : int = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""" ) , id="""X""" ), } ) , ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = np.array(_UpperCAmelCase ) lowercase__ = np.array(_UpperCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("""Expected `X` to be a 2D vector""" ) if len(reference_distribution.shape ) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""" ) if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" ) # Get mahalanobis distance for each prediction lowercase__ = X - np.mean(_UpperCAmelCase ) lowercase__ = np.cov(reference_distribution.T ) try: lowercase__ = np.linalg.inv(_UpperCAmelCase ) except np.linalg.LinAlgError: lowercase__ = np.linalg.pinv(_UpperCAmelCase ) lowercase__ = np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = np.dot(_UpperCAmelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
15
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
1
import argparse import os import re A : List[Any] = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict A : Any = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings A : Optional[Any] = re.compile(r'\s*\(\s*"(\S[^"]+)"') def UpperCamelCase ( __magic_name__ : str , __magic_name__ : bool = False ) -> Optional[int]: """simple docstring""" with open(__magic_name__ , """r""" , encoding="""utf-8""" ) as f: lowercase__ = f.read() lowercase__ = content.split("""\n""" ) lowercase__ = [] lowercase__ = 0 while line_idx < len(__magic_name__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowercase__ = len(re.search(R"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 lowercase__ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowercase__ = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowercase__ = sorted(__magic_name__ , key=lambda __magic_name__ : _re_identifier.search(__magic_name__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(__magic_name__ ) ) elif "\n".join(__magic_name__ ) != content: return True def UpperCamelCase ( __magic_name__ : bool = False ) -> Dict: """simple docstring""" lowercase__ = [os.path.join(__magic_name__ , __magic_name__ ) for f in os.listdir(__magic_name__ ) if f.endswith(""".py""" )] lowercase__ = [sort_auto_mapping(__magic_name__ , overwrite=__magic_name__ ) for fname in fnames] if not overwrite and any(__magic_name__ ): lowercase__ = [f for f, d in zip(__magic_name__ , __magic_name__ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {", ".join(__magic_name__ )}. Run `make style` to fix''' """ this.""" ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A : Tuple = parser.parse_args() sort_all_auto_mappings(not args.check_only)
15
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
1
import datasets from .evaluate import evaluate A : Union[str, Any] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' A : Any = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase__ = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase__ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
15
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever A : Tuple = logging.getLogger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=None ) -> Optional[int]: """simple docstring""" super().__init__( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , index=_UpperCAmelCase , init_retrieval=_UpperCAmelCase , ) lowercase__ = None def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually lowercase__ = self._infer_socket_ifname() # avoid clash with the NCCL port lowercase__ = str(distributed_port + 1 ) lowercase__ = dist.new_group(ranks=_UpperCAmelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=torch.floataa ) -> Tuple: """simple docstring""" lowercase__ = torch.empty(_UpperCAmelCase , dtype=_UpperCAmelCase ) dist.scatter(_UpperCAmelCase , src=0 , scatter_list=_UpperCAmelCase , group=self.process_group ) return target_tensor def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names lowercase__ = next((addr for addr in addrs if addr.startswith("""e""" )) , _UpperCAmelCase ) return ifname def lowerCamelCase__ (self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): lowercase__ , lowercase__ = self._main_retrieve(_UpperCAmelCase , _UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCAmelCase ) # distributed training lowercase__ = dist.get_world_size(group=self.process_group ) # gather logic lowercase__ = None if self._is_main(): lowercase__ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_UpperCAmelCase )] dist.gather(torch.tensor(_UpperCAmelCase ) , dst=0 , gather_list=_UpperCAmelCase , group=self.process_group ) # scatter logic lowercase__ = question_hidden_states.shape[0] lowercase__ = [] lowercase__ = [] if self._is_main(): assert len(_UpperCAmelCase ) == world_size lowercase__ , lowercase__ = self._main_retrieve(torch.cat(_UpperCAmelCase ).numpy() , _UpperCAmelCase ) lowercase__ , lowercase__ = torch.tensor(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) lowercase__ = self._chunk_tensor(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = self._chunk_tensor(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = self._scattered(_UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) lowercase__ = self._scattered(_UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_UpperCAmelCase )
15
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) lowercase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house lowercase__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1E-3 ) ) @slow def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" lowercase__ = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) lowercase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house lowercase__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1E-3 ) )
15
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=7 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : int=18 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : Optional[Any]=400 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , _UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , ) -> int: """simple docstring""" lowercase__ = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = DPTImageProcessor if is_vision_available() else None def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = DPTImageProcessingTester(self ) @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """size""" ) ) def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
15
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''naver-clova-ix/donut-base-finetuned-docvqa''' A__ = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) A__ = '''document_qa''' A__ = AutoProcessor A__ = VisionEncoderDecoderModel A__ = ['''image''', '''text'''] A__ = ['''text'''] def __init__(self : List[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = task_prompt.replace("""{user_input}""" , _UpperCAmelCase ) lowercase__ = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors="""pt""" ).input_ids lowercase__ = self.pre_processor(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def lowerCamelCase__ (self : str , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.pre_processor.batch_decode(_UpperCAmelCase )[0] lowercase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) lowercase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) lowercase__ = re.sub(r"""<.*?>""" , """""" , _UpperCAmelCase , count=1 ).strip() # remove first task start token lowercase__ = self.pre_processor.tokenajson(_UpperCAmelCase ) return sequence["answer"]
15
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A : Tuple = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : Optional[int] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : int = 8 , **_UpperCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_pad lowercase__ = pad_size def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple ) -> np.ndarray: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> int: """simple docstring""" lowercase__ , lowercase__ = get_image_size(_UpperCAmelCase ) lowercase__ = (old_height // size + 1) * size - old_height lowercase__ = (old_width // size + 1) * size - old_width return pad(_UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_pad if do_pad is not None else self.do_pad lowercase__ = pad_size if pad_size is not None else self.pad_size lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_pad: lowercase__ = [self.pad(_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowercase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
15
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
1
def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if index == number_of_items: return 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = knapsack(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , index + 1 ) if weights[index] <= max_weight: lowercase__ = values[index] + knapsack( __magic_name__ , __magic_name__ , __magic_name__ , max_weight - weights[index] , index + 1 ) return max(__magic_name__ , __magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
15
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = RobertaTokenizer A__ = RobertaTokenizerFast A__ = True A__ = {'''cls_token''': '''<s>'''} def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase__ = {"""unk_token""": """<unk>"""} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , **_UpperCAmelCase : str ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" lowercase__ = """lower newer""" lowercase__ = """lower newer""" return input_text, output_text def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ = """lower newer""" lowercase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" lowercase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=_UpperCAmelCase ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=_UpperCAmelCase ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained("""roberta-base""" ) lowercase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.encode( """sequence builders""" , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) lowercase__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = """Encode this sequence.""" lowercase__ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens lowercase__ = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = """Encode <mask> sequence""" lowercase__ = """Encode <mask>sequence""" lowercase__ = tokenizer.encode(_UpperCAmelCase ) lowercase__ = encoded.index(_UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase ) lowercase__ = encoded.index(_UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" pass def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = """A, <mask> AllenNLP sentence.""" lowercase__ = tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) lowercase__ = tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _UpperCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) lowercase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , _UpperCAmelCase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , _UpperCAmelCase ) self.assertEqual(post_processor_state["""trim_offsets"""] , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ = f'''{text_of_1_token} {text_of_1_token}''' lowercase__ = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) lowercase__ = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) lowercase__ = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) lowercase__ = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) lowercase__ = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) lowercase__ = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) lowercase__ = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) lowercase__ = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) lowercase__ = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase__ = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) lowercase__ = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) lowercase__ = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) lowercase__ = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) lowercase__ = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) lowercase__ = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
15
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A : Optional[Any] = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Optional[int]=None ) -> Optional[int]: """simple docstring""" require_version(deps[pkg] , __magic_name__ )
15
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
def UpperCamelCase ( __magic_name__ : int = 10**9 ) -> int: """simple docstring""" lowercase__ = 1 lowercase__ = 2 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase__ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
15
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """depth_multiplier""" ) ) class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Tuple=0.25 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=1024 , _UpperCAmelCase : int=32 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : List[str]=None , ) -> Optional[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = depth_multiplier lowercase__ = min_depth lowercase__ = tf_padding lowercase__ = int(last_hidden_size * depth_multiplier ) lowercase__ = output_stride lowercase__ = hidden_act lowercase__ = classifier_dropout_prob lowercase__ = use_labels lowercase__ = is_training lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = scope def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__ (self : str ) -> int: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () A__ = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = MobileNetVaModelTester(self ) lowercase__ = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" pass def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = 26 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : Dict ) -> List[Any]: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> Any: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
1
def UpperCamelCase ( __magic_name__ : str ) -> bool: """simple docstring""" lowercase__ = 0 for ch in input_str: lowercase__ = ord(__magic_name__ ) lowercase__ = pow(2 , __magic_name__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = KandinskyVaaControlnetImgaImgPipeline A__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] A__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] A__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return 32 @property def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" return 32 @property def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" return self.time_input_dim @property def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" return 100 @property def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase__ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowercase__ = DDIMScheduler(**_UpperCAmelCase ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ (self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : int=0 ) -> Dict: """simple docstring""" lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create hint lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) lowercase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase__ = init_image.resize((512, 512) ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) lowercase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0 lowercase__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase__ = """A robot, 4k photo""" lowercase__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) lowercase__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( _UpperCAmelCase , image=_UpperCAmelCase , strength=0.85 , generator=_UpperCAmelCase , negative_prompt="""""" , ).to_tuple() lowercase__ = pipeline( image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
15
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Optional[Any]=64 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Tuple=1 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = q_groups lowercase__ = k_groups lowercase__ = v_groups lowercase__ = post_attention_groups lowercase__ = intermediate_groups lowercase__ = output_groups def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = SqueezeBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = SqueezeBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = SqueezeBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = SqueezeBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = SqueezeBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : str ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) A__ = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) A__ = False A__ = True A__ = False def lowerCamelCase__ (self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = SqueezeBertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = SqueezeBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" lowercase__ = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) lowercase__ = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) )
15
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase ( __magic_name__ : Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """simple docstring""" lowercase__ = [] lowercase__ = [] lowercase__ = [] for rt in rc.restypes: lowercase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase__ = {name: i for i, name in enumerate(__magic_name__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowercase__ = torch.tensor( __magic_name__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowercase__ = torch.tensor( __magic_name__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowercase__ = torch.tensor( __magic_name__ , dtype=torch.floataa , device=protein["""aatype"""].device , ) lowercase__ = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask lowercase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase__ = rc.restype_atoa[restype_letter] lowercase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ = rc.atom_order[atom_name] lowercase__ = 1 lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask return protein def UpperCamelCase ( __magic_name__ : Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]: """simple docstring""" lowercase__ = tree_map(lambda __magic_name__ : torch.tensor(__magic_name__ , device=batch["""aatype"""].device ) , __magic_name__ , np.ndarray ) lowercase__ = tensor_tree_map(lambda __magic_name__ : np.array(__magic_name__ ) , make_atomaa_masks(__magic_name__ ) ) return out
15
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
1
class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : str = "" , _UpperCAmelCase : bool = False ) -> None: """simple docstring""" lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowerCamelCase__ (self : str , _UpperCAmelCase : str ) -> tuple[str, str, str]: """simple docstring""" lowercase__ = 0 for q, w in zip(self.prefix , _UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : list[str] ) -> None: """simple docstring""" for word in words: self.insert(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> None: """simple docstring""" if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=_UpperCAmelCase , is_leaf=_UpperCAmelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str ) -> bool: """simple docstring""" lowercase__ = self.nodes.get(word[0] , _UpperCAmelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> bool: """simple docstring""" lowercase__ = self.nodes.get(word[0] , _UpperCAmelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int = 0 ) -> None: """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ) -> bool: """simple docstring""" lowercase__ = """banana bananas bandana band apple all beast""".split() lowercase__ = RadixNode() root.insert_many(__magic_name__ ) assert all(root.find(__magic_name__ ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def UpperCamelCase ( ) -> None: """simple docstring""" assert test_trie() def UpperCamelCase ( ) -> None: """simple docstring""" lowercase__ = RadixNode() lowercase__ = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__magic_name__ ) print("""Words:""" , __magic_name__ ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
15
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = DiTPipeline A__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } A__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A__ = False def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_UpperCAmelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_UpperCAmelCase , ) lowercase__ = AutoencoderKL() lowercase__ = DDIMScheduler() lowercase__ = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=0 ) -> Any: """simple docstring""" if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_UpperCAmelCase ) else: lowercase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__ = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__ = pipe(**_UpperCAmelCase ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowercase__ = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_UpperCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = torch.manual_seed(0 ) lowercase__ = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) lowercase__ = ["""vase""", """umbrella""", """white shark""", """white wolf"""] lowercase__ = pipe.get_label_ids(_UpperCAmelCase ) lowercase__ = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) lowercase__ = ["""vase""", """umbrella"""] lowercase__ = pipe.get_label_ids(_UpperCAmelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
15
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
15
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCamelCase ( ) -> Tuple: """simple docstring""" lowercase__ = torch.nn.Linear(2 , 4 ) lowercase__ = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowercase__ = torch.optim.lr_scheduler.OneCycleLR(__magic_name__ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) lowercase__ = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowercase__ = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCamelCase ( __magic_name__ : Tuple ) -> int: """simple docstring""" lowercase__ = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__magic_name__ ) class A ( UpperCAmelCase__ ): '''simple docstring''' @require_cuda def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_UpperCAmelCase ): lowercase__ = Accelerator(cpu=_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" lowercase__ = Accelerator() lowercase__ = GradientState() assert state.num_steps == 1 lowercase__ = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowercase__ = False assert state.sync_gradients is False GradientState._reset_state() def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_UpperCAmelCase : List[str] , **_UpperCAmelCase : str ): pass with patch("""torch.cuda.set_device""" , _UpperCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): lowercase__ = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = get_signature(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCAmelCase ) # make sure random weights don't match load_random_weights(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) < 1E-3 ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = get_signature(_UpperCAmelCase ) # saving hook def save_config(_UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : int ): lowercase__ = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(_UpperCAmelCase , """data.json""" ) , """w""" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # loading hook def load_config(_UpperCAmelCase : List[Any] , _UpperCAmelCase : int ): with open(os.path.join(_UpperCAmelCase , """data.json""" ) , """r""" ) as f: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = config["""class_name"""] lowercase__ = accelerator.register_save_state_pre_hook(_UpperCAmelCase ) lowercase__ = accelerator.register_load_state_pre_hook(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCAmelCase ) # make sure random weights don't match with hooks load_random_weights(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded lowercase__ = """random""" # make sure loaded weights match with hooks accelerator.load_state(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded lowercase__ = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(_UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() lowercase__ = None # This should work lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertTrue(dummy_obj is None ) def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() lowercase__ = [1, 2, 3] # This should work lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCAmelCase , """_is_accelerate_prepared""" , _UpperCAmelCase ) , _UpperCAmelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def lowerCamelCase__ (self : Any ) -> Optional[Any]: """simple docstring""" from transformers import AutoModelForCausalLM lowercase__ = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCAmelCase , device_map={"""""": 0} , ) lowercase__ = Accelerator() # This should work lowercase__ = accelerator.prepare(_UpperCAmelCase ) @slow @require_bnb def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" from transformers import AutoModelForCausalLM lowercase__ = Accelerator() with init_empty_weights(): lowercase__ = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() lowercase__ = infer_auto_device_map(_UpperCAmelCase ) lowercase__ = """cpu""" lowercase__ = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=_UpperCAmelCase ) # This should not work and get value error with self.assertRaises(_UpperCAmelCase ): lowercase__ = accelerator.prepare(_UpperCAmelCase ) @slow @require_bnb @require_multi_gpu def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" from transformers import AutoModelForCausalLM lowercase__ = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): lowercase__ = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() lowercase__ = infer_auto_device_map(_UpperCAmelCase ) lowercase__ = 1 lowercase__ = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCAmelCase , device_map=_UpperCAmelCase , ) lowercase__ = Accelerator() # This should not work and get value error with self.assertRaises(_UpperCAmelCase ): lowercase__ = accelerator.prepare(_UpperCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): lowercase__ = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) lowercase__ = infer_auto_device_map(_UpperCAmelCase ) lowercase__ = 1 lowercase__ = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCAmelCase , device_map=_UpperCAmelCase , ) lowercase__ = Accelerator() # This should work lowercase__ = accelerator.prepare(_UpperCAmelCase ) @require_cuda def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = torch.nn.Linear(10 , 10 ) lowercase__ = torch.optim.SGD(model.parameters() , lr=0.01 ) lowercase__ = Accelerator(cpu=_UpperCAmelCase ) lowercase__ = accelerator.prepare(_UpperCAmelCase )
15
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
1
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] , __magic_name__ : int ) -> list[int]: """simple docstring""" lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ = i + 1 else: lowercase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 1_1, 1_5], 9) = }')
15
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
1
import copy import re class A : '''simple docstring''' A__ = '''hp''' A__ = {} A__ = None @classmethod def lowerCamelCase__ (cls : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" lowercase__ = prefix lowercase__ = defaults cls.build_naming_info() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" if len(_UpperCAmelCase ) == 0: return "" lowercase__ = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCAmelCase ) + 1 ): lowercase__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowercase__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCAmelCase : Union[str, Any] ): lowercase__ = """""" while integer != 0: lowercase__ = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s lowercase__ = 0 while True: lowercase__ = word + """#""" + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: lowercase__ = sword break lowercase__ = short_word lowercase__ = word return short_word @staticmethod def lowerCamelCase__ (_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = param_name.split("""_""" ) lowercase__ = [TrialShortNamer.shortname_for_word(_UpperCAmelCase , _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowercase__ = ["""""", """_"""] for separator in separators: lowercase__ = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: lowercase__ = shortname lowercase__ = param_name return shortname return param_name @staticmethod def lowerCamelCase__ (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" lowercase__ = TrialShortNamer.shortname_for_key(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = short_name lowercase__ = param_name @classmethod def lowerCamelCase__ (cls : Union[str, Any] ) -> Tuple: """simple docstring""" if cls.NAMING_INFO is not None: return lowercase__ = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } lowercase__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = info @classmethod def lowerCamelCase__ (cls : str , _UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None lowercase__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowercase__ = cls.NAMING_INFO["""short_param"""][k] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = 1 if v else 0 lowercase__ = """""" if isinstance(_UpperCAmelCase , (int, float) ) else """-""" lowercase__ = f'''{key}{sep}{v}''' name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowercase__ = [] else: lowercase__ = repr.split("""_""" ) lowercase__ = {} for value in values: if "-" in value: lowercase__ , lowercase__ = value.split("""-""" ) else: lowercase__ = re.sub("""[0-9.]""" , """""" , _UpperCAmelCase ) lowercase__ = float(re.sub("""[^0-9.]""" , """""" , _UpperCAmelCase ) ) lowercase__ = cls.NAMING_INFO["""reverse_short_param"""][p_k] lowercase__ = p_v for k in cls.DEFAULTS: if k not in parameters: lowercase__ = cls.DEFAULTS[k] return parameters
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowercase__ = {"""unk_token""": """<unk>"""} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , **_UpperCAmelCase : str ) -> Any: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" lowercase__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
15
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : str , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int , __magic_name__ : Optional[int] = None , ) -> Union[str, Any]: """simple docstring""" lowercase__ = {} if train_file is not None: lowercase__ = [train_file] if eval_file is not None: lowercase__ = [eval_file] if test_file is not None: lowercase__ = [test_file] lowercase__ = datasets.load_dataset("""csv""" , data_files=__magic_name__ ) lowercase__ = list(ds[list(files.keys() )[0]].features.keys() ) lowercase__ = features_name.pop(__magic_name__ ) lowercase__ = list(set(ds[list(files.keys() )[0]][label_name] ) ) lowercase__ = {label: i for i, label in enumerate(__magic_name__ )} lowercase__ = tokenizer.model_input_names lowercase__ = {} if len(__magic_name__ ) == 1: for k in files.keys(): lowercase__ = ds[k].map( lambda __magic_name__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) , batched=__magic_name__ , ) elif len(__magic_name__ ) == 2: for k in files.keys(): lowercase__ = ds[k].map( lambda __magic_name__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__magic_name__ , max_length=__magic_name__ , padding="""max_length""" , ) , batched=__magic_name__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowercase__ = {k: v for k, v in ex.items() if k in input_names} lowercase__ = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowercase__ = {k: v for k, v in ex.items() if k in input_names} lowercase__ = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowercase__ = {k: v for k, v in ex.items() if k in input_names} lowercase__ = labelaid[ex[label_name]] yield (d, label) lowercase__ = ( tf.data.Dataset.from_generator( __magic_name__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowercase__ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) lowercase__ = ( tf.data.Dataset.from_generator( __magic_name__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowercase__ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) lowercase__ = ( tf.data.Dataset.from_generator( __magic_name__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowercase__ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid A : Optional[Any] = logging.getLogger(__name__) @dataclass class A : '''simple docstring''' A__ = field(metadata={'''help''': '''Which column contains the label'''} ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''The path of the training file'''} ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''The path of the development file'''} ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''The path of the test file'''} ) A__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : '''simple docstring''' A__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__magic_name__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__magic_name__ ) , labelaid=__magic_name__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowercase__ = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , ) def compute_metrics(__magic_name__ : EvalPrediction ) -> Dict: lowercase__ = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowercase__ = TFTrainer( model=__magic_name__ , args=__magic_name__ , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , compute_metrics=__magic_name__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase__ = trainer.evaluate() lowercase__ = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(__magic_name__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__magic_name__ ) return results if __name__ == "__main__": main()
15
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A : Dict = logging.get_logger(__name__) A : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : int = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } A : Any = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } A : Optional[int] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DistilBertTokenizer def __init__(self : List[Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]="[UNK]" , _UpperCAmelCase : List[Any]="[SEP]" , _UpperCAmelCase : Any="[PAD]" , _UpperCAmelCase : List[Any]="[CLS]" , _UpperCAmelCase : str="[MASK]" , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> int: """simple docstring""" super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _UpperCAmelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(_UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**_UpperCAmelCase ) lowercase__ = do_lower_case def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict=None ) -> Any: """simple docstring""" lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
15
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter A : List[str] = logging.get_logger(__name__) A : Dict[Optional[str], Type[Formatter]] = {} A : Dict[Optional[str], str] = {} A : Dict[Optional[str], Exception] = {} def UpperCamelCase ( __magic_name__ : type , __magic_name__ : Optional[str] , __magic_name__ : Optional[List[str]] = None , ) -> Dict: """simple docstring""" lowercase__ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) lowercase__ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) lowercase__ = format_type def UpperCamelCase ( __magic_name__ : Exception , __magic_name__ : Optional[str] , __magic_name__ : Optional[List[str]] = None ) -> int: """simple docstring""" lowercase__ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase__ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: A : Union[str, Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: A : Union[str, Any] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: A : Optional[int] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def UpperCamelCase ( __magic_name__ : Optional[str] ) -> Optional[str]: """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCamelCase ( __magic_name__ : Optional[str] , **__magic_name__ : Dict ) -> Formatter: """simple docstring""" lowercase__ = get_format_type_from_alias(__magic_name__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__magic_name__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
15
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
1
def UpperCamelCase ( __magic_name__ : list ) -> list: """simple docstring""" def merge(__magic_name__ : list , __magic_name__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__magic_name__ ) <= 1: return collection lowercase__ = len(__magic_name__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() A : Any = input('Enter numbers separated by a comma:\n').strip() A : str = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
15
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
1
def UpperCamelCase ( __magic_name__ : str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) lowercase__ = sorted(string.lower() ) return len(__magic_name__ ) == len(set(__magic_name__ ) ) if __name__ == "__main__": A : Any = input('Enter a string ').strip() A : int = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
15
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) A : str = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } A : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Any ) -> int: """simple docstring""" for attribute in key.split(""".""" ): lowercase__ = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: lowercase__ = getattr(__magic_name__ , __magic_name__ ).shape else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> Optional[int]: """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(__magic_name__ )[0].split(""".""" )[-2] lowercase__ = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: lowercase__ = """weight_g""" elif "weight_v" in name: lowercase__ = """weight_v""" elif "bias" in name: lowercase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = """weight""" else: lowercase__ = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = full_name.split("""conv_layers.""" )[-1] lowercase__ = name.split(""".""" ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=True ) -> List[Any]: """simple docstring""" if config_path is not None: lowercase__ = UniSpeechSatConfig.from_pretrained(__magic_name__ ) else: lowercase__ = UniSpeechSatConfig() lowercase__ = """""" if is_finetuned: lowercase__ = UniSpeechSatForCTC(__magic_name__ ) else: lowercase__ = UniSpeechSatForPreTraining(__magic_name__ ) lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowercase__ = model[0].eval() recursively_load_weights(__magic_name__ , __magic_name__ ) hf_wavavec.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A : Optional[int] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : str = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''decision_transformer''' A__ = ['''past_key_values'''] A__ = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self : Any , _UpperCAmelCase : Optional[int]=17 , _UpperCAmelCase : int=4 , _UpperCAmelCase : str=128 , _UpperCAmelCase : Union[str, Any]=4096 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Union[str, Any]=1024 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str="relu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=1E-5 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int=5_0256 , _UpperCAmelCase : str=5_0256 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , **_UpperCAmelCase : Optional[int] , ) -> Any: """simple docstring""" lowercase__ = state_dim lowercase__ = act_dim lowercase__ = hidden_size lowercase__ = max_ep_len lowercase__ = action_tanh lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_layer lowercase__ = n_head lowercase__ = n_inner lowercase__ = activation_function lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = scale_attn_weights lowercase__ = use_cache lowercase__ = scale_attn_by_inverse_layer_idx lowercase__ = reorder_and_upcast_attn lowercase__ = bos_token_id lowercase__ = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
15
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple ) -> int: """simple docstring""" lowercase__ = """""" for i in table: res += inp[i - 1] return res def UpperCamelCase ( __magic_name__ : int ) -> Optional[int]: """simple docstring""" return data[1:] + data[0] def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = """""" for i in range(len(__magic_name__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Dict ) -> Dict: """simple docstring""" lowercase__ = int("""0b""" + data[0] + data[-1] , 2 ) lowercase__ = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = message[:4] lowercase__ = message[4:] lowercase__ = apply_table(__magic_name__ , __magic_name__ ) lowercase__ = xor(__magic_name__ , __magic_name__ ) lowercase__ = apply_sbox(__magic_name__ , temp[:4] ) # noqa: E741 lowercase__ = apply_sbox(__magic_name__ , temp[4:] ) lowercase__ = """0""" * (2 - len(__magic_name__ )) + l # noqa: E741 lowercase__ = """0""" * (2 - len(__magic_name__ )) + r lowercase__ = apply_table(l + r , __magic_name__ ) lowercase__ = xor(__magic_name__ , __magic_name__ ) return temp + right if __name__ == "__main__": A : Union[str, Any] = input('Enter 10 bit key: ') A : Dict = input('Enter 8 bit message: ') A : str = [6, 3, 7, 4, 8, 5, 1_0, 9] A : Optional[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] A : List[str] = [2, 4, 3, 1] A : Dict = [2, 6, 3, 1, 4, 8, 5, 7] A : int = [4, 1, 3, 5, 7, 2, 8, 6] A : List[str] = [4, 1, 2, 3, 2, 3, 4, 1] A : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A : List[str] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A : Any = apply_table(key, paa_table) A : List[Any] = temp[:5] A : Optional[Any] = temp[5:] A : List[Any] = left_shift(left) A : Any = left_shift(right) A : Dict = apply_table(left + right, pa_table) A : List[Any] = left_shift(left) A : str = left_shift(right) A : Union[str, Any] = left_shift(left) A : int = left_shift(right) A : Tuple = apply_table(left + right, pa_table) # encryption A : str = apply_table(message, IP) A : Dict = function(expansion, sa, sa, keya, temp) A : str = temp[4:] + temp[:4] A : Optional[int] = function(expansion, sa, sa, keya, temp) A : List[str] = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption A : Optional[Any] = apply_table(CT, IP) A : Dict = function(expansion, sa, sa, keya, temp) A : List[Any] = temp[4:] + temp[:4] A : int = function(expansion, sa, sa, keya, temp) A : Tuple = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
15
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = BlenderbotSmallTokenizer A__ = False def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" super().setUp() lowercase__ = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] lowercase__ = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """adapt act apte""" lowercase__ = """adapt act apte""" return input_text, output_text def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ = """adapt act apte""" lowercase__ = ["""adapt""", """act""", """ap@@""", """te"""] lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowercase__ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] lowercase__ = """I am a small frog.""" lowercase__ = tok([src_text] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = tok.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) lowercase__ = """I am a small frog .""" lowercase__ = """.""" lowercase__ = tok(_UpperCAmelCase )["""input_ids"""] lowercase__ = tok(_UpperCAmelCase )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer A : Optional[int] = ['gpt2'] A : Any = 'gpt2' if is_tf_available(): class A ( tf.Module ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" super().__init__() lowercase__ = tokenizer lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowercase__ = TFGPTaLMHeadModel.from_config(_UpperCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple ) -> str: """simple docstring""" lowercase__ = self.tokenizer(_UpperCAmelCase ) lowercase__ = tokenized["""input_ids"""].to_tensor() lowercase__ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowercase__ = self.model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase )["""logits"""] return outputs @require_tf @require_keras_nlp class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" super().setUp() lowercase__ = [GPTaTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowercase__ = [TFGPTaTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] lowercase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowercase__ = tokenizer([test_inputs] , return_tensors="""tf""" ) lowercase__ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowercase__ = python_outputs[key].numpy() lowercase__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(_UpperCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = tf.function(_UpperCAmelCase ) for test_inputs in self.test_sentences: lowercase__ = tf.constant(_UpperCAmelCase ) lowercase__ = compiled_tokenizer(_UpperCAmelCase ) lowercase__ = tf_tokenizer(_UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = ModelToSave(tokenizer=_UpperCAmelCase ) lowercase__ = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ = model.serving(_UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__ = Path(_UpperCAmelCase ) / """saved.model""" tf.saved_model.save(_UpperCAmelCase , _UpperCAmelCase , signatures={"""serving_default""": model.serving} ) lowercase__ = tf.saved_model.load(_UpperCAmelCase ) lowercase__ = loaded_model.signatures["""serving_default"""](_UpperCAmelCase )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowercase__ = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ = tf_tokenizer(_UpperCAmelCase ) # Build model with some sample inputs lowercase__ = tf_tokenizer.get_config() lowercase__ = TFGPTaTokenizer.from_config(_UpperCAmelCase ) lowercase__ = model_from_config(_UpperCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run lowercase__ = 12_3123 for max_length in [3, 5, 1024]: lowercase__ = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ = tf_tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase ) lowercase__ = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
15
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''image_processor''', '''tokenizer'''] A__ = '''LayoutLMv3ImageProcessor''' A__ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__(self : Dict , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : str ) -> Tuple: """simple docstring""" lowercase__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _UpperCAmelCase , ) lowercase__ = kwargs.pop("""feature_extractor""" ) lowercase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__(self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Optional[Any] , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor lowercase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase__ = features["""words"""] lowercase__ = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values lowercase__ = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: lowercase__ = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs["""overflow_to_sample_mapping"""] ) lowercase__ = images return encoded_inputs def lowerCamelCase__ (self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> str: """simple docstring""" lowercase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}''' ) return images_with_overflow def lowerCamelCase__ (self : int , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCAmelCase , ) return self.image_processor
15
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A : Union[str, Any] = pytest.mark.integration @require_faiss class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" lowercase__ = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(_UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" import faiss lowercase__ = self._create_dummy_dataset() lowercase__ = dset.map( lambda _UpperCAmelCase , _UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ) lowercase__ = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ , lowercase__ = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" import faiss lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowercase__ , lowercase__ = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" import faiss lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCAmelCase ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) lowercase__ , lowercase__ = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" lowercase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(_UpperCAmelCase , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" from elasticsearch import Elasticsearch lowercase__ = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: lowercase__ = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) lowercase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} lowercase__ = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=_UpperCAmelCase ) lowercase__ , lowercase__ = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Tuple: """simple docstring""" import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowercase__ = np.zeros(5 , dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(_UpperCAmelCase ) self.assertRaises(_UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowercase__ = np.eye(5 , dtype=np.floataa )[::-1] lowercase__ , lowercase__ = index.search_batch(_UpperCAmelCase ) self.assertRaises(_UpperCAmelCase , index.search_batch , queries[0] ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" import faiss lowercase__ = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowercase__ = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_UpperCAmelCase ): lowercase__ = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" import faiss lowercase__ = faiss.IndexFlat(5 ) lowercase__ = FaissIndex(custom_index=_UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowercase__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowercase__ = np.zeros(5 , dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(_UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCamelCase ( __magic_name__ : Tuple ) -> Any: """simple docstring""" import faiss lowercase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowercase__ = """index.faiss""" lowercase__ = f'''mock://{index_name}''' index.save(__magic_name__ , storage_options=mockfs.storage_options ) lowercase__ = FaissIndex.load(__magic_name__ , storage_options=mockfs.storage_options ) lowercase__ = np.zeros(5 , dtype=np.floataa ) lowercase__ = 1 lowercase__ , lowercase__ = index.search(__magic_name__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: lowercase__ = Elasticsearch() lowercase__ = {"""acknowledged""": True} lowercase__ = ElasticSearchIndex(es_client=_UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query lowercase__ = """foo""" lowercase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} lowercase__ , lowercase__ = index.search(_UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowercase__ = """foo""" lowercase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} lowercase__ , lowercase__ = index.search(_UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowercase__ = ["""foo""", """bar""", """foobar"""] lowercase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} lowercase__ , lowercase__ = index.search_batch(_UpperCAmelCase ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , _UpperCAmelCase ) # batched queries with timeout lowercase__ = ["""foo""", """bar""", """foobar"""] lowercase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} lowercase__ , lowercase__ = index.search_batch(_UpperCAmelCase , request_timeout=30 ) lowercase__ = [scores[0] for scores in total_scores] lowercase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , _UpperCAmelCase )
15
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = MgpstrTokenizer A__ = False A__ = {} A__ = False def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().setUp() # fmt: off lowercase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : int ) -> Dict: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> str: """simple docstring""" lowercase__ = """tester""" lowercase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowercase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowercase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" pass
15
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : List[str] = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm A : Optional[Any] = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex A : Optional[Any] = 1_0 A : Any = 2_5_6 def UpperCamelCase ( __magic_name__ : List[str] ) -> Optional[MinHash]: """simple docstring""" if len(__magic_name__ ) < MIN_NUM_TOKENS: return None lowercase__ = MinHash(num_perm=__magic_name__ ) for token in set(__magic_name__ ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase ( __magic_name__ : str ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(__magic_name__ ) if len(t.strip() ) > 0} class A : '''simple docstring''' def __init__(self : Optional[int] , *, _UpperCAmelCase : float = 0.85 , ) -> str: """simple docstring""" lowercase__ = duplication_jaccard_threshold lowercase__ = NUM_PERM lowercase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowercase__ = defaultdict(_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : MinHash ) -> None: """simple docstring""" lowercase__ = self._index.query(_UpperCAmelCase ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> List[List[Dict]]: """simple docstring""" lowercase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase__ = [base] + list(_UpperCAmelCase ) # reformat the cluster to be a list of dict lowercase__ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(_UpperCAmelCase ) return duplicate_clusters def lowerCamelCase__ (self : int , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = self.get_duplicate_clusters() with open(_UpperCAmelCase , """w""" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase ( __magic_name__ : Any ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = element lowercase__ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase ( __magic_name__ : Type[Dataset] ) -> Union[str, Any]: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__magic_name__ , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def UpperCamelCase ( __magic_name__ : Type[Dataset] , __magic_name__ : float ) -> Optional[int]: """simple docstring""" lowercase__ = DuplicationIndex(duplication_jaccard_threshold=__magic_name__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__magic_name__ ) ) , max_queue_size=100 ) ): di.add(__magic_name__ , __magic_name__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> float: """simple docstring""" lowercase__ = get_tokens(__magic_name__ ) lowercase__ = get_tokens(__magic_name__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) A : Tuple = None def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> str: """simple docstring""" lowercase__ = [] for elementa in cluster: lowercase__ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase__ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__magic_name__ , __magic_name__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase__ = 1 extremes.append(__magic_name__ ) return extremes def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> int: """simple docstring""" global _shared_dataset lowercase__ = dataset lowercase__ = [] lowercase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=__magic_name__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __magic_name__ , __magic_name__ , ) , total=len(__magic_name__ ) , ): extremes_list.append(__magic_name__ ) return extremes_list def UpperCamelCase ( __magic_name__ : Type[Dataset] , __magic_name__ : float = 0.8_5 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" lowercase__ = make_duplicate_clusters(__magic_name__ , __magic_name__ ) lowercase__ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase__ = {} lowercase__ = find_extremes(__magic_name__ , __magic_name__ , __magic_name__ ) for extremes in extremes_clusters: for element in extremes: lowercase__ = element lowercase__ = duplicate_indices - set(extreme_dict.keys() ) lowercase__ = dataset.filter(lambda __magic_name__ , __magic_name__ : idx not in remove_indices , with_indices=__magic_name__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase__ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase__ = extreme_dict[element["""base_index"""]]["""copies"""] print(f'''Original dataset size: {len(__magic_name__ )}''' ) print(f'''Number of duplicate clusters: {len(__magic_name__ )}''' ) print(f'''Files in duplicate cluster: {len(__magic_name__ )}''' ) print(f'''Unique files in duplicate cluster: {len(__magic_name__ )}''' ) print(f'''Filtered dataset size: {len(__magic_name__ )}''' ) return ds_filter, duplicate_clusters
15
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart A : str = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } A : Union[str, Any] = { 'facebook/bart-base': 1_0_2_4, 'facebook/bart-large': 1_0_2_4, 'facebook/bart-large-mnli': 1_0_2_4, 'facebook/bart-large-cnn': 1_0_2_4, 'facebook/bart-large-xsum': 1_0_2_4, 'yjernite/bart_eli5': 1_0_2_4, } @lru_cache() def UpperCamelCase ( ) -> Optional[int]: """simple docstring""" lowercase__ = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowercase__ = bs[:] lowercase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(__magic_name__ ) cs.append(2**8 + n ) n += 1 lowercase__ = [chr(__magic_name__ ) for n in cs] return dict(zip(__magic_name__ , __magic_name__ ) ) def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char return pairs class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="replace" , _UpperCAmelCase : Tuple="<s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : int="<mask>" , _UpperCAmelCase : Optional[int]=False , **_UpperCAmelCase : int , ) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = {v: k for k, v in self.encoder.items()} lowercase__ = errors # how to handle errors in decoding lowercase__ = bytes_to_unicode() lowercase__ = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding="""utf-8""" ) as merges_handle: lowercase__ = merges_handle.read().split("""\n""" )[1:-1] lowercase__ = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = {} lowercase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" return len(self.encoder ) def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ (self : str , _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = tuple(_UpperCAmelCase ) lowercase__ = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: lowercase__ = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(_UpperCAmelCase ): try: lowercase__ = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ = tuple(_UpperCAmelCase ) lowercase__ = new_word if len(_UpperCAmelCase ) == 1: break else: lowercase__ = get_pairs(_UpperCAmelCase ) lowercase__ = """ """.join(_UpperCAmelCase ) lowercase__ = word return word def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" lowercase__ = [] for token in re.findall(self.pat , _UpperCAmelCase ): lowercase__ = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(""" """ ) ) return bpe_tokens def lowerCamelCase__ (self : int , _UpperCAmelCase : int ) -> Any: """simple docstring""" return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" return self.decoder.get(_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = """""".join(_UpperCAmelCase ) lowercase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase__ (self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + """\n""" ) lowercase__ = 0 with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) lowercase__ = token_index writer.write(""" """.join(_UpperCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase__ = """ """ + text return (text, kwargs)
15
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) A : Optional[int] = logging.getLogger() def UpperCamelCase ( ) -> Tuple: """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowercase__ = parser.parse_args() return args.f class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> None: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_UpperCAmelCase , """argv""" , _UpperCAmelCase ): lowercase__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_UpperCAmelCase , 0.666 ) @slow @require_torch_non_multi_gpu def lowerCamelCase__ (self : int ) -> str: """simple docstring""" lowercase__ = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_UpperCAmelCase ) lowercase__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_UpperCAmelCase ) lowercase__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_UpperCAmelCase )
15
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : Optional[int] = logging.get_logger(__name__) A : Any = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = '''swin''' A__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self : Dict , _UpperCAmelCase : Any=224 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Optional[Any]=96 , _UpperCAmelCase : Optional[int]=[2, 2, 6, 2] , _UpperCAmelCase : int=[3, 6, 12, 24] , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Any=4.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=1E-5 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Tuple , ) -> List[str]: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = len(_UpperCAmelCase ) lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) lowercase__ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(_UpperCAmelCase ) + 1 )] lowercase__ , lowercase__ = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : List[str] ) -> float: """simple docstring""" return 1E-4
15
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCamelCase ( __magic_name__ : int = 8 ) -> str: """simple docstring""" lowercase__ = ascii_letters + digits + punctuation return "".join(secrets.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : int ) -> str: """simple docstring""" i -= len(__magic_name__ ) lowercase__ = i // 3 lowercase__ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase__ = ( chars_incl + random(__magic_name__ , quotient + remainder ) + random(__magic_name__ , __magic_name__ ) + random(__magic_name__ , __magic_name__ ) ) lowercase__ = list(__magic_name__ ) shuffle(__magic_name__ ) return "".join(__magic_name__ ) # random is a generalised function for letters, characters and numbers def UpperCamelCase ( __magic_name__ : str , __magic_name__ : int ) -> str: """simple docstring""" return "".join(secrets.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> List[str]: """simple docstring""" pass # Put your code here... def UpperCamelCase ( __magic_name__ : str , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" pass # Put your code here... def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" pass # Put your code here... def UpperCamelCase ( __magic_name__ : str , __magic_name__ : int = 8 ) -> bool: """simple docstring""" if len(__magic_name__ ) < min_length: # Your Password must be at least 8 characters long return False lowercase__ = any(char in ascii_uppercase for char in password ) lowercase__ = any(char in ascii_lowercase for char in password ) lowercase__ = any(char in digits for char in password ) lowercase__ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCamelCase ( ) -> str: """simple docstring""" lowercase__ = int(input("""Please indicate the max length of your password: """ ).strip() ) lowercase__ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(__magic_name__ ) ) print( """Alternative Password generated:""" , alternative_password_generator(__magic_name__ , __magic_name__ ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
15
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar A : Optional[int] = TypeVar('T') class A ( Generic[T] ): '''simple docstring''' def __init__(self : int , _UpperCAmelCase : list[T] , _UpperCAmelCase : Callable[[T, T], T] ) -> None: """simple docstring""" lowercase__ = None lowercase__ = len(_UpperCAmelCase ) lowercase__ = [any_type for _ in range(self.N )] + arr lowercase__ = fnc self.build() def lowerCamelCase__ (self : Dict ) -> None: """simple docstring""" for p in range(self.N - 1 , 0 , -1 ): lowercase__ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : T ) -> None: """simple docstring""" p += self.N lowercase__ = v while p > 1: lowercase__ = p // 2 lowercase__ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> T | None: # noqa: E741 """simple docstring""" lowercase__ , lowercase__ = l + self.N, r + self.N lowercase__ = None while l <= r: if l % 2 == 1: lowercase__ = self.st[l] if res is None else self.fn(_UpperCAmelCase , self.st[l] ) if r % 2 == 0: lowercase__ = self.st[r] if res is None else self.fn(_UpperCAmelCase , self.st[r] ) lowercase__ , lowercase__ = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce A : str = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] A : List[Any] = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } A : Optional[int] = SegmentTree(test_array, min) A : Tuple = SegmentTree(test_array, max) A : Union[str, Any] = SegmentTree(test_array, lambda a, b: a + b) def UpperCamelCase ( ) -> None: """simple docstring""" for i in range(len(__magic_name__ ) ): for j in range(__magic_name__ , len(__magic_name__ ) ): lowercase__ = reduce(__magic_name__ , test_array[i : j + 1] ) lowercase__ = reduce(__magic_name__ , test_array[i : j + 1] ) lowercase__ = reduce(lambda __magic_name__ , __magic_name__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__magic_name__ , __magic_name__ ) assert max_range == max_segment_tree.query(__magic_name__ , __magic_name__ ) assert sum_range == sum_segment_tree.query(__magic_name__ , __magic_name__ ) test_all_segments() for index, value in test_updates.items(): A : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
1
from __future__ import annotations from math import pi def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
15
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''image_processor''', '''tokenizer'''] A__ = '''AutoImageProcessor''' A__ = '''AutoTokenizer''' def __init__(self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = self.image_processor def __call__(self : Union[str, Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowercase__ = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: lowercase__ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: lowercase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Dict , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : int ) -> str: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
15
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : Union[str, Any] = logging.get_logger(__name__) A : str = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''detr''' A__ = ['''past_key_values'''] A__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self : Any , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=3 , _UpperCAmelCase : str=100 , _UpperCAmelCase : Tuple=6 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : int=6 , _UpperCAmelCase : Optional[int]=2048 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str="relu" , _UpperCAmelCase : int=256 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[Any]="sine" , _UpperCAmelCase : Union[str, Any]="resnet50" , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : List[str]=0.1 , **_UpperCAmelCase : str , ) -> str: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = backbone_config.get("""model_type""" ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None lowercase__ , lowercase__ , lowercase__ = None, None, None lowercase__ = use_timm_backbone lowercase__ = backbone_config lowercase__ = num_channels lowercase__ = num_queries lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = init_xavier_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = encoder_layers lowercase__ = auxiliary_loss lowercase__ = position_embedding_type lowercase__ = backbone lowercase__ = use_pretrained_backbone lowercase__ = dilation # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = mask_loss_coefficient lowercase__ = dice_loss_coefficient lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowerCamelCase__ (self : int ) -> int: """simple docstring""" return self.d_model @classmethod def lowerCamelCase__ (cls : Tuple , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return cls(backbone_config=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> Dict[str, any]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCamelCase__ (self : Optional[int] ) -> float: """simple docstring""" return 1E-5 @property def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" return 12
15
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : bool = False ) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(__magic_name__ ), magnitude * sin(__magic_name__ )] return [magnitude * cos(radians(__magic_name__ ) ), magnitude * sin(radians(__magic_name__ ) )] def UpperCamelCase ( __magic_name__ : NDArray[floataa] , __magic_name__ : NDArray[floataa] , __magic_name__ : float = 10**-1 ) -> bool: """simple docstring""" lowercase__ = cross(__magic_name__ , __magic_name__ ) lowercase__ = sum(__magic_name__ ) return abs(__magic_name__ ) < eps if __name__ == "__main__": # Test to check if it works A : Optional[Any] = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) A : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A : str = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) A : Union[str, Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A : List[str] = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) A : Dict = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
15
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput A : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Dict , *_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = eval_examples lowercase__ = post_process_function lowercase__ = quant_trainer_args lowercase__ = 128 # default number of calibration samples def lowerCamelCase__ (self : int , _UpperCAmelCase : Dict=None ) -> List[Any]: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) lowercase__ = calib_dataset if calib_dataset is not None else self.calib_dataset lowercase__ = self._remove_unused_columns(_UpperCAmelCase , description="""Calibration""" ) return DataLoader( _UpperCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Dict=None ) -> Optional[int]: """simple docstring""" lowercase__ = self.train_dataset if calib_dataset is None else calib_dataset lowercase__ = self.get_calib_dataloader(_UpperCAmelCase ) lowercase__ = self.model quant_trainer.configure_model(_UpperCAmelCase , self.quant_trainer_args , calib=_UpperCAmelCase ) model.eval() quant_trainer.enable_calibration(_UpperCAmelCase ) logger.info("""***** Running calibration *****""" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(_UpperCAmelCase ): # Prediction step lowercase__ , lowercase__ , lowercase__ = self.prediction_step(_UpperCAmelCase , _UpperCAmelCase , prediction_loss_only=_UpperCAmelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_UpperCAmelCase , self.quant_trainer_args ) lowercase__ = model def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ) -> List[Any]: """simple docstring""" lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(_UpperCAmelCase ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( _UpperCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , ) finally: lowercase__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowercase__ = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) lowercase__ = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowercase__ = metrics.pop(_UpperCAmelCase ) self.log(_UpperCAmelCase ) else: lowercase__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : str = "test" ) -> int: """simple docstring""" lowercase__ = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( _UpperCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , ) finally: lowercase__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , """predict""" ) lowercase__ = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowercase__ = metrics.pop(_UpperCAmelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[str]="./" ) -> List[str]: """simple docstring""" lowercase__ = self.eval_dataset lowercase__ = self.get_eval_dataloader(_UpperCAmelCase ) lowercase__ = next(iter(_UpperCAmelCase ) ) # saving device - to make it consistent lowercase__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple lowercase__ = tuple(v.to(_UpperCAmelCase ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer lowercase__ = True lowercase__ = self.model.to(_UpperCAmelCase ) model.eval() model.float() lowercase__ = model.module if hasattr(_UpperCAmelCase , """module""" ) else model quant_trainer.configure_model(_UpperCAmelCase , self.quant_trainer_args ) lowercase__ = os.path.join(_UpperCAmelCase , """model.onnx""" ) logger.info(f'''exporting model to {output_model_file}''' ) lowercase__ = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , export_params=_UpperCAmelCase , opset_version=13 , do_constant_folding=_UpperCAmelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=_UpperCAmelCase , ) logger.info("""onnx export finished""" )
15
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
1
class A : '''simple docstring''' def __init__(self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = {} def lowerCamelCase__ (self : Union[str, Any] ) -> None: """simple docstring""" print(self.vertex ) for i in self.vertex: print(_UpperCAmelCase , """ -> """ , """ -> """.join([str(_UpperCAmelCase ) for j in self.vertex[i]] ) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCAmelCase ) else: # else make a new vertex lowercase__ = [to_vertex] def lowerCamelCase__ (self : str ) -> None: """simple docstring""" lowercase__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : list ) -> None: """simple docstring""" lowercase__ = True print(_UpperCAmelCase , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": A : Union[str, Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
15
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
1